1
|
Capera J, Jainarayanan A, Navarro-Pérez M, Valvo S, Demetriou P, Depoil D, Estadella I, Kvalvaag A, Felce JH, Felipe A, Dustin ML. Dynamics and spatial organization of Kv1.3 at the immunological synapse of human CD4+ T cells. Biophys J 2024; 123:2271-2281. [PMID: 37596785 PMCID: PMC11331042 DOI: 10.1016/j.bpj.2023.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/27/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023] Open
Abstract
Formation of the immunological synapse (IS) is a key event during initiation of an adaptive immune response to a specific antigen. During this process, a T cell and an antigen presenting cell form a stable contact that allows the T cell to integrate both internal and external stimuli in order to decide whether to activate. The threshold for T cell activation depends on the strength and frequency of the calcium (Ca2+) signaling induced by antigen recognition, and it must be tightly regulated to avoid undesired harm to healthy cells. Potassium (K+) channels are recruited to the IS to maintain the negative membrane potential required to sustain Ca2+ entry. However, the precise localization of K+ channels within the IS remains unknown. Here, we visualized the dynamic subsynaptic distribution of Kv1.3, the main voltage-gated potassium channel in human T cells. Upon T cell receptor engagement, Kv1.3 polarized toward the synaptic cleft and diffused throughout the F-actin rich distal compartment of the synaptic interface-an effect enhanced by CD2-CD58 corolla formation. As the synapse matured, Kv1.3 clusters were internalized at the center of the IS and released in extracellular vesicles. We propose a model in which specific distribution of Kv1.3 within the synapse indirectly regulates the channel function and that this process is limited through Kv1.3 internalization and release in extracellular vesicles.
Collapse
Affiliation(s)
- Jesusa Capera
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom; Molecular Physiology Laboratory, Departament de Bioquímica I Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Ashwin Jainarayanan
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - María Navarro-Pérez
- Molecular Physiology Laboratory, Departament de Bioquímica I Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Salvatore Valvo
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Philippos Demetriou
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom; The Center for the Study of Haematological and Other Malignancies, Nicosia, Cyprus
| | - David Depoil
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Irene Estadella
- Molecular Physiology Laboratory, Departament de Bioquímica I Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Audun Kvalvaag
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom; Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - James H Felce
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Antonio Felipe
- Molecular Physiology Laboratory, Departament de Bioquímica I Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain.
| | - Michael L Dustin
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
2
|
Griffiths G, Brügger B, Freund C. Lipid switches in the immunological synapse. J Biol Chem 2024; 300:107428. [PMID: 38823638 PMCID: PMC11259711 DOI: 10.1016/j.jbc.2024.107428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/07/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024] Open
Abstract
Adaptive immune responses comprise the activation of T cells by peptide antigens that are presented by proteins of the Major Histocompatibility Complex (MHC) on the surface of an antigen-presenting cell. As a consequence of the T cell receptor interacting productively with a certain peptide-MHC complex, a specialized cell-cell junction known as the immunological synapse forms and is accompanied by changes in the spatiotemporal patterning and function of intracellular signaling molecules. Key modifications occurring at the cytoplasmic leaflet of the plasma and internal membranes in activated T cells comprise lipid switches that affect the binding and distribution of proteins within or near the lipid bilayer. Here, we describe two major classes of lipid switches that act at this critical water/membrane interface. Phosphoinositides are derived from phosphatidylinositol, an amphiphilic molecule that contains two fatty acid chains and a phosphate group that bridges the glycerol backbone to the carbohydrate inositol. The inositol ring can be variably (de-)phosphorylated by dedicated kinases and phosphatases, thereby creating phosphoinositide signatures that define the composition and properties of signaling molecules, molecular complexes, or whole organelles. Palmitoylation refers to the reversible attachment of the fatty acid palmitate to a substrate protein's cysteine residue. DHHC enzymes, named after the four conserved amino acids in their active site, catalyze this post-translational modification and thereby change the distribution of proteins at, between, and within membranes. T cells utilize these two types of molecular switches to adjust their properties to an activation process that requires changes in motility, transport, secretion, and gene expression.
Collapse
Affiliation(s)
| | - Britta Brügger
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Christian Freund
- Laboratory of Protein Biochemistry, Institute of Chemistry & Biochemistry, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
3
|
Navarro-Pérez M, Capera J, Benavente-Garcia A, Cassinelli S, Colomer-Molera M, Felipe A. Kv1.3 in the spotlight for treating immune diseases. Expert Opin Ther Targets 2024; 28:67-82. [PMID: 38316438 DOI: 10.1080/14728222.2024.2315021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
INTRODUCTION Kv1.3 is the main voltage-gated potassium channel of leukocytes from both the innate and adaptive immune systems. Channel function is required for common processes such as Ca2+ signaling but also for cell-specific events. In this context, alterations in Kv1.3 are associated with multiple immune disorders. Excessive channel activity correlates with numerous autoimmune diseases, while reduced currents result in increased cancer prevalence and immunodeficiencies. AREAS COVERED This review offers a general view of the role of Kv1.3 in every type of leukocyte. Moreover, diseases stemming from dysregulations of the channel are detailed, as well as current advances in their therapeutic research. EXPERT OPINION Kv1.3 arises as a potential immune target in a variety of diseases. Several lines of research focused on channel modulation have yielded positive results. However, among the great variety of specific channel blockers, only one has reached clinical trials. Future investigations should focus on developing simpler administration routes for channel inhibitors to facilitate their entrance into clinical trials. Prospective Kv1.3-based treatments will ensure powerful therapies while minimizing undesired side effects.
Collapse
Affiliation(s)
- María Navarro-Pérez
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Jesusa Capera
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Anna Benavente-Garcia
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Silvia Cassinelli
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Magalí Colomer-Molera
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Antonio Felipe
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
4
|
Navarro-Pérez M, Estadella I, Benavente-Garcia A, Orellana-Fernández R, Petit A, Ferreres JC, Felipe A. The Phosphorylation of Kv1.3: A Modulatory Mechanism for a Multifunctional Ion Channel. Cancers (Basel) 2023; 15:2716. [PMID: 37345053 DOI: 10.3390/cancers15102716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Abstract
The voltage-gated potassium channel Kv1.3 plays a pivotal role in a myriad of biological processes, including cell proliferation, differentiation, and apoptosis. Kv1.3 undergoes fine-tuned regulation, and its altered expression or function correlates with tumorigenesis and cancer progression. Moreover, posttranslational modifications (PTMs), such as phosphorylation, have evolved as rapid switch-like moieties that tightly modulate channel activity. In addition, kinases are promising targets in anticancer therapies. The diverse serine/threonine and tyrosine kinases function on Kv1.3 and the effects of its phosphorylation vary depending on multiple factors. For instance, Kv1.3 regulatory subunits (KCNE4 and Kvβ) can be phosphorylated, increasing the complexity of channel modulation. Scaffold proteins allow the Kv1.3 channelosome and kinase to form protein complexes, thereby favoring the attachment of phosphate groups. This review compiles the network triggers and signaling pathways that culminate in Kv1.3 phosphorylation. Alterations to Kv1.3 expression and its phosphorylation are detailed, emphasizing the importance of this channel as an anticancer target. Overall, further research on Kv1.3 kinase-dependent effects should be addressed to develop effective antineoplastic drugs while minimizing side effects. This promising field encourages basic cancer research while inspiring new therapy development.
Collapse
Affiliation(s)
- María Navarro-Pérez
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
| | - Irene Estadella
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
| | - Anna Benavente-Garcia
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
| | | | - Anna Petit
- Departament de Patologia, Hospital Universitari de Bellvitge, IDIBELL, L'Hospitalet del Llobregat, 08908 Barcelona, Spain
| | - Joan Carles Ferreres
- Servei d'Anatomia Patològica, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), 08208 Sabadell, Spain
- Departament de Ciències Morfològiques, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Antonio Felipe
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
| |
Collapse
|
5
|
Palmitoylation of Voltage-Gated Ion Channels. Int J Mol Sci 2022; 23:ijms23169357. [PMID: 36012639 PMCID: PMC9409123 DOI: 10.3390/ijms23169357] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/30/2022] Open
Abstract
Protein lipidation is one of the most common forms of posttranslational modification. This alteration couples different lipids, such as fatty acids, phospho- and glycolipids and sterols, to cellular proteins. Lipidation regulates different aspects of the protein’s physiology, including structure, stability and affinity for cellular membranes and protein–protein interactions. In this scenario, palmitoylation is the addition of long saturated fatty acid chains to amino acid residues of the proteins. The enzymes responsible for this modification are acyltransferases and thioesterases, which control the protein’s behavior by performing a series of acylation and deacylation cycles. These enzymes target a broad repertoire of substrates, including ion channels. Thus, protein palmitoylation exhibits a pleiotropic role by differential modulation of the trafficking, spatial organization and electrophysiological properties of ion channels. Considering voltage-gated ion channels (VGICs), dysregulation of lipidation of both the channels and the associated ancillary subunits correlates with the development of various diseases, such as cancer or mental disorders. Therefore, a major role for protein palmitoylation is currently emerging, affecting not only the dynamism and differential regulation of a moiety of cellular proteins but also linking to human health. Therefore, palmitoylation of VGIC, as well as related enzymes, constitutes a novel pharmacological tool for drug development to target related pathologies.
Collapse
|
6
|
Roig SR, Cassinelli S, Zeug A, Ponimaskin E, Felipe A. Oligomerization and Spatial Distribution of Kvβ1.1 and Kvβ2.1 Regulatory Subunits. Front Physiol 2022; 13:930769. [PMID: 35784882 PMCID: PMC9247503 DOI: 10.3389/fphys.2022.930769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Members of the regulatory Kvβ family modulate the kinetics and traffic of voltage-dependent K+ (Kv) channels. The crystal structure of Kv channels associated with Kvβ peptides suggests a α4/β4 composition. Although Kvβ2 and Kvβ1 form heteromers, evidence supports that only Kvβ2.1 forms tetramers in the absence of α subunits. Therefore, the stoichiometry of the Kvβ oligomers fine-tunes the activity of hetero-oligomeric Kv channel complexes. We demonstrate that Kvβ subtypes form homo- and heterotetramers with similar affinities. The Kvβ1.1/Kvβ2.1 heteromer showed an altered spatial distribution in lipid rafts, recapitulating the Kvβ1.1 pattern. Because Kvβ2 is an active partner of the Kv1.3-TCR complex at the immunological synapse (IS), an association with Kvβ1 would alter this location, shaping the immune response. Differential regulation of Kvβs influences the traffic and architecture of the Kvβ heterotetramer, modulating Kvβ-dependent physiological responses.
Collapse
Affiliation(s)
- Sara R. Roig
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
- Imaging Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Silvia Cassinelli
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Andre Zeug
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Evgeni Ponimaskin
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Antonio Felipe
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
- *Correspondence: Antonio Felipe,
| |
Collapse
|