1
|
Neagu AN, Josan CL, Jayaweera TM, Morrissiey H, Johnson KR, Darie CC. Bio-Pathological Functions of Posttranslational Modifications of Histological Biomarkers in Breast Cancer. Molecules 2024; 29:4156. [PMID: 39275004 PMCID: PMC11397409 DOI: 10.3390/molecules29174156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Proteins are the most common types of biomarkers used in breast cancer (BC) theranostics and management. By definition, a biomarker must be a relevant, objective, stable, and quantifiable biomolecule or other parameter, but proteins are known to exhibit the most variate and profound structural and functional variation. Thus, the proteome is highly dynamic and permanently reshaped and readapted, according to changing microenvironments, to maintain the local cell and tissue homeostasis. It is known that protein posttranslational modifications (PTMs) can affect all aspects of protein function. In this review, we focused our analysis on the different types of PTMs of histological biomarkers in BC. Thus, we analyzed the most common PTMs, including phosphorylation, acetylation, methylation, ubiquitination, SUMOylation, neddylation, palmitoylation, myristoylation, and glycosylation/sialylation/fucosylation of transcription factors, proliferation marker Ki-67, plasma membrane proteins, and histone modifications. Most of these PTMs occur in the presence of cellular stress. We emphasized that these PTMs interfere with these biomarkers maintenance, turnover and lifespan, nuclear or subcellular localization, structure and function, stabilization or inactivation, initiation or silencing of genomic and non-genomic pathways, including transcriptional activities or signaling pathways, mitosis, proteostasis, cell-cell and cell-extracellular matrix (ECM) interactions, membrane trafficking, and PPIs. Moreover, PTMs of these biomarkers orchestrate all hallmark pathways that are dysregulated in BC, playing both pro- and/or antitumoral and context-specific roles in DNA damage, repair and genomic stability, inactivation/activation of tumor-suppressor genes and oncogenes, phenotypic plasticity, epigenetic regulation of gene expression and non-mutational reprogramming, proliferative signaling, endocytosis, cell death, dysregulated TME, invasion and metastasis, including epithelial-mesenchymal/mesenchymal-epithelial transition (EMT/MET), and resistance to therapy or reversal of multidrug therapy resistance. PTMs occur in the nucleus but also at the plasma membrane and cytoplasmic level and induce biomarker translocation with opposite effects. Analysis of protein PTMs allows for the discovery and validation of new biomarkers in BC, mainly for early diagnosis, like extracellular vesicle glycosylation, which may be considered as a potential source of circulating cancer biomarkers.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania;
| | - Claudiu-Laurentiu Josan
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania;
| | - Taniya M. Jayaweera
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (H.M.); (K.R.J.)
| | - Hailey Morrissiey
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (H.M.); (K.R.J.)
| | - Kaya R. Johnson
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (H.M.); (K.R.J.)
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (H.M.); (K.R.J.)
| |
Collapse
|
2
|
Campo Verde Arbocco F, Pascual LI, García D, Ortiz I, Gamarra-Luques C, Carón RW, Hapon MB. Epigenetic impact of hypothyroidism on the functional differentiation of the mammary gland in rats. Mol Cell Endocrinol 2024; 590:112267. [PMID: 38729597 DOI: 10.1016/j.mce.2024.112267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/18/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
Mammary gland (MG) lactogenic differentiation involves epigenetic mechanisms. We have previously shown that hypothyroidism (HypoT) alters the MG transcriptome in lactation. However, the role of thyroid hormones (T3 and T4 a. k.a. THs) in epigenetic differentiation of MG is still unknown. We used a model of post-lactating HypoT rats to study in MG: a) Methylation and expression level of Gata3, Elf5, Stat6, Stat5a, Stat5b; b) Expression of Lalba, IL-4Rα and Ncoa1 mRNA; c) Histone H3 acetylation and d) Estrogen and progesterone concentration in serum. HypoT increases the estrogen serum level, decreases the progesterone level, promotes methylation of Stat5a, Stat5b and Stat6, decreasing their mRNA level and of its target genes (Lalba and IL-4Rα) and increases the Ncoa1 mRNA expression and histone H3 acetylation level. Our results proved that HypoT alters the post-lactation MG epigenome and could compromise mammary functional differentiation.
Collapse
Affiliation(s)
- Fiorella Campo Verde Arbocco
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU, CONICET) Mendoza, Argentina; Universidad de Mendoza, Facultad de Ciencias Médicas, Argentina.
| | - Lourdes Inés Pascual
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU, CONICET) Mendoza, Argentina
| | - Daiana García
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU, CONICET) Mendoza, Argentina
| | - Irina Ortiz
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU, CONICET) Mendoza, Argentina
| | - Carlos Gamarra-Luques
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU, CONICET) Mendoza, Argentina; Universidad Nacional de Cuyo, Facultad de Ciencias Médicas, Mendoza, Argentina
| | - Rubén Walter Carón
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU, CONICET) Mendoza, Argentina
| | - María Belén Hapon
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU, CONICET) Mendoza, Argentina; Universidad Nacional de Cuyo, Facultad de Ciencias Exactas y Naturales, Mendoza, Argentina
| |
Collapse
|
3
|
Yao H, Pan Z, Ma W, Zhao Z, Su Z, Yang J. Whole-Genome Resequencing Analysis of the Camelus bactrianus (Bactrian Camel) Genome Identifies Mutations and Genes Affecting Milk Production Traits. Int J Mol Sci 2024; 25:7836. [PMID: 39063078 PMCID: PMC11277051 DOI: 10.3390/ijms25147836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Milk production is an important trait that influences the economic value of camels. However, the genetic regulatory mechanisms underlying milk production in camels have not yet been elucidated. We aimed to identify candidate molecular markers that affect camel milk production. We classified Junggar Bactrian camels (9-10-year-old) as low-yield (<1.96 kg/d) or high-yield (>2.75 kg/d) based on milk production performance. Milk fat (5.16 ± 0.51 g/100 g) and milk protein (3.59 ± 0.22 g/100 g) concentrations were significantly lower in high-yielding camels than those in low-yielding camels (6.21 ± 0.59 g/100 g, and 3.93 ± 0.27 g/100 g, respectively) (p < 0.01). There were no apparent differences in gland tissue morphology between the low- and high-production groups. Whole-genome resequencing of 12 low- and 12 high-yield camels was performed. The results of selection mapping methods, performed using two methods (FST and θπ), showed that 264 single nucleotide polymorphism sites (SNPs) overlapped between the two methods, identifying 181 genes. These genes were mainly associated with the regulation of oxytocin, estrogen, ErbB, Wnt, mTOR, PI3K-Akt, growth hormone synthesis/secretion/action, and MAPK signaling pathways. A total of 123 SNPs were selected, based on significantly associated genomic regions and important pathways for SNP genotyping, for verification in 521 additional Bactrian camels. This analysis showed that 13 SNPs were significantly associated with camel milk production yield and 18 SNPs were significantly associated with camel milk composition percentages. Most of these SNPs were located in coding regions of the genome. However, five and two important mutation sites were found in the introns of CSN2 (β-casein) and CSN3 (κ-casein), respectively. Among the candidate genes, NR4A1, ADCY8, PPARG, CSN2, and CSN3 have previously been well studied in dairy livestock. These observations provide a basis for understanding the molecular mechanisms underlying milk production in camels as well as genetic markers for breeding programs aimed at improving milk production.
Collapse
Affiliation(s)
- Huaibing Yao
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (H.Y.); (Z.Z.)
- Xinjiang Camel Industry Engineering Technology Research Center, Urumqi 830017, China
| | - Zhangyuan Pan
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Wanpeng Ma
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (W.M.); (Z.S.)
| | - Zhongkai Zhao
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (H.Y.); (Z.Z.)
- Xinjiang Camel Industry Engineering Technology Research Center, Urumqi 830017, China
| | - Zhanqiang Su
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (W.M.); (Z.S.)
| | - Jie Yang
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (H.Y.); (Z.Z.)
- Xinjiang Camel Industry Engineering Technology Research Center, Urumqi 830017, China
| |
Collapse
|
4
|
de Siqueira CD, Silva FRMB, Borges L, de Moraes ACR, Hatanaka E, Filippin-Monteiro FB. Impact of Serum Amyloid A Protein in the Human Breast: An In Vitro Study. Nutrients 2024; 16:2283. [PMID: 39064726 PMCID: PMC11280015 DOI: 10.3390/nu16142283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
The mammary gland is an exocrine gland whose main function is to produce milk. Breast morphogenesis begins in the embryonic period; however, its greatest development takes place during the lactation period. Studies have found the expression of serum amyloid A protein (SAA) in both breast cells and breast milk, yet the function of this protein in these contexts remains unknown. Insufficient milk production is one of the most frequent reasons for early weaning, a problem that can be related to the mother, the newborn, or both. This study aims to investigate the relationship between lactogenesis II (the onset of milk secretion) and the role of SAA in the human breast. To this end, mammary epithelial cell cultures were evaluated for the expression of SAA and the influence of various cytokines. Additionally, we sought to assess the activation pathway through which SAA acts in the breast, its glucose uptake capacity, and the morphological changes induced by SAA treatment. SAA expression was observed in mammary epithelial cells; however, it was not possible to establish its activation pathway, as treatments with inhibitors of the ERK1/2, p38MAPK, and PI3K pathways did not alter its expression. This study demonstrated that SAA can stimulate IL-6 expression, inhibit glucose uptake, and cause morphological changes in the cells, indicative of cellular stress. These mechanisms could potentially contribute to early breastfeeding cessation due to reduced milk production and breast involution.
Collapse
Affiliation(s)
- Carolina Dumke de Siqueira
- Post-Graduation Program in Pharmacy, Health Sciences Centre, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil;
| | - Fátima Regina Mena Barreto Silva
- Institute of Cellular Bioelectricity (IBIOCEL): Science & Health, Department of Biochemistry, Biological Sciences Centre, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil;
| | - Leandro Borges
- Institute of Physical Activity and Sports Sciences, Cruzeiro do Sul University, São Paulo 08060-070, SP, Brazil; (L.B.); (E.H.)
| | - Ana Carolina Rabello de Moraes
- Department of Clinical Analysis, Health Sciences Centre, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil;
| | - Elaine Hatanaka
- Institute of Physical Activity and Sports Sciences, Cruzeiro do Sul University, São Paulo 08060-070, SP, Brazil; (L.B.); (E.H.)
| | - Fabíola Branco Filippin-Monteiro
- Department of Clinical Analysis, Health Sciences Centre, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil;
| |
Collapse
|
5
|
Shan M, Cheng Q, Parris AB, Kong L, Yang X, Shi Y. Metformin reduces basal subpopulation and attenuates mammary epithelial cell stemness in FVB/N mice. Front Cell Dev Biol 2024; 12:1427395. [PMID: 39055652 PMCID: PMC11269140 DOI: 10.3389/fcell.2024.1427395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024] Open
Abstract
Metformin shows promise in breast cancer prevention, but its underlying mechanisms remain unclear. This study investigated the impact of metformin on the repopulation dynamics of mammary epithelial cells (MECs) and the signaling pathways in non-tumorigenic FVB/N mice. This study aimed to enhance our understanding of the role of metformin in reducing the susceptibility of MECs in premalignant tissues to oncogenic factors. In this study, female mice were administered 200 mg/kg/day of metformin via intraperitoneal (i.p.) injection from 8 to 18 weeks of age. After this treatment period, morphogenesis, flow cytometry, analyses of MEC stemness, and RNA sequencing were performed. The study findings indicated that metformin treatment in adult mice reduced mammary gland proliferation, as demonstrated by decreased Ki67+ cells and lateral bud formation. Additionally, metformin significantly reduced both basal and mammary repopulating unit subpopulations, indicating an impact on mammary epithelial cell repopulation. Mammosphere, colony-forming cell, and 3D culture assays revealed that metformin adversely affected mammary epithelial cell stemness. Furthermore, metformin downregulated signaling in key pathways including AMPK/mTOR, MAPK/Erk, PI3K/Akt, and ER, which contribute to its inhibitory effects on mammary proliferation and stemness. Transcriptome analysis with RNA sequencing indicated that metformin induced significant downregulation of genes involved in multiple critical pathways. KEGG-based pathway analysis indicated that genes in PI3K/Akt, focal adhesion, ECM-receptor, small cell lung cancer and immune-modulation pathways were among the top groups of differentially regulated genes. In summary, our research demonstrates that metformin inhibits MEC proliferation and stemness, accompanied by the downregulation of intrinsic signaling. These insights suggest that the regulatory effects of metformin on premalignant mammary tissues could potentially delay or prevent the onset of breast cancer, offering a promising avenue for developing new preventive strategies.
Collapse
Affiliation(s)
- Minghui Shan
- Department of Pathology, People’s Hospital of Zhengzhou University, Zhengzhou, Hena, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Qiong Cheng
- Department of Pathology, People’s Hospital of Zhengzhou University, Zhengzhou, Hena, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Amanda B. Parris
- Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Research Campus, North Carolina Central University, Kannapolis, NC, United States
| | - Lingfei Kong
- Department of Pathology, People’s Hospital of Zhengzhou University, Zhengzhou, Hena, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaohe Yang
- Department of Pathology, People’s Hospital of Zhengzhou University, Zhengzhou, Hena, China
- Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Research Campus, North Carolina Central University, Kannapolis, NC, United States
| | - Yujie Shi
- Department of Pathology, People’s Hospital of Zhengzhou University, Zhengzhou, Hena, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
6
|
Nicotra R, Lutz C, Messal HA, Jonkers J. Rat Models of Hormone Receptor-Positive Breast Cancer. J Mammary Gland Biol Neoplasia 2024; 29:12. [PMID: 38913216 PMCID: PMC11196369 DOI: 10.1007/s10911-024-09566-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/07/2024] [Indexed: 06/25/2024] Open
Abstract
Hormone receptor-positive (HR+) breast cancer (BC) is the most common type of breast cancer among women worldwide, accounting for 70-80% of all invasive cases. Patients with HR+ BC are commonly treated with endocrine therapy, but intrinsic or acquired resistance is a frequent problem, making HR+ BC a focal point of intense research. Despite this, the malignancy still lacks adequate in vitro and in vivo models for the study of its initiation and progression as well as response and resistance to endocrine therapy. No mouse models that fully mimic the human disease are available, however rat mammary tumor models pose a promising alternative to overcome this limitation. Compared to mice, rats are more similar to humans in terms of mammary gland architecture, ductal origin of neoplastic lesions and hormone dependency status. Moreover, rats can develop spontaneous or induced mammary tumors that resemble human HR+ BC. To date, six different types of rat models of HR+ BC have been established. These include the spontaneous, carcinogen-induced, transplantation, hormone-induced, radiation-induced and genetically engineered rat mammary tumor models. Each model has distinct advantages, disadvantages and utility for studying HR+ BC. This review provides a comprehensive overview of all published models to date.
Collapse
Affiliation(s)
- Raquel Nicotra
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands
- Oncode Institute, Amsterdam, Netherlands
| | - Catrin Lutz
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands.
- Oncode Institute, Amsterdam, Netherlands.
| | - Hendrik A Messal
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands.
- Oncode Institute, Amsterdam, Netherlands.
| | - Jos Jonkers
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands.
- Oncode Institute, Amsterdam, Netherlands.
| |
Collapse
|
7
|
Ji L, Liu Y, Wang Z, Huang Q, Cai J, Gu H, Li J, Chen X, Feng C, He X, Deng X, Cheng X, Kong X, Zhu X, Wu T, Yang B, Lin Z, Yang X, Feng G, Yu J. Causal effect analysis of estrogen receptor associated breast cancer and clear cell ovarian cancer. Am J Transl Res 2024; 16:2699-2710. [PMID: 39006281 PMCID: PMC11236669 DOI: 10.62347/ecoo9552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/04/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Evidence indicates that the risk of developing a secondary ovarian cancer (OC) is correlated with estrogen receptor (ER) status. However, the clinical significance of the relationship between ER-associated breast cancer (BC) and clear cell ovarian cancer (CCOC) remains elusive. METHODS Independent single nucleotide polymorphisms (SNPs) strongly correlated with exposure were extracted, and those associated with confounders and outcomes were removed using the PhenoScanner database. SNP effects were extracted from the outcome datasets with minor allele frequency > 0.01 as the filtration criterion. Next, valid instrumental variables (IVs) were obtained by harmonizing exposure and outcome effects and further filtered based on F-statistics (> 10). Mendelian randomization (MR) assessment of valid IVs was carried out using inverse variance weighted (IVW), MR Egger (ME), weighted median (WM), and multiplicative random effects-inverse variance weighted (MRE-IVW) methods. For sensitivity analysis and visualization of MR findings, a heterogeneity test, a pleiotropy test, a leave-one-out test, scatter plots, forest plots, and funnel plots were employed. RESULTS MR analyses with all four methods revealed that CCOC was not causally associated with ER-negative BC (IVW results: odds ratio (OR) = 0.89, 95% confidence interval (CI) = 0.66-1.20, P = 0.431) or ER-positive BC (IVW results: OR = 0.99, 95% CI = 0.88-1.12, P = 0.901). F-statistics were computed for each valid IV, all of which exceeded 10. The stability and reliability of the results were confirmed by sensitivity analysis. CONCLUSIONS Our findings indicated that CCOC dids not have a causal association with ER-associated BC. The absence of a definitive causal link between ER-associated BC and CCOC suggested a minimal true causal influence of ER-associated BC exposure factors on CCOC. These results indicated that individuals afflicted by ER-associated BC could alleviate concerns regarding the developing of CCOC, thereby aiding in preserving their mental well-being stability and optimizing the efficacy of primary disease treatment.
Collapse
Affiliation(s)
- Li Ji
- Institute of Reproductive Medicine, School of Medicine, Nantong UniversityNantong 226001, Jiangsu, China
| | - Yanbo Liu
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical UniversitySuzhou 215000, Jiangsu, China
| | - Zihan Wang
- Institute of Reproductive Medicine, School of Medicine, Nantong UniversityNantong 226001, Jiangsu, China
| | - Qiuru Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong UniversityNantong 226001, Jiangsu, China
| | - Jiaying Cai
- Institute of Reproductive Medicine, School of Medicine, Nantong UniversityNantong 226001, Jiangsu, China
| | - Han Gu
- Institute of Reproductive Medicine, School of Medicine, Nantong UniversityNantong 226001, Jiangsu, China
| | - Jiaxin Li
- Institute of Reproductive Medicine, School of Medicine, Nantong UniversityNantong 226001, Jiangsu, China
| | - Xia Chen
- Department of Obstetrics and Gynecology, Nantong First People’s Hospital, Affiliated Hospital 2 of Nantong University, Nantong UniversityNantong 226001, Jiangsu, China
| | - Chenrui Feng
- Institute of Reproductive Medicine, School of Medicine, Nantong UniversityNantong 226001, Jiangsu, China
| | - Xuxin He
- Institute of Reproductive Medicine, School of Medicine, Nantong UniversityNantong 226001, Jiangsu, China
| | - Xiaonan Deng
- Institute of Reproductive Medicine, School of Medicine, Nantong UniversityNantong 226001, Jiangsu, China
| | - Xinmeng Cheng
- Institute of Reproductive Medicine, School of Medicine, Nantong UniversityNantong 226001, Jiangsu, China
| | - Xiuwen Kong
- Institute of Reproductive Medicine, School of Medicine, Nantong UniversityNantong 226001, Jiangsu, China
| | - Xiaoqi Zhu
- Institute of Reproductive Medicine, School of Medicine, Nantong UniversityNantong 226001, Jiangsu, China
| | - Tong Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong UniversityNantong 226001, Jiangsu, China
| | - Binbin Yang
- Institute of Reproductive Medicine, School of Medicine, Nantong UniversityNantong 226001, Jiangsu, China
| | - Ziwen Lin
- Institute of Reproductive Medicine, School of Medicine, Nantong UniversityNantong 226001, Jiangsu, China
| | - Xiaoqing Yang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Nantong University, Nantong UniversityNantong 226001, Jiangsu, China
| | - Guannan Feng
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical UniversitySuzhou 215000, Jiangsu, China
| | - Jun Yu
- Institute of Reproductive Medicine, School of Medicine, Nantong UniversityNantong 226001, Jiangsu, China
| |
Collapse
|
8
|
Fu S, Ke H, Yuan H, Xu H, Chen W, Zhao L. Dual role of pregnancy in breast cancer risk. Gen Comp Endocrinol 2024; 352:114501. [PMID: 38527592 DOI: 10.1016/j.ygcen.2024.114501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Reproductive history is one of the strongest risk factors for breast cancer in women. Pregnancy can promote short-term breast cancer risk, but also reduce a woman's lifetime risk of breast cancer. Changes in hormone levels before and after pregnancy are one of the key factors in breast cancer risk. This article summarizes the changes in hormone levels before and after pregnancy, and the roles of hormones in mammary gland development and breast cancer progression. Other factors, such as changes in breast morphology and mammary gland differentiation, changes in the proportion of mammary stem cells (MaSCs), changes in the immune and inflammatory environment, and changes in lactation before and after pregnancy, also play key roles in the occurrence and development of breast cancer. This review discusses the dual effects and the potential mechanisms of pregnancy on breast cancer risk from the above aspects, which is helpful to understand the complexity of female breast cancer occurrence.
Collapse
Affiliation(s)
- Shiting Fu
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| | - Hao Ke
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| | | | - Huaimeng Xu
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| | - Wenyan Chen
- Department of Medical Oncology, The Third Hospital of Nanchang, Nanchang 330009, China
| | - Limin Zhao
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China.
| |
Collapse
|
9
|
Choi G, Kang H, Suh JS, Lee H, Han K, Yoo G, Jo H, Shin YM, Kim TJ, Youn B. Novel Estrogen Receptor Dimerization BRET-Based Biosensors for Screening Estrogenic Endocrine-Disrupting Chemicals. Biomater Res 2024; 28:0010. [PMID: 38464469 PMCID: PMC10923609 DOI: 10.34133/bmr.0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/12/2024] [Indexed: 03/12/2024] Open
Abstract
The increasing prevalence of endocrine-disrupting chemicals (EDCs) in our environment is a growing concern, with numerous studies highlighting their adverse effects on the human endocrine system. Among the EDCs, estrogenic endocrine-disrupting chemicals (eEDCs) are exogenous compounds that perturb estrogenic hormone function by interfering with estrogen receptor (ER) homo (α/α, β/β) or hetero (α/β) dimerization. To date, a comprehensive screening approach for eEDCs affecting all ER dimer forms in live cells is lacking. Here, we developed ER dimerization-detecting biosensors (ERDDBs), based on bioluminescence resonance energy transfer, for dimerization detection and rapid eEDC identification. To enhance the performance of these biosensors, we determined optimal donor and acceptor locations using computational analysis. Additionally, employing HaloTag as the acceptor and incorporating the P2A peptide as a linker yielded the highest sensitivity among the prototypes. We also established stable cell lines to screen potential ER dimerization inducers among estrogen analogs (EAs). The EAs were categorized through cross-comparison of ER dimer responses, utilizing EC values derived from a standard curve established with 17β-estradiol. We successfully classified 26 of 72 EAs, identifying which ER dimerization types they induce. Overall, our study underscores the effectiveness of the optimized ERDDB for detecting ER dimerization and its applicability in screening and identifying eEDCs.
Collapse
Affiliation(s)
- Gyuho Choi
- Department of Integrated Biological Science,
Pusan National University, Busan 46241, Republic of Korea
| | - Hyunkoo Kang
- Department of Integrated Biological Science,
Pusan National University, Busan 46241, Republic of Korea
| | - Jung-Soo Suh
- Department of Integrated Biological Science,
Pusan National University, Busan 46241, Republic of Korea
| | - Haksoo Lee
- Department of Integrated Biological Science,
Pusan National University, Busan 46241, Republic of Korea
| | - Kiseok Han
- Department of Integrated Biological Science,
Pusan National University, Busan 46241, Republic of Korea
| | - Gaeun Yoo
- Department of Integrated Biological Science,
Pusan National University, Busan 46241, Republic of Korea
| | - Hyejin Jo
- Food Safety Risk Assessment Division,
National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Yeong Min Shin
- Food Safety Risk Assessment Division,
National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Tae-Jin Kim
- Department of Integrated Biological Science,
Pusan National University, Busan 46241, Republic of Korea
- Department of Biological Sciences,
Pusan National University, Busan 46241, Republic of Korea
- Institute of Systems Biology,
Pusan National University, Busan 46241, Republic of Korea
- Nuclear Science Research Institute,
Pusan National University, Busan 46241, Republic of Korea
| | - BuHyun Youn
- Department of Integrated Biological Science,
Pusan National University, Busan 46241, Republic of Korea
- Department of Biological Sciences,
Pusan National University, Busan 46241, Republic of Korea
- Nuclear Science Research Institute,
Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
10
|
Li H, Seada H, Madnick S, Zhao H, Chen Z, Li F, Zhu F, Hall S, Boekelheide K. Machine learning-assisted high-content imaging analysis of 3D MCF7 microtissues for estrogenic effect prediction. Sci Rep 2024; 14:2999. [PMID: 38316851 PMCID: PMC10844358 DOI: 10.1038/s41598-024-53323-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/30/2024] [Indexed: 02/07/2024] Open
Abstract
Endocrine-disrupting chemicals (EDCs) pose a significant threat to human well-being and the ecosystem. However, in managing the many thousands of uncharacterized chemical entities, the high-throughput screening of EDCs using relevant biological endpoints remains challenging. Three-dimensional (3D) culture technology enables the development of more physiologically relevant systems in more realistic biochemical microenvironments. The high-content and quantitative imaging techniques enable quantifying endpoints associated with cell morphology, cell-cell interaction, and microtissue organization. In the present study, 3D microtissues formed by MCF-7 breast cancer cells were exposed to the model EDCs estradiol (E2) and propyl pyrazole triol (PPT). A 3D imaging and image analysis pipeline was established to extract quantitative image features from estrogen-exposed microtissues. Moreover, a machine-learning classification model was built using estrogenic-associated differential imaging features. Based on 140 common differential image features found between the E2 and PPT group, the classification model predicted E2 and PPT exposure with AUC-ROC at 0.9528 and 0.9513, respectively. Deep learning-assisted analysis software was developed to characterize microtissue gland lumen formation. The fully automated tool can accurately characterize the number of identified lumens and the total luminal volume of each microtissue. Overall, the current study established an integrated approach by combining non-supervised image feature profiling and supervised luminal volume characterization, which reflected the complexity of functional ER signaling and highlighted a promising conceptual framework for estrogenic EDC risk assessment.
Collapse
Affiliation(s)
- Hui Li
- College of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research of Zhejiang University, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, China.
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship Street, Providence, RI, 02903, USA.
| | - Haitham Seada
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship Street, Providence, RI, 02903, USA
| | - Samantha Madnick
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship Street, Providence, RI, 02903, USA
| | - He Zhao
- College of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research of Zhejiang University, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, China
| | - Zhaozeng Chen
- College of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research of Zhejiang University, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, China
| | - Fengcheng Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Susan Hall
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship Street, Providence, RI, 02903, USA
| | - Kim Boekelheide
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship Street, Providence, RI, 02903, USA.
| |
Collapse
|
11
|
Ni J, Xian M, Ren Y, Yang L, Li Y, Guo S, Ran B, Hu J. Whole-genome resequencing reveals candidate genes associated with milk production trait in Guanzhong dairy goats. Anim Genet 2024; 55:168-172. [PMID: 38093616 DOI: 10.1111/age.13380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 01/04/2024]
Abstract
Milk production is one of the most important economic utility of goats. Guanzhong dairy goat is a local dairy goat in Shaanxi Province of China and has high milk yield and quality. However, there are relatively few studies on molecular markers of milk production traits in Guanzhong dairy goats. In this study, we sequenced the whole genomes of 20 Guanzhong dairy goats, 10 of which had high milk yield (HM) and 10 of which had low milk yield (LM). We detected candidate signatures of selection in HM goats using Fst and π-ratio statistics and identified several candidate genes including ANPEP, ADRA1A and PRKG1 associated with milk production. Our results provide the basis for molecular breeding of milk production traits in Guanzhong dairy goats.
Collapse
Affiliation(s)
- Jie Ni
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Ming Xian
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yijie Ren
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Lina Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yu Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Songmao Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Benkang Ran
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jianhong Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
12
|
Ortiz JR, Lewis SM, Ciccone M, Chatterjee D, Henry S, Siepel A, Dos Santos CO. Single-Cell Transcription Mapping of Murine and Human Mammary Organoids Responses to Female Hormones. J Mammary Gland Biol Neoplasia 2024; 29:3. [PMID: 38289401 PMCID: PMC10827859 DOI: 10.1007/s10911-023-09553-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/18/2023] [Indexed: 02/01/2024] Open
Abstract
During female adolescence and pregnancy, rising levels of hormones result in a cyclic source of signals that control the development of mammary tissue. While such alterations are well understood from a whole-gland perspective, the alterations that such hormones bring to organoid cultures derived from mammary glands have yet to be fully mapped. This is of special importance given that organoids are considered suitable systems to understand cross species breast development. Here we utilized single-cell transcriptional profiling to delineate responses of murine and human normal breast organoid systems to female hormones across evolutionary distinct species. Collectively, our study represents a molecular atlas of epithelial dynamics in response to estrogen and pregnancy hormones.
Collapse
Affiliation(s)
| | - Steven M Lewis
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
- Graduate Program in Genetics, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Michael Ciccone
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | | | - Samantha Henry
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
- Graduate Program in Genetics, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Adam Siepel
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | | |
Collapse
|
13
|
Kaur D, Choudhury C, Yadav R, Kumari L, Bhatia A. Aspirin as a potential drug repurposing candidate targeting estrogen receptor alpha in breast cancer: a molecular dynamics and in-vitro study. J Biomol Struct Dyn 2024:1-12. [PMID: 38279948 DOI: 10.1080/07391102.2024.2308780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 01/14/2024] [Indexed: 01/29/2024]
Abstract
Estrogen receptor alpha (ERα) is expressed by 70% of breast cancers (BCs). Any deregulation in ERα signaling is crucial for the initiation and progression of BC. Because of development of resistance to anti-estrogenic compounds, repurposing existing drugs is an apt strategy to avoid a long drug-discovery process. Substantial epidemiologic evidence suggests that Aspirin use reduces the risk of different cancers including BC, while its role as an adjuvant or a possible antineoplastic agent in cancer treatment is being investigated. In this study, we attempted to explore possibilities of ERα inhibition by Aspirin which may act through competitive binding to the ligand binding domain (LBD) of ERα. A list of 48 ERα-LBD crystal structures bound with agonists, antagonists, and selective ER modulators (SERMs) was thoroughly analysed to determine interaction patterns specific to each ligand category. Exhaustive docking and 500 ns molecular dynamics (MD) studies were performed on three ERα - Aspirin complexes generated using agonist, antagonist, and SERM-bound crystal structures. Besides, three ERα crystal structures bound to agonist, antagonist, and SERM respectively were also subjected to MD simulations. Aspirin showed good affinity to LBD of ERα. Comparative analyses of binding patterns, conformational changes and molecular interaction profiles from the docking results and MD trajectories suggests that Aspirin was most stable in complex generated using SERM bound crystal structure of ERα and showed interactions with Gly-521, Ala-350, Leu-525 and Thr-347 like SERMs. In addition, in-vitro assays, qPCR, and immunofluorescent assay demonstrated the decline in the expression of ERα in MCF-7 upon treatment with Aspirin. These preliminary bioinformatical and in-vitro findings may form the basis to consider Aspirin as a potential candidate for targeting ERα, especially in tamoxifen-resistant cancers.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Deepinder Kaur
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, India
| | - Chinmayee Choudhury
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, India
- Department of Biological Sciences, Indian Institute of Science Education and research, Mohali, India
| | - Reena Yadav
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, India
| | - Laxmi Kumari
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, India
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, India
| |
Collapse
|
14
|
Irani S, Tan W, Li Q, Toy W, Jones C, Gadiya M, Marra A, Katzenellenbogen JA, Carlson KE, Katzenellenbogen BS, Karimi M, Segu Rajappachetty R, Del Priore IS, Reis-Filho JS, Shen Y, Chandarlapaty S. Somatic estrogen receptor α mutations that induce dimerization promote receptor activity and breast cancer proliferation. J Clin Invest 2024; 134:e163242. [PMID: 37883178 PMCID: PMC10760953 DOI: 10.1172/jci163242] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/23/2023] [Indexed: 10/27/2023] Open
Abstract
Physiologic activation of estrogen receptor α (ERα) is mediated by estradiol (E2) binding in the ligand-binding pocket of the receptor, repositioning helix 12 (H12) to facilitate binding of coactivator proteins in the unoccupied coactivator binding groove. In breast cancer, activation of ERα is often observed through point mutations that lead to the same H12 repositioning in the absence of E2. Through expanded genetic sequencing of breast cancer patients, we identified a collection of mutations located far from H12 but nonetheless capable of promoting E2-independent transcription and breast cancer cell growth. Using machine learning and computational structure analyses, this set of mutants was inferred to act distinctly from the H12-repositioning mutants and instead was associated with conformational changes across the ERα dimer interface. Through both in vitro and in-cell assays of full-length ERα protein and isolated ligand-binding domain, we found that these mutants promoted ERα dimerization, stability, and nuclear localization. Point mutations that selectively disrupted dimerization abrogated E2-independent transcriptional activity of these dimer-promoting mutants. The results reveal a distinct mechanism for activation of ERα function through enforced receptor dimerization and suggest dimer disruption as a potential therapeutic strategy to treat ER-dependent cancers.
Collapse
Affiliation(s)
- Seema Irani
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Wuwei Tan
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA
| | - Qing Li
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Weiyi Toy
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Catherine Jones
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Mayur Gadiya
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Antonio Marra
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - John A. Katzenellenbogen
- Department of Chemistry and Molecular and Integrative Physiology, and the Cancer Center, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Kathryn E. Carlson
- Department of Chemistry and Molecular and Integrative Physiology, and the Cancer Center, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Benita S. Katzenellenbogen
- Department of Chemistry and Molecular and Integrative Physiology, and the Cancer Center, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Mostafa Karimi
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA
| | - Ramya Segu Rajappachetty
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Isabella S. Del Priore
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jorge S. Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Yang Shen
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA
- Department of Computer Science and Engineering and
- Institute of Biosciences and Technology and Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, Texas, USA
| | - Sarat Chandarlapaty
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
15
|
Yoshitake R, Mori H, Ha D, Wu X, Wang J, Wang X, Saeki K, Chang G, Shim HJ, Chan Y, Chen S. Molecular features of luminal breast cancer defined through spatial and single-cell transcriptomics. Clin Transl Med 2024; 14:e1548. [PMID: 38282415 PMCID: PMC10823285 DOI: 10.1002/ctm2.1548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 12/28/2023] [Accepted: 01/06/2024] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Intratumour heterogeneity is a hallmark of most solid tumours, including breast cancers. We applied spatial transcriptomics and single-cell RNA-sequencing on patient-derived xenografts (PDXs) to profile spatially resolved cell populations within oestrogen receptor-positive (ER+ ) breast cancer and to elucidate their importance in oestrogen-dependent tumour growth. METHODS Two PDXs of 'ER-high' breast cancers with opposite oestrogen-mediated growth responses were investigated: oestrogen-suppressed GS3 (80-100% ER) and oestrogen-dependent SC31 (40-90% ER) models. The observation was validated via single-cell analyses on an 'ER-low' PDX, GS1 (5% ER). The results from our spatial and single-cell analyses were further supported by a public ER+ breast cancer single-cell dataset and protein-based dual immunohistochemistry (IHC) of SC31 examining important luminal cancer markers (i.e., ER, progesterone receptor and Ki67). The translational implication of our findings was assessed by clinical outcome analyses on publicly available cohorts. RESULTS Our space-gene-function study revealed four spatially distinct compartments within ER+ breast cancers. These compartments showed functional diversity (oestrogen-responsive, proliferative, hypoxia-induced and inflammation-related). The 'proliferative' population, rather than the 'oestrogen-responsive' compartment, was crucial for oestrogen-dependent tumour growth, leading to the acquisition of luminal B-like features. The cells expressing typical oestrogen-responsive genes like PGR were not directly linked to oestrogen-dependent proliferation. Dual IHC analyses demonstrated the distinct contribution of the Ki67+ proliferative cells toward oestrogen-mediated growth and their response to a CDK4/6 inhibitor. The gene signatures derived from the proliferative, hypoxia-induced and inflammation-related compartments were significantly correlated with worse clinical outcomes, while patients with the oestrogen-responsive signature showed better prognoses, suggesting that this compartment would not be directly associated with oestrogen-dependent tumour progression. CONCLUSIONS Our study identified the gene signature in our 'proliferative' compartment as an important determinant of luminal cancer subtypes. This 'proliferative' cell population is a causative feature of luminal B breast cancer, contributing toward its aggressive behaviours.
Collapse
Affiliation(s)
- Ryohei Yoshitake
- Department of Cancer Biology and Molecular MedicineBeckman Research Institute of City of HopeDuarteCaliforniaUSA
| | - Hitomi Mori
- Department of Cancer Biology and Molecular MedicineBeckman Research Institute of City of HopeDuarteCaliforniaUSA
- Department of Surgery and OncologyGraduate School of Medicine, Kyushu UniversityFukuokaJapan
| | - Desiree Ha
- Department of Cancer Biology and Molecular MedicineBeckman Research Institute of City of HopeDuarteCaliforniaUSA
| | - Xiwei Wu
- Integrative Genomics CoreBeckman Research Institute of City of HopeMonroviaCaliforniaUSA
| | - Jinhui Wang
- Integrative Genomics CoreBeckman Research Institute of City of HopeMonroviaCaliforniaUSA
| | - Xiaoqiang Wang
- Department of Cancer Biology and Molecular MedicineBeckman Research Institute of City of HopeDuarteCaliforniaUSA
| | - Kohei Saeki
- Department of Cancer Biology and Molecular MedicineBeckman Research Institute of City of HopeDuarteCaliforniaUSA
- Faculty of Veterinary MedicineOkayama University of ScienceImabariEhimeJapan
| | - Gregory Chang
- Department of Cancer Biology and Molecular MedicineBeckman Research Institute of City of HopeDuarteCaliforniaUSA
| | - Hyun Jeong Shim
- Department of Cancer Biology and Molecular MedicineBeckman Research Institute of City of HopeDuarteCaliforniaUSA
| | - Yin Chan
- Department of Cancer Biology and Molecular MedicineBeckman Research Institute of City of HopeDuarteCaliforniaUSA
| | - Shiuan Chen
- Department of Cancer Biology and Molecular MedicineBeckman Research Institute of City of HopeDuarteCaliforniaUSA
| |
Collapse
|
16
|
Luan R, He M, Li H, Bai Y, Wang A, Sun G, Zhou B, Wang M, Wang C, Wang S, Zeng K, Feng J, Lin L, Wei Y, Kato S, Zhang Q, Zhao Y. MYSM1 acts as a novel co-activator of ERα to confer antiestrogen resistance in breast cancer. EMBO Mol Med 2024; 16:10-39. [PMID: 38177530 PMCID: PMC10883278 DOI: 10.1038/s44321-023-00003-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 10/26/2023] [Accepted: 11/06/2023] [Indexed: 01/06/2024] Open
Abstract
Endocrine resistance is a crucial challenge in estrogen receptor alpha (ERα)-positive breast cancer (BCa). Aberrant alteration in modulation of E2/ERα signaling pathway has emerged as the putative contributor for endocrine resistance in BCa. Herein, we demonstrate that MYSM1 as a deubiquitinase participates in modulating ERα action via histone and non-histone deubiquitination. MYSM1 is involved in maintenance of ERα stability via ERα deubiquitination. MYSM1 regulates relevant histone modifications on cis regulatory elements of ERα-regulated genes, facilitating chromatin decondensation. MYSM1 is highly expressed in clinical BCa samples. MYSM1 depletion attenuates BCa-derived cell growth in xenograft models and increases the sensitivity of antiestrogen agents in BCa cells. A virtual screen shows that the small molecule Imatinib could potentially interact with catalytic MPN domain of MYSM1 to inhibit BCa cell growth via MYSM1-ERα axis. These findings clarify the molecular mechanism of MYSM1 as an epigenetic modifier in regulation of ERα action and provide a potential therapeutic target for endocrine resistance in BCa.
Collapse
Affiliation(s)
- Ruina Luan
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, 110122, Shenyang City, Liaoning Province, China
| | - Mingcong He
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, 110122, Shenyang City, Liaoning Province, China
| | - Hao Li
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, 110122, Shenyang City, Liaoning Province, China
| | - Yu Bai
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, 110122, Shenyang City, Liaoning Province, China
| | - Anqi Wang
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, 110122, Shenyang City, Liaoning Province, China
- First Clinical Medical College, China Medical University, 110001, Shenyang City, Liaoning Province, China
| | - Ge Sun
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, 110122, Shenyang City, Liaoning Province, China
| | - Baosheng Zhou
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, 110122, Shenyang City, Liaoning Province, China
| | - Manlin Wang
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, 110122, Shenyang City, Liaoning Province, China
| | - Chunyu Wang
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, 110122, Shenyang City, Liaoning Province, China
| | - Shengli Wang
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, 110122, Shenyang City, Liaoning Province, China
| | - Kai Zeng
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, 110122, Shenyang City, Liaoning Province, China
| | - Jianwei Feng
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, 110122, Shenyang City, Liaoning Province, China
| | - Lin Lin
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, 110122, Shenyang City, Liaoning Province, China
| | - Yuntao Wei
- Department of Breast Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, 110042, Shenyang City, Liaoning Province, China
| | - Shigeaki Kato
- Graduate School of Life Science and Engineering, Iryo Sosei University, Iino, Chuo-dai, Iwaki, Fukushima, 9708551, Japan
- Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Fukushima, Japan
| | - Qiang Zhang
- Department of Breast Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, 110042, Shenyang City, Liaoning Province, China.
| | - Yue Zhao
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, 110122, Shenyang City, Liaoning Province, China.
| |
Collapse
|
17
|
Pagolu SLB, Parekh N. Protocol for Analyzing Epigenetic Regulation Mechanisms in Breast Cancer. Methods Mol Biol 2024; 2812:275-306. [PMID: 39068369 DOI: 10.1007/978-1-0716-3886-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
DNA methylation and gene expression are two critical aspects of the epigenetic landscape that contribute significantly to cancer pathogenesis. Analysis of aberrant genome-wide methylation patterns can provide insights into how these affect the cancer transcriptome and possible clinical implications for cancer diagnosis and treatment. The role of tumor suppressors and oncogenes is well known in tumorigenesis. Epigenetic alterations can significantly impact the expression and function of these critical genes, contributing to the initiation and progression of cancer. This protocol chapter presents a unified workflow to explore the role of DNA methylation in gene expression regulation in breast cancer by identifying differentially expressed genes whose promoter or gene body regions are differentially methylated using various Bioconductor packages in R environment. Functional enrichment analysis of these genes can help in understanding the mechanisms leading to tumorigenesis due to epigenetic alterations.
Collapse
Affiliation(s)
- Sri Lakshmi Bhavani Pagolu
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, Telangana, India
| | - Nita Parekh
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, Telangana, India.
| |
Collapse
|
18
|
da Silva FC, Brandão DC, Ferreira EA, Siqueira RP, Ferreira HSV, Da Silva Filho AA, Araújo TG. Tailoring Potential Natural Compounds for the Treatment of Luminal Breast Cancer. Pharmaceuticals (Basel) 2023; 16:1466. [PMID: 37895937 PMCID: PMC10610388 DOI: 10.3390/ph16101466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/24/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Breast cancer (BC) is the most diagnosed cancer worldwide, mainly affecting the epithelial cells from the mammary glands. When it expresses the estrogen receptor (ER), the tumor is called luminal BC, which is eligible for endocrine therapy with hormone signaling blockade. Hormone therapy is essential for the survival of patients, but therapeutic resistance has been shown to be worrying, significantly compromising the prognosis. In this context, the need to explore new compounds emerges, especially compounds of plant origin, since they are biologically active and particularly promising. Natural products are being continuously screened for treating cancer due to their chemical diversity, reduced toxicity, lower side effects, and low price. This review summarizes natural compounds for the treatment of luminal BC, emphasizing the activities of these compounds in ER-positive cells. Moreover, their potential as an alternative to endocrine resistance is explored, opening new opportunities for the design of optimized therapies.
Collapse
Affiliation(s)
- Fernanda Cardoso da Silva
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
| | - Douglas Cardoso Brandão
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
| | - Everton Allan Ferreira
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil; (E.A.F.); (A.A.D.S.F.)
| | - Raoni Pais Siqueira
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
| | - Helen Soares Valença Ferreira
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
| | - Ademar Alves Da Silva Filho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil; (E.A.F.); (A.A.D.S.F.)
| | - Thaise Gonçalves Araújo
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlandia 38405-302, MG, Brazil
| |
Collapse
|
19
|
Li H, Seada H, Madnick S, Zhao H, Chen Z, Li F, Zhu F, Hall S, Boekelheide K. Machine Learning-Assisted High-Content Imaging Analysis of 3D MCF7 Microtissues for Estrogenic Effect Prediction. RESEARCH SQUARE 2023:rs.3.rs-3343627. [PMID: 37886543 PMCID: PMC10602099 DOI: 10.21203/rs.3.rs-3343627/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) pose a significant threat to human well-being and the ecosystem. However, in managing the many thousands of uncharacterized chemical entities, the high-throughput screening of EDCs using relevant biological endpoints remains challenging. Three-dimensional (3D) culture technology enables the development of more physiologically relevant systems in more realistic biochemical microenvironments. The high-content and quantitative imaging techniques enable quantifying endpoints associated with cell morphology, cell-cell interaction, and microtissue organization. In the present study, 3D microtissues formed by MCF-7 breast cancer cells were exposed to the model EDCs estradiol (E2) and propyl pyrazole triol (PPT). A 3D imaging and image analysis pipeline was established to extract quantitative image features from estrogen-exposed microtissues. Moreover, a machine-learning classification model was built using estrogenic-associated differential imaging features. Based on 140 common differential image features found between the E2 and PPT group, the classification model predicted E2 and PPT exposure with AUC-ROC at 0.9528 and 0.9513, respectively. Deep learning-assisted analysis software was developed to characterize microtissue gland lumen formation. The fully automated tool can accurately characterize the number of identified lumens and the total luminal volume of each microtissue. Overall, the current study established an integrated approach by combining non-supervised image feature profiling and supervised luminal volume characterization, which reflected the complexity of functional ER signaling and highlighted a promising conceptual framework for estrogenic EDC risk assessment.
Collapse
|
20
|
Ortiz JR, Lewis SM, Ciccone MF, Chatterjee D, Henry S, Siepel A, Dos Santos CO. Single-cell transcription mapping of murine and human mammary organoids responses to female hormones. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.28.559971. [PMID: 37808747 PMCID: PMC10557705 DOI: 10.1101/2023.09.28.559971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
During female adolescence and pregnancy, rising levels of hormones result in a cyclic source of signals that control the development of mammary tissue. While such alterations are well understood from a whole-gland perspective, the alterations that such hormones bring to organoid cultures derived from mammary glands have yet to be fully mapped. This is of special importance given that organoids are considered suitable systems to understand cross species breast development. Here we utilized single-cell transcriptional profiling to delineate responses of murine and human normal breast organoid systems to female hormones across evolutionary distinct species. Collectively, our study represents a molecular atlas of epithelial dynamics in response to estrogen and pregnancy hormones.
Collapse
|
21
|
Golding AP, Ferrier B, New LA, Lu P, Martin CE, Shata E, Jones RA, Moorehead RA, Jones N. Distinct Requirements for Adaptor Proteins NCK1 and NCK2 in Mammary Gland Development. J Mammary Gland Biol Neoplasia 2023; 28:19. [PMID: 37479911 PMCID: PMC10361900 DOI: 10.1007/s10911-023-09541-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 06/20/2023] [Indexed: 07/23/2023] Open
Abstract
The adaptor proteins NCK1 and NCK2 are well-established signalling nodes that regulate diverse biological processes including cell proliferation and actin dynamics in many tissue types. Here we have investigated the distribution and function of Nck1 and Nck2 in the developing mouse mammary gland. Using publicly available single-cell RNA sequencing data, we uncovered distinct expression profiles between the two paralogs. Nck1 showed widespread expression in luminal, basal, stromal and endothelial cells, while Nck2 was restricted to luminal and basal cells, with prominent enrichment in hormone-sensing luminal subtypes. Next, using mice with global knockout of Nck1 or Nck2, we assessed mammary gland development during and after puberty (5, 8 and 12 weeks of age). Mice lacking Nck1 or Nck2 displayed significant defects in ductal outgrowth and branching at 5 weeks compared to controls, and the defects persisted in Nck2 knockout mice at 8 weeks before normalizing at 12 weeks. These defects were accompanied by an increase in epithelial cell proliferation at 5 weeks and a decrease at 8 weeks in both Nck1 and Nck2 knockout mice. We also profiled expression of several key genes associated with mammary gland development at these timepoints and detected temporal changes in transcript levels of hormone receptors as well as effectors of cell proliferation and migration in Nck1 and Nck2 knockout mice, in line with the distinct phenotypes observed at 5 and 8 weeks. Together these studies reveal a requirement for NCK proteins in mammary gland morphogenesis, and suggest that deregulation of Nck expression could drive breast cancer progression and metastasis.
Collapse
Affiliation(s)
- Adam P Golding
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Benjamin Ferrier
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Laura A New
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Peihua Lu
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Claire E Martin
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
- Present address: Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| | - Erka Shata
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Robert A Jones
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Roger A Moorehead
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Nina Jones
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
22
|
Ye F, Dewanjee S, Li Y, Jha NK, Chen ZS, Kumar A, Vishakha, Behl T, Jha SK, Tang H. Advancements in clinical aspects of targeted therapy and immunotherapy in breast cancer. Mol Cancer 2023; 22:105. [PMID: 37415164 PMCID: PMC10324146 DOI: 10.1186/s12943-023-01805-y] [Citation(s) in RCA: 138] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/08/2023] [Indexed: 07/08/2023] Open
Abstract
Breast cancer is the second leading cause of death for women worldwide. The heterogeneity of this disease presents a big challenge in its therapeutic management. However, recent advances in molecular biology and immunology enable to develop highly targeted therapies for many forms of breast cancer. The primary objective of targeted therapy is to inhibit a specific target/molecule that supports tumor progression. Ak strain transforming, cyclin-dependent kinases, poly (ADP-ribose) polymerase, and different growth factors have emerged as potential therapeutic targets for specific breast cancer subtypes. Many targeted drugs are currently undergoing clinical trials, and some have already received the FDA approval as monotherapy or in combination with other drugs for the treatment of different forms of breast cancer. However, the targeted drugs have yet to achieve therapeutic promise against triple-negative breast cancer (TNBC). In this aspect, immune therapy has come up as a promising therapeutic approach specifically for TNBC patients. Different immunotherapeutic modalities including immune-checkpoint blockade, vaccination, and adoptive cell transfer have been extensively studied in the clinical setting of breast cancer, especially in TNBC patients. The FDA has already approved some immune-checkpoint blockers in combination with chemotherapeutic drugs to treat TNBC and several trials are ongoing. This review provides an overview of clinical developments and recent advancements in targeted therapies and immunotherapies for breast cancer treatment. The successes, challenges, and prospects were critically discussed to portray their profound prospects.
Collapse
Affiliation(s)
- Feng Ye
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Yuehua Li
- Department of Medical Oncology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, 144411, India
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, 11439, USA
| | - Ankush Kumar
- Pharmaceutical and Health Sciences, Career Point University, Hamirpur, Himachal Pradesh, India
| | - Vishakha
- Pharmaceutical and Health Sciences, Career Point University, Hamirpur, Himachal Pradesh, India
| | - Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, Dehradun, Uttarakhand, India.
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India.
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India.
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India.
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
23
|
Clusan L, Ferrière F, Flouriot G, Pakdel F. A Basic Review on Estrogen Receptor Signaling Pathways in Breast Cancer. Int J Mol Sci 2023; 24:ijms24076834. [PMID: 37047814 PMCID: PMC10095386 DOI: 10.3390/ijms24076834] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/08/2023] Open
Abstract
Breast cancer is the most common cancer and the deadliest among women worldwide. Estrogen signaling is closely associated with hormone-dependent breast cancer (estrogen and progesterone receptor positive), which accounts for two-thirds of tumors. Hormone therapy using antiestrogens is the gold standard, but resistance to these treatments invariably occurs through various biological mechanisms, such as changes in estrogen receptor activity, mutations in the ESR1 gene, aberrant activation of the PI3K pathway or cell cycle dysregulations. All these factors have led to the development of new therapies, such as selective estrogen receptor degraders (SERDs), or combination therapies with cyclin-dependent kinases (CDK) 4/6 or PI3K inhibitors. Therefore, understanding the estrogen pathway is essential for the treatment and new drug development of hormone-dependent cancers. This mini-review summarizes current literature on the signalization, mechanisms of action and clinical implications of estrogen receptors in breast cancer.
Collapse
Affiliation(s)
- Léa Clusan
- Université de Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)—UMR_S 1085, F-35000 Rennes, France
| | - François Ferrière
- Université de Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)—UMR_S 1085, F-35000 Rennes, France
| | - Gilles Flouriot
- Université de Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)—UMR_S 1085, F-35000 Rennes, France
| | - Farzad Pakdel
- Université de Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)—UMR_S 1085, F-35000 Rennes, France
| |
Collapse
|
24
|
Shahzad S, Khan NU, Sombal W, Shah RU, Khan AU, Iqbal A, Munir I. Estrogen receptor alpha (ESR1) gene polymorphism (rs2234693 and rs2046210) with breast cancer risk in pashtun population of Khyber Pakhtunkhwa. Mol Biol Rep 2023; 50:2445-2451. [PMID: 36595122 DOI: 10.1007/s11033-022-08198-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/08/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND Breast cancer susceptibility is greatly influenced by single nucleotide polymorphisms (SNPs) both in penetrance and non-penetrance genes. The Estrogen Receptor Alfa (ESR1- rs2234693 and rs2046210) have been reported as risk factor of breast cancer in different ethnic groups with inconsistent results. In this study the association of ESR1 (rs2234693 and rs2046210) with breast cancer risk was investigated in patients of Khyber Pakhtunkhwa. METHODS A total of 312 females including 162 breast cancer patients and 150 healthy controls were enrolled in this study. The polymorphism was confirmed using T-ARMS-PCR. RESULTS Our results revealed that ESR1-rs2234693 risk allele (C) (P = 0.21, OR = 1.27, CI = 0.87 to 1.87) and containing genotypes CC (P = 0.68, OR = 1.24, CI = 0.42 to 3.68) and TC (P = 0.23, OR = 1.32, CI = 0.83 to 2.13) were not associated with the risk of breast cancer. In case of rs2046210, the risk allele A (P < 0.0001, OR = 2.42, CI = 1.74 to 3.38) and corresponding genotypes GA (P = 0.0001, OR = 2.55, CI = 1.62 to 4.03) and AA (P = 0.02, OR = 2.20, CI = 1.12 to 4.34) were significantly associated with higher risk of breast cancer. Moreover, ESR1-rs2234693 was significantly (P < 0.05) associated with family history, stages, PR status, ER status and luminal B. The ESR1-rs2046210 showed significant (P ≤ 0.05) association with menstrual status, tumor grade and TNBC. Both the SNPs showed non-significant (P > 0.05) association with nulliparity, nodal status, HER2 status, metastasis, HER2 enriched subtype and luminal A. CONCLUSION It is concluded that ESR1-rs2234693 is not associated with breast cancer, while rs2046210 is significantly associated with the risk of breast cancer in Khyber Pakhtunkhwa population. Further, to confirm the exact situation of ESR1 polymorphism, ESR1 existing and other SNPs need to be investigated in diverse data sets.
Collapse
Affiliation(s)
- Savera Shahzad
- Institute of Biotechnology and Genetic Engineering (Health Division), The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Najeeb Ullah Khan
- Institute of Biotechnology and Genetic Engineering (Health Division), The University of Agriculture Peshawar, Peshawar, Pakistan.
| | - Wafa Sombal
- Institute of Biotechnology and Genetic Engineering (Health Division), The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Rizwan Ullah Shah
- Institute of Biotechnology and Genetic Engineering (Health Division), The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Aakif Ullah Khan
- Institute of Radiotherapy and Nuclear Medicine (IRNUM), Peshawar, Pakistan
| | - Aqib Iqbal
- Institute of Biotechnology and Genetic Engineering (Health Division), The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Iqbal Munir
- Institute of Biotechnology and Genetic Engineering (Health Division), The University of Agriculture Peshawar, Peshawar, Pakistan
| |
Collapse
|
25
|
Yoshitake R, Mori H, Ha D, Wu X, Wang J, Wang X, Saeki K, Chang G, Shim HJ, Chan Y, Chen S. Identification and characterization of a proliferative cell population in estrogen receptor-positive metastatic breast cancer through spatial and single-cell transcriptomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.31.526403. [PMID: 36778271 PMCID: PMC9915610 DOI: 10.1101/2023.01.31.526403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background Intratumor heterogeneity is a hallmark of most solid tumors, including breast cancers. We applied spatial transcriptomics and single-cell RNA-sequencing technologies to profile spatially resolved cell populations within estrogen receptor-positive (ER + ) metastatic breast cancers and elucidate their importance in estrogen-dependent tumor growth. Methods Spatial transcriptomics and single-cell RNA-sequencing were performed on two patient-derived xenografts (PDXs) of "ER-high" metastatic breast cancers with opposite estrogen-mediated growth responses: estrogen-suppressed GS3 (80-100% ER) and estrogen-stimulated SC31 (30-75% ER) models. The analyses included samples treated with and without 17β-estradiol. The findings were validated via scRNA-seq analyses on "ER-low" estrogen-accelerating PDX, GS1 (5% ER). The results from our spatial and single-cell analyses were further supported by the analysis of a publicly available single cell dataset and a protein-based dual immunohistochemical (IHC) evaluation using three important clinical markers [i.e., ER, progesterone receptor (PR), and Ki67]. The translational implication of these results was assessed by clinical outcome analyses on public breast cancer cohorts. Results Our novel space-gene-function study revealed a "proliferative" cell population in addition to three major spatially distinct compartments within ER + metastatic breast cancers. These compartments showed functional diversity (i.e., estrogen-responsive, proliferative, hypoxia-induced, and inflammation-related). The "proliferative ( MKI67 + )" population, not "estrogen-responsive" compartment, was crucial for estrogen-dependent tumor growth, leading to the acquisition of luminal B features. The cells with induction of typical estrogen-responsive genes such as PGR were not directly linked to estrogen-dependent proliferation. Additionally, the dual IHC analyses demonstrated the distinct contribution of the Ki67 + proliferative cells toward estrogen-mediated growth and their response to palbociclib, a CDK4/6 inhibitor. The gene signatures developed from the proliferative, hypoxia-induced, and inflammation-related compartments were significantly correlated with worse clinical outcomes, while patients with the high estrogen-responsive scores showed better prognosis, confirming that the estrogen-responsive compartment would not be directly associated with estrogen-dependent tumor progression. Conclusions For the first time, our study elucidated a "proliferative" cell population distinctly distributed in ER + metastatic breast cancers. They contribute differently toward progression of these cancers, and the gene signature in the "proliferative" compartment is an important determinant of luminal cancer subtypes.
Collapse
|
26
|
Furth PA, Wang W, Kang K, Rooney BL, Keegan G, Muralidaran V, Zou X, Flaws JA. Esr1 but Not CYP19A1 Overexpression in Mammary Epithelial Cells during Reproductive Senescence Induces Pregnancy-Like Proliferative Mammary Disease Responsive to Anti-Hormonals. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:84-102. [PMID: 36464512 PMCID: PMC9768685 DOI: 10.1016/j.ajpath.2022.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/22/2022] [Accepted: 09/16/2022] [Indexed: 12/04/2022]
Abstract
Molecular-level analyses of breast carcinogenesis benefit from vivo disease models. Estrogen receptor 1 (Esr1) and cytochrome P450 family 19 subfamily A member 1 (CYP19A1) overexpression targeted to mammary epithelial cells in genetically engineered mouse models induces largely similar rates of proliferative mammary disease in prereproductive senescent mice. Herein, with natural reproductive senescence, Esr1 overexpression compared with CYP19A1 overexpression resulted in significantly higher rates of preneoplasia and cancer. Before reproductive senescence, Esr1, but not CYP19A1, overexpressing mice are tamoxifen resistant. However, during reproductive senescence, Esr1 mice exhibited responsiveness. Both Esr1 and CYP19A1 are responsive to letrozole before and after reproductive senescence. Gene Set Enrichment Analyses of RNA-sequencing data sets showed that higher disease rates in Esr1 mice were accompanied by significantly higher expression of cell proliferation genes, including members of prognostic platforms for women with early-stage hormone receptor-positive disease. Tamoxifen and letrozole exposure induced down-regulation of these genes and resolved differences between the two models. Both Esr1 and CYP19A1 overexpression induced abnormal developmental patterns of pregnancy-like gene expression. This resolved with progression through reproductive senescence in CYP19A1 mice, but was more persistent in Esr1 mice, resolving only with tamoxifen and letrozole exposure. In summary, genetically engineered mouse models of Esr1 and CYP19A1 overexpression revealed a diversion of disease processes resulting from the two distinct molecular pathophysiological mammary gland-targeted intrusions into estrogen signaling during reproductive senescence.
Collapse
Affiliation(s)
- Priscilla A Furth
- Department of Oncology, Georgetown University, Washington, District of Columbia; Department of Medicine, Georgetown University, Washington, District of Columbia.
| | - Weisheng Wang
- Department of Oncology, Georgetown University, Washington, District of Columbia
| | - Keunsoo Kang
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan, Republic of Korea
| | - Brendan L Rooney
- Department of Oncology, Georgetown University, Washington, District of Columbia
| | - Grace Keegan
- Department of Oncology, Georgetown University, Washington, District of Columbia
| | - Vinona Muralidaran
- Department of Oncology, Georgetown University, Washington, District of Columbia
| | - Xiaojun Zou
- Department of Oncology, Georgetown University, Washington, District of Columbia
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
27
|
Subbamanda YD, Bhargava A. Intercommunication between Voltage-Gated Calcium Channels and Estrogen Receptor/Estrogen Signaling: Insights into Physiological and Pathological Conditions. Cells 2022; 11:cells11233850. [PMID: 36497108 PMCID: PMC9739980 DOI: 10.3390/cells11233850] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Voltage-gated calcium channels (VGCCs) and estrogen receptors are important cellular proteins that have been shown to interact with each other across varied cells and tissues. Estrogen hormone, the ligand for estrogen receptors, can also exert its effects independent of estrogen receptors that collectively constitute non-genomic mechanisms. Here, we provide insights into the VGCC regulation by estrogen and the possible mechanisms involved therein across several cell types. Notably, most of the interaction is described in neuronal and cardiovascular tissues given the importance of VGCCs in these electrically excitable tissues. We describe the modulation of various VGCCs by estrogen known so far in physiological conditions and pathological conditions. We observed that in most in vitro studies higher concentrations of estrogen were used while a handful of in vivo studies used meager concentrations resulting in inhibition or upregulation of VGCCs, respectively. There is a need for more relevant physiological assays to study the regulation of VGCCs by estrogen. Additionally, other interacting receptors and partners need to be identified that may be involved in exerting estrogen receptor-independent effects of estrogen.
Collapse
|
28
|
An SY, Kim KS, Cho JH, Kim HD, Kim CH, Lee YC. Curcumin-mediated transcriptional regulation of human N-acetylgalactosamine-α2,6-sialyltransferase which synthesizes sialyl-Tn antigen in HCT116 human colon cancer cells. Front Mol Biosci 2022; 9:985648. [PMID: 36172045 PMCID: PMC9510914 DOI: 10.3389/fmolb.2022.985648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Human N-acetylgalactosamine-α2,6-sialyltransferase (hST6GalNAc I) is the major enzyme involved in the biosynthesis of sialyl-Tn antigen (sTn), which is known to be expressed in more than 80% of human carcinomas and correlated with poor prognosis in cancer patients. Athough high expression of hST6GalNAc I is associated with augmented proliferation, migration and invasion in various cancer cells, transcriptional mechanism regulating hST6GalNAc I gene expression remains largely unknown. In this study, we found that hST6GalNAc I gene expression was markedly augmented by curcumin in HCT116 human colon carcinoma cells. To understand the molecular mechanism for the upregulation of hST6GalNAc I gene expression by curcumin in HCT116 cells, we first determined the transcriptional start site of hST6GalNAc I gene by 5'-RACE and cloned the proximal hST6GalNAc I 5'-flanking region spanning about 2 kb by PCR. Functional analysis of the hST6GalNAc I 5' flanking region of hST6GalNAc I by sequential 5'-deletion, transient transfection of reporter gene constructs and luciferase reporter assays showed that -378/-136 region is essential for maximal activation of transcription in response to curcumin in HCT 116 cells. This region includes putative binding sites for transcription factors c-Ets-1, NF-1, GATA-1, ER-α, YY1, and GR-α. ChIP analysis and site-directed mutagenesis demonstrated that estrogen receptor α (ER-α) binding site (nucleotides -248/-238) in this region is crucial for hST6GalNAc I gene transcription in response to curcumin stimulation in HCT116 cells. The transcription activity of hST6GalNAc I gene induced by curcumin in HCT116 cells was strongly inhibited by PKC inhibitor (Gö6983) and ERK inhibitor (U0126). These results suggest that curcumin-induced hST6GalNAc I gene expression in HCT116 cells is modulated through PKC/ERKs signal pathway.
Collapse
Affiliation(s)
- So-Young An
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, South Korea
| | - Kyoung-Sook Kim
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, South Korea
| | - Jong-Hyun Cho
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, South Korea
| | - Hee-Do Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Kyunggi-Do, South Korea
| | - Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Kyunggi-Do, South Korea
| | - Young-Choon Lee
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, South Korea
| |
Collapse
|
29
|
Wu Y, Chang J, Ge J, Xu K, Zhou Q, Zhang X, Zhu N, Hu M. Isobavachalcone's Alleviation of Pyroptosis Contributes to Enhanced Apoptosis in Glioblastoma: Possible Involvement of NLRP3. Mol Neurobiol 2022; 59:6934-6955. [PMID: 36053436 DOI: 10.1007/s12035-022-03010-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/18/2022] [Indexed: 10/14/2022]
Abstract
Glioblastoma multiforme (GBM) is the most malignant intracranial tumor with high mortality rates and invariably poor prognosis due to its limited clinical treatments. There is an urgent need to develop new therapeutic drugs for GBM treatment. As a natural prenylated chalcone compound, Isobavachalcone (IBC)'s favorable pharmacological activities have been widely revealed. However, potential inhibitory effects of IBC on GBM have not been explored. In the present study, we aimed to detect the effects of IBC on GBM and clarify its anti-GBM mechanisms for the first time. It was observed that IBC could inhibit GBM cell proliferation, migration, and invasion in vitro and prevent tumor growth without any significant drug toxicity in both subcutaneous and orthotopic GBM xenograft tumor models in vivo. Mechanistically, IBC may target NOD-like receptor family pyrin domain-containing 3 (NLRP3) transcription factor estrogen receptor α (ESR1 gene) by network pharmacology and molecular docking analysis. Experimentally, IBC alleviated NLRP3 inflammasome-related pyroptosis and inflammation, arrested cell cycle at G1 phase, and induced mitochondria-dependent apoptosis in GBM cells. IBC's inhibition on NLRP3 could be rescued by the NLRP3 antagonist CY-09 both in vitro and in vivo. These results indicate that IBC is a potential therapeutic drug against GBM and provide a new insight into GBM treatment.
Collapse
Affiliation(s)
- Yueshan Wu
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Avenue, Xianning, 437100, Hubei, People's Republic of China
| | - Jing Chang
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Avenue, Xianning, 437100, Hubei, People's Republic of China
| | - Juanjuan Ge
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Avenue, Xianning, 437100, Hubei, People's Republic of China
| | - Kangyan Xu
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Avenue, Xianning, 437100, Hubei, People's Republic of China
| | - Quan Zhou
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Avenue, Xianning, 437100, Hubei, People's Republic of China
| | - Xiaowen Zhang
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Avenue, Xianning, 437100, Hubei, People's Republic of China
| | - Ni Zhu
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Avenue, Xianning, 437100, Hubei, People's Republic of China.
| | - Meichun Hu
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Avenue, Xianning, 437100, Hubei, People's Republic of China.
| |
Collapse
|
30
|
Xu K, Sun S, Yan M, Cui J, Yang Y, Li W, Huang X, Dou L, Chen B, Tang W, Lan M, Li J, Shen T. DDX5 and DDX17—multifaceted proteins in the regulation of tumorigenesis and tumor progression. Front Oncol 2022; 12:943032. [PMID: 35992805 PMCID: PMC9382309 DOI: 10.3389/fonc.2022.943032] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/07/2022] [Indexed: 12/15/2022] Open
Abstract
DEAD-box (DDX)5 and DDX17, which belong to the DEAD-box RNA helicase family, are nuclear and cytoplasmic shuttle proteins. These proteins are expressed in most tissues and cells and participate in the regulation of normal physiological functions; their abnormal expression is closely related to tumorigenesis and tumor progression. DDX5/DDX17 participate in almost all processes of RNA metabolism, such as the alternative splicing of mRNA, biogenesis of microRNAs (miRNAs) and ribosomes, degradation of mRNA, interaction with long noncoding RNAs (lncRNAs) and coregulation of transcriptional activity. Moreover, different posttranslational modifications, such as phosphorylation, acetylation, ubiquitination, and sumoylation, endow DDX5/DDX17 with different functions in tumorigenesis and tumor progression. Indeed, DDX5 and DDX17 also interact with multiple key tumor-promoting molecules and participate in tumorigenesis and tumor progression signaling pathways. When DDX5/DDX17 expression or their posttranslational modification is dysregulated, the normal cellular signaling network collapses, leading to many pathological states, including tumorigenesis and tumor development. This review mainly discusses the molecular structure features and biological functions of DDX5/DDX17 and their effects on tumorigenesis and tumor progression, as well as their potential clinical application for tumor treatment.
Collapse
Affiliation(s)
- Kun Xu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Shenghui Sun
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Mingjing Yan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
- Peking University Fifth School of Clinical Medicine, Beijing, China
| | - Ju Cui
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Yao Yang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Wenlin Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Xiuqing Huang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Lin Dou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Beidong Chen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Weiqing Tang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Ming Lan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Tao Shen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
- *Correspondence: Tao Shen,
| |
Collapse
|
31
|
The Mammary Gland: Basic Structure and Molecular Signaling during Development. Int J Mol Sci 2022; 23:ijms23073883. [PMID: 35409243 PMCID: PMC8998991 DOI: 10.3390/ijms23073883] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/22/2022] [Accepted: 03/30/2022] [Indexed: 01/27/2023] Open
Abstract
The mammary gland is a compound, branched tubuloalveolar structure and a major characteristic of mammals. The mammary gland has evolved from epidermal apocrine glands, the skin glands as an accessory reproductive organ to support postnatal survival of offspring by producing milk as a source of nutrition. The mammary gland development begins during embryogenesis as a rudimentary structure that grows into an elementary branched ductal tree and is embedded in one end of a larger mammary fat pad at birth. At the onset of ovarian function at puberty, the rudimentary ductal system undergoes dramatic morphogenetic change with ductal elongation and branching. During pregnancy, the alveolar differentiation and tertiary branching are completed, and during lactation, the mature milk-producing glands eventually develop. The early stages of mammary development are hormonal independent, whereas during puberty and pregnancy, mammary gland development is hormonal dependent. We highlight the current understanding of molecular regulators involved during different stages of mammary gland development.
Collapse
|
32
|
Dynamic miRNA Landscape Links Mammary Gland Development to the Regulation of Milk Protein Expression in Mice. Animals (Basel) 2022; 12:ani12060727. [PMID: 35327124 PMCID: PMC8944794 DOI: 10.3390/ani12060727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Milk synthesis is vital for maintaining the normal growth of newborn animals. Abnormal mammary gland development leads to a decrease in female productivity and the overall productivity of animal husbandry. This study characterized the dynamic miRNA expression profile during the process of mammary gland development, and identified a novel miRNA regulating expression of β-casein—an important milk protein. The results are valuable for studying mammary gland development, increasing milk production, improving the survival rate of pups, and promoting the development of animal husbandry. Abstract Mammary gland morphology varies considerably between pregnancy and lactation status, e.g., virgin to pregnant and lactation to weaning. Throughout these critical developmental phases, the mammary glands undergo remodeling to accommodate changes in milk production capacity, which is positively correlated with milk protein expression. The purpose of this study was to investigate the microRNA (miRNA) expression profiles in female ICR mice’s mammary glands at the virgin stage (V), day 16 of pregnancy (P16d), day 12 of lactation (L12d), day 1 of forced weaning (FW1d), and day 3 of forced weaning (FW3d), and to identify the miRNAs regulating milk protein gene expression. During the five stages of testing, 852 known miRNAs and 179 novel miRNAs were identified in the mammary glands. Based on their expression patterns, the identified miRNAs were grouped into 12 clusters. The expression pattern of cluster 1 miRNAs was opposite to that of milk protein genes in mammary glands in all five different stages. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that the predicted target genes of cluster 1 miRNAs were related to murine mammary gland development and lactation. Furthermore, fluorescence in situ hybridization (FISH) analysis revealed that the novel-mmu-miR424-5p, which belongs to the cluster 1 miRNAs, was expressed in murine mammary epithelial cells. The dual-luciferase reporter assay revealed that an important milk protein gene—β-casein (CSN2)—was regarded as one of the likely targets for the novel-mmu-miR424-5p. This study analyzed the expression patterns of miRNAs in murine mammary glands throughout five critical developmental stages, and discovered a novel miRNA involved in regulating the expression of CSN2. These findings contribute to an enhanced understanding of the developmental biology of mammary glands, providing guidelines for increasing lactation efficiency and milk quality.
Collapse
|
33
|
Gangwar SK, Kumar A, Jose S, Alqahtani MS, Abbas M, Sethi G, Kunnumakkara AB. Nuclear receptors in oral cancer-emerging players in tumorigenesis. Cancer Lett 2022; 536:215666. [DOI: 10.1016/j.canlet.2022.215666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 12/24/2022]
|
34
|
Adlanmerini M, Fontaine C, Gourdy P, Arnal JF, Lenfant F. Segregation of nuclear and membrane-initiated actions of estrogen receptor using genetically modified animals and pharmacological tools. Mol Cell Endocrinol 2022; 539:111467. [PMID: 34626731 DOI: 10.1016/j.mce.2021.111467] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/06/2021] [Accepted: 09/28/2021] [Indexed: 11/23/2022]
Abstract
Estrogen receptor alpha (ERα) and beta (ERβ) are members of the nuclear receptor superfamily, playing widespread functions in reproductive and non-reproductive tissues. Beside the canonical function of ERs as nuclear receptors, in this review, we summarize our current understanding of extra-nuclear, membrane-initiated functions of ERs with a specific focus on ERα. Over the last decade, in vivo evidence has accumulated to demonstrate the physiological relevance of this ERα membrane-initiated-signaling from mouse models to selective pharmacological tools. Finally, we discuss the perspectives and future challenges opened by the integration of extra-nuclear ERα signaling in physiology and pathology of estrogens.
Collapse
Affiliation(s)
- Marine Adlanmerini
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France
| | - Coralie Fontaine
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France
| | - Pierre Gourdy
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France
| | - Jean-François Arnal
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France
| | - Françoise Lenfant
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France.
| |
Collapse
|
35
|
Zinc Signaling in the Mammary Gland: For Better and for Worse. Biomedicines 2021; 9:biomedicines9091204. [PMID: 34572390 PMCID: PMC8469023 DOI: 10.3390/biomedicines9091204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 02/07/2023] Open
Abstract
Zinc (Zn2+) plays an essential role in epithelial physiology. Among its many effects, most prominent is its action to accelerate cell proliferation, thereby modulating wound healing. It also mediates affects in the gastrointestinal system, in the testes, and in secretory organs, including the pancreas, salivary, and prostate glands. On the cellular level, Zn2+ is involved in protein folding, DNA, and RNA synthesis, and in the function of numerous enzymes. In the mammary gland, Zn2+ accumulation in maternal milk is essential for supporting infant growth during the neonatal period. Importantly, Zn2+ signaling also has direct roles in controlling mammary gland development or, alternatively, involution. During breast cancer progression, accumulation or redistribution of Zn2+ occurs in the mammary gland, with aberrant Zn2+ signaling observed in the malignant cells. Here, we review the current understanding of the role of in Zn2+ the mammary gland, and the proteins controlling cellular Zn2+ homeostasis and signaling, including Zn2+ transporters and the Gq-coupled Zn2+ sensing receptor, ZnR/GPR39. Significant advances in our understanding of Zn2+ signaling in the normal mammary gland as well as in the context of breast cancer provides new avenues for identification of specific targets for breast cancer therapy.
Collapse
|