1
|
Kirtonia A, Pandya G, Singh A, Kumari R, Singh B, Kapoor S, Khattar E, Pandey AK, Garg M. Anticancer and therapeutic efficacy of XPO1 inhibition in pancreatic ductal adenocarcinoma through DNA damage and modulation of miR-193b/KRAS/LAMC2/ERK/AKT signaling cascade. Life Sci 2025; 362:123364. [PMID: 39778762 DOI: 10.1016/j.lfs.2024.123364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/14/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and grave malignancies with confined and ineffective therapeutic options. XPO1 is a critical regulator of nuclear export and activation of tumor suppressor proteins. The present study evaluated the therapeutic potential and molecular mechanisms of XPO1 inhibition against PDAC. Firstly, we observed significant overexpression of XPO1 transcript in 179 PDAC patients than 171 normal pancreatic tissues in TCGA transcriptomic dataset. Higher XPO1 transcript levels displayed worse overall and disease-free survival. Further, we confirmed significant upregulation of XPO1 in a panel of PDAC cells. Eltanexor treatment resulted in significant inhibition of cell viability, clonogenic growth, migration, and epithelial-mesenchymal transition (EMT), along with the induction of cell cycle arrest. Mechanistically, eltanexor modulated the expression of key proteins including p21, p27, p53, cyclin B1, cyclin D1, c-Myc, N-cadherin, vimentin, E-cadherin associated with the cell viability, growth, cell cycle and EMT. Additionally, the eltanexor treatment resulted in marked increase in expression of γH2AX, and cleaved PARP, cleaved caspase-9 leading to induction of DNA damage and apoptosis of PDAC cells, respectively. Moreover, eltanexor treatment regulated the expression of key non-coding RNAs including miR193b, DINO, MALAT-1, H19, and SOX21-AS1 linked with tumorigenesis. Our results revealed a correlation among miR193b/KRAS/LAMC2, XPO1/KRAS, and LAMC2/KRAS. The findings also revealed that eltanexor treatment rescued the expression of miR193b which acts as a sponge for LAMC2 and KRAS resulting in the suppression of AKT/ERK downstream signaling cascade in PDAC. Interestingly, the combination of eltanexor with gemcitabine showed significant anticancer activity in PDAC cells. Altogether, our findings revealed the crucial role of XPO1 in modulating the expression of oncogenic proteins, ncRNAs, and DNA damage during PDAC progression as well as identified novel therapeutic miR-193b/KRAS/LAMC2/ERK/AKT axis.
Collapse
MESH Headings
- Humans
- Exportin 1 Protein
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Karyopherins/metabolism
- Karyopherins/genetics
- Karyopherins/antagonists & inhibitors
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- DNA Damage/drug effects
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Cell Line, Tumor
- Gene Expression Regulation, Neoplastic/drug effects
- Animals
- Signal Transduction/drug effects
- Cell Proliferation/drug effects
- Mice
- Epithelial-Mesenchymal Transition/drug effects
- Apoptosis/drug effects
- MAP Kinase Signaling System/drug effects
- Antineoplastic Agents/pharmacology
- Mice, Nude
- Cell Movement/drug effects
Collapse
Affiliation(s)
- Anuradha Kirtonia
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida 201313, Uttar Pradesh, India
| | - Gouri Pandya
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida 201313, Uttar Pradesh, India
| | - Aishwarya Singh
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida 201313, Uttar Pradesh, India
| | - Rachana Kumari
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida 201313, Uttar Pradesh, India
| | - Bhavana Singh
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida 201313, Uttar Pradesh, India
| | - Sonia Kapoor
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida 201313, Uttar Pradesh, India.
| | - Ekta Khattar
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be) University, Vile Parle West, Mumbai 400056, India
| | - Amit Kumar Pandey
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER) Ahmedabad, Gandhinagar 382355, India.
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida 201313, Uttar Pradesh, India.
| |
Collapse
|
2
|
Xiubing C, Huazhen L, Xueyan W, Jing N, Qing L, Haixing J, Shanyu Q, Jiefu L. SERPINA1 promotes the invasion, metastasis, and proliferation of pancreatic ductal adenocarcinoma via the PI3K/Akt/NF-κB pathway. Biochem Pharmacol 2024; 230:116580. [PMID: 39427920 DOI: 10.1016/j.bcp.2024.116580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Serpin peptidase inhibitor clade A member 1 (SERPINA1) is highly expressed in a variety of solid tumors. However, its role in pancreatic ductal adenocarcinoma (PDAC) remains unclear. Here, we report evidence that SERPINA1 acts as a potent oncogene to drive its extremely malignant character. We found that elevated SERPINA1 expression in primary tumors was associated with lymph node metastasis and shorter survival in PDAC patients. Mechanistic investigations revealed that overexpression of SERPINA1 induced nuclear translocation and phosphorylation of the p65 subunit through the PI3K/Akt/NF-κB pathway, thereby promoting the invasion, metastasis and proliferation of PDAC cells in vitro and in vivo. Conversely, the knockdown of SERPINA1 attenuated this signaling pathway and restored the phenotype of PDAC cells overexpressing SERPINA1. Overall, our study reveals that SERPINA1 affects the properties of PDAC through the PI3K/Akt/NF-κB pathway, and its activation confers the clinical features of epithelial-mesenchymal transition and proliferation in the disease.
Collapse
Affiliation(s)
- Chen Xiubing
- Department of Gastroenterology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Li Huazhen
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Wei Xueyan
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Ning Jing
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Li Qing
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Jiang Haixing
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Qin Shanyu
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| | - Lu Jiefu
- Department of Gastroenterology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
3
|
Dong B, Zhang Y, Gao H, Liu J, Li J. Machine Learning Developed a MYC Expression Feature-Based Signature for Predicting Prognosis and Chemoresistance in Pancreatic Adenocarcinoma. Biochem Genet 2024; 62:4191-4214. [PMID: 38245886 DOI: 10.1007/s10528-023-10625-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/07/2023] [Indexed: 01/23/2024]
Abstract
MYC has been identified to profoundly influence a wide range of pathologic processes in cancers. However, the prognostic value of MYC-related genes in pancreatic adenocarcinoma (PAAD) remains unclarified. Gene expression data and clinical information of PAAD patients were obtained from The Cancer Genome Atlas (TCGA) database (training set). Validation sets included GSE57495, GSE62452, and ICGC-PACA databases. LASSO regression analysis was used to develop a risk signature for survival prediction. Single-cell sequencing data from GSE154778 and CRA001160 datasets were analyzed. Functional studies were conducted using siRNA targeting RHOF and ITGB6 in PANC-1 cells. High MYC expression was found to be significantly associated with a poor prognosis in patients with PAAD. Additionally, we identified seven genes (ADGRG6, LINC00941, RHOF, SERPINB5, INSYN2B, ITGB6, and DEPDC1) that exhibited a strong correlation with both MYC expression and patient survival. They were then utilized to establish a risk model (MYCsig), which showed robust predictive ability. Furthermore, MYCsig demonstrated a positive correlation with the expression of HLA genes and immune checkpoints, as well as the chemotherapy response of PAAD. RHOF and ITGB6, expressed mainly in malignant cells, were identified as key oncogenes regulating chemosensitivity through EMT. Downregulation of RHOF and ITGB6 reduced cell proliferation and invasion in PANC-1 cells. The developed MYCsig demonstrates its potential in enhancing the management of patients with PAAD by facilitating risk assessment and predicting response to adjuvant chemotherapy. Additionally, our study identifies RHOF and ITGB6 as novel oncogenes linked to EMT and chemoresistance in PAAD.
Collapse
Affiliation(s)
- Biao Dong
- Department of Hepatobiliary Surgery, Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang, 050000, Hebei, China
| | - Yueshan Zhang
- Department of Hepatobiliary Surgery, Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang, 050000, Hebei, China
| | - Han Gao
- Department of Hepatobiliary Surgery, Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang, 050000, Hebei, China
| | - Jia Liu
- Department of Precision Medicine, Accb Biotech. Ltd, Beijing, China
| | - Jiankun Li
- Department of Hepatobiliary Surgery, Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
4
|
Xu C, Pascual-Sabater S, Fillat C, Goel A. The LAMB3-EGFR signaling pathway mediates synergistic Anti-Cancer effects of berberine and emodin in Pancreatic cancer. Biochem Pharmacol 2024; 228:116509. [PMID: 39214450 PMCID: PMC11771243 DOI: 10.1016/j.bcp.2024.116509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy, primarily due to the intrinsic development of chemoresistance. The most apparent histopathological feature associated with chemoresistance is the alterations in extracellular matrix (ECM) proteins. Natural dietary botanicals such as berberine (BBR) and emodin (EMO) have been shown to possess chemo-preventive potential by regulating ECM in various cancers. Herein, we further investigated the potential synergistic effects of BBR and EMO in enhancing anticancer efficacy by targeting ECM proteins in pancreatic cancer. Genomewide transcriptomic profiling identified that LAMB3 was significantly upregulated in PDAC tissue and highly associated with poor overall survival (OS, hazard ratio [HR], 2.99, 95 % confidence interval [CI], 1.46-6.15; p = 0.003) and progress-free survival (PFS, HR, 2.59; 95 % CI, 1.30-5.18; p = 0.007) in PDAC. A systematic series of functional experiments in BxPC-3 and MIA-PaCa-2 cells revealed that the combination of BBR and EMO exhibited synergistic anti-tumor potential, as demonstrated by cell proliferation, clonogenicity, migration, and invasion assays (p < 0.05-0.001). The combination also altered the expression of key proteins involved in apoptosis, EMT, and EGFR/ERK1,2/AKT signaling. These findings were further supported by patient-derived organoids (PDOs), where the combined treatment resulted in fewer and smaller organoids compared to each compound individually (p < 0.05-0.001). Our results suggest that BBR combined with EMO exerts synergistic anti-cancer effects by modulating the EGFR-signaling pathway through interference with LAMB3 in PDAC.
Collapse
Affiliation(s)
- Caiming Xu
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA, 91016, USA; Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116004, Liaoning, China
| | - Silvia Pascual-Sabater
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Cristina Fillat
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA, 91016, USA; City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA.
| |
Collapse
|
5
|
Ali T, Jan I, Ramachandran R, Bashir R, Andrabi KI, Bader GN. Molecular docking and dynamics simulation of farnesol as a potential anticancer agent targeting mTOR pathway. In Silico Pharmacol 2024; 12:89. [PMID: 39351011 PMCID: PMC11438742 DOI: 10.1007/s40203-024-00259-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/08/2024] [Indexed: 10/04/2024] Open
Abstract
Farnesol is a natural acyclic sesquiterpene alcohol, found in various essential oils such as, lemon grass, citronella, tuberose, neroli, and musk. It has a molecular mass of 222.372 g/mol and chemical formula of C₁₅H₂₆O. The main objective of this study was to assess the effect of farnesol on mTOR and its two downstream effectors, p70S6K and eIF4E, which are implicated in the development of cancer, via molecular dynamic simulation, and docking analysis in an in silico study. A multilayer, primarily computer-based analysis was conducted to assess farnesol's anticancer potential, with a focus on primary cancer targets. From the calculations performed, farnesol showed a binding affinity of - 9.66 kcal/mol, followed by binding affinity of - 7.4 kcal/mol and - 7.8 kcal/mol for mTOR, p70S6K and eIF4E respectively. Rapamycin showed the binding affinity of - 10.45 kcal/mol for mTOR, for p70S6K and eIF4E the calculated binding affinity was - 10.65 kcal/mol and 8.16 kcal/mol respectively. The binding affinity of farnesol was comparable to the standard drug rapamycin indicating its potential as an mTOR inhibitor. Molecular dynamics simulations suggest that the ligands (farnesol and rapamycin) were well trapped within the active site of the protein over a time gap of 50 ns. It is clear that farnesol showed relatively stable MD simulation results, with minor fluctuations and maintains a consistent binding orientation, suggesting a strong and stable interaction with the target proteins when compared to simulation data of standard drug. This study explores the potential of farnesol as an anticancer agent through an in-silico approach, focusing on its interaction with mTOR and its downstream effectors. Inhibition of mTOR signaling pathway may be responsible for the anticancer effect of farnesol. As this pathway plays a crucial role in cell proliferation and survival, making it a significant target in cancer research.
Collapse
Affiliation(s)
- Tabasum Ali
- Department of Pharmaceutical Sciences, School of Applied Science and Technology, University of Kashmir, Srinagar, Jammu, Kashmir 190006 India
- GrowthFactorSignalingLaboratory, Department of Biotechnology, University of Kashmir, Kashmir, J&K190006 India
| | - Ifat Jan
- Department of Pharmaceutical Sciences, School of Applied Science and Technology, University of Kashmir, Srinagar, Jammu, Kashmir 190006 India
- GrowthFactorSignalingLaboratory, Department of Biotechnology, University of Kashmir, Kashmir, J&K190006 India
| | - Rajath Ramachandran
- Molecular Science and Technology Department, Ajou University, Ajou, 16499 Republic of Korea
| | - Rabiah Bashir
- Department of Pharmaceutical Sciences, School of Applied Science and Technology, University of Kashmir, Srinagar, Jammu, Kashmir 190006 India
| | - Khurshid Iqbal Andrabi
- GrowthFactorSignalingLaboratory, Department of Biotechnology, University of Kashmir, Kashmir, J&K190006 India
| | - Ghulam Nabi Bader
- Department of Pharmaceutical Sciences, School of Applied Science and Technology, University of Kashmir, Srinagar, Jammu, Kashmir 190006 India
| |
Collapse
|
6
|
Funahashi N, Okada H, Kaneko R, Nio K, Yamashita T, Koshikawa N. Hepatocyte transformation is induced by laminin γ2 monomer. Cancer Sci 2024; 115:2972-2984. [PMID: 38951133 PMCID: PMC11462950 DOI: 10.1111/cas.16265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/15/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024] Open
Abstract
Serum laminin-γ2 monomer (Lm-γ2m) is a potent predictive biomarker for hepatocellular carcinoma (HCC) onset in patients with hepatitis C infection who achieve a sustained virologic response with liver cirrhosis (LC) and for the onset of extrahepatic metastases in early-stage HCC. Although Lm-γ2m involvement in late-stage cancer progression has been well investigated, its precise roles in HCC onset remain to be systematically investigated. Therefore, we analyzed an HCC model, human hepatocytes and cholangiocytes, and surgically resected liver tissues from patients with HCC to understand the roles of Lm-γ2m in HCC onset. Ck-19- and EpCAM-positive hepatic progenitor cells (HPCs) in the liver of pdgf-c transgenic HCC mouse model with ductular reaction showed ectopic expression of Lm-γ2m. Forced expression of Lm-γ2m in hepatocytes adjacent to HPCs resulted in enhanced tumorigenicity, cell proliferation, and migration in immortalized hepatocytes, but not in cholangiocytes in vitro. Further, pharmacological inhibition of epidermal growth factor receptor (EGFR) and c-Jun activator JNK suppressed Lm-γ2m-induced hepatocyte transformation, suggesting the involvement of EGFR/c-Jun signaling in the transformation, leading to HCC development. Finally, immunohistochemical staining of HCC tissues revealed a high level of Lm-γ2 expression in the HPCs of the liver with ductular reaction in normal liver adjacent to HCC tissues. Overall, HPC-derived Lm-γ2m in normal liver with ductular reaction acts as a paracrine growth factor on surrounding hepatocytes and promotes their cellular transformation through the EGFR/c-Jun signaling pathway. Furthermore, this is the first report on Lm-γ2m expression detected in the normal liver with ductular reaction, a human precancerous lesion of HCC.
Collapse
Affiliation(s)
- Nobuaki Funahashi
- Department of Life Science and TechnologyTokyo Institute of TechnologyYokohamaKanagawaJapan
| | - Hikari Okada
- Department of Gastroenterology, Graduate School of Medical ScienceKanazawa UniversityKanazawaIshikawaJapan
| | - Ryo Kaneko
- Department of Life Science and TechnologyTokyo Institute of TechnologyYokohamaKanagawaJapan
| | - Kouki Nio
- Department of Gastroenterology, Graduate School of Medical ScienceKanazawa UniversityKanazawaIshikawaJapan
| | - Taro Yamashita
- Department of Gastroenterology, Graduate School of Medical ScienceKanazawa UniversityKanazawaIshikawaJapan
| | - Naohiko Koshikawa
- Department of Life Science and TechnologyTokyo Institute of TechnologyYokohamaKanagawaJapan
- Clinical Cancer Proteomics LaboratoryKanagawa Cancer Center Research InstituteYokohamaKanagawaJapan
| |
Collapse
|
7
|
Dai S, Kong H, Ja Y, Bao L, Wang C, Qin L. Expression of the laminin genes family and its relationship to prognosis in pancreatic carcinoma. Arab J Gastroenterol 2024; 25:306-314. [PMID: 39039002 DOI: 10.1016/j.ajg.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/16/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND AND STUDY AIMS Laminin is an extracellular matrix molecule that is the major component of the basement membrane and plays a key role in regulating various processes. However, the association between the laminin gene family and the prognosis of pancreatic carcinoma has not been systematically investigated. PATIENTS AND METHODS The role of the laminin gene family in pancreatic cancer was evaluated using data from the TCGA database. The effects of different expressions of members of the laminin gene family on pancreatic cancer survival were compared, and their primary cellular roles were examined. The effects of different expressions of positive family genes on proliferation, metastasis, and invasion, as well as EMT and ferroptosis in pancreatic cancer, were also examined. RESULTS Based on univariate and multifactorial analysis of pancreatic cancer patients, LAMA3 was identified as an independent prognostic factor for overall survival in pancreatic cancer. LAMA3 was found to be enriched in the actin cytoskeleton, P53 signaling pathway, adhesion molecule junctions, pentose phosphate pathway, and regulatory differences in the cell cycle and focal adhesion. Additionally, high expression of LAMA3 was found to promote cancer proliferation, invasion, and metastasis, facilitate the EMT process, and inhibit ferroptosis. CONCLUSIONS Our results identified LAMA3 was associated with the prognosis of patients with pancreatic cancer and may serve as a prognostic biomarker for pancreatic cancer.
Collapse
Affiliation(s)
- ShengJie Dai
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hongru Kong
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yang Ja
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liqi Bao
- Renji College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chengchao Wang
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lei Qin
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
8
|
Lu C, Gao Z, Wu D, Zheng J, Hu C, Huang D, He C, Liu Y, Lin C, Peng T, Dou Y, Zhang Y, Sun F, Jiang W, Yin G, Han R, He Y. Understanding the dynamics of TKI-induced changes in the tumor immune microenvironment for improved therapeutic effect. J Immunother Cancer 2024; 12:e009165. [PMID: 38908857 PMCID: PMC11328648 DOI: 10.1136/jitc-2024-009165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2024] [Indexed: 06/24/2024] Open
Abstract
BACKGROUND The dynamic interplay between tyrosine kinase inhibitors (TKIs) and the tumor immune microenvironment (TME) plays a crucial role in the therapeutic trajectory of non-small cell lung cancer (NSCLC). Understanding the functional dynamics and resistance mechanisms of TKIs is essential for advancing the treatment of NSCLC. METHODS This study assessed the effects of short-term and long-term TKI treatments on the TME in NSCLC, particularly targeting epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) mutations. We analyzed changes in immune cell composition, cytokine profiles, and key proteins involved in immune evasion, such as laminin subunit γ-2 (LAMC2). We also explored the use of aspirin as an adjunct therapy to modulate the TME and counteract TKI resistance. RESULTS Short-term TKI treatment enhanced T cell-mediated tumor clearance, reduced immunosuppressive M2 macrophage infiltration, and downregulated LAMC2 expression. Conversely, long-term TKI treatment fostered an immunosuppressive TME, contributing to drug resistance and promoting immune escape. Differential responses were observed among various oncogenic mutations, with ALK-targeted therapies eliciting a stronger antitumor immune response compared with EGFR-targeted therapies. Notably, we found that aspirin has potential in overcoming TKI resistance by modulating the TME and enhancing T cell-mediated tumor clearance. CONCLUSIONS These findings offer new insights into the dynamics of TKI-induced changes in the TME, improving our understanding of NSCLC challenges. The study underscores the critical role of the TME in TKI resistance and suggests that adjunct therapies, like aspirin, may provide new strategies to enhance TKI efficacy and overcome resistance.
Collapse
Affiliation(s)
- Conghua Lu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing, China
| | - Ziyuan Gao
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing, China
| | - Di Wu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing, China
| | - Jie Zheng
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing, China
| | - Chen Hu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing, China
| | - Daijuan Huang
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing, China
- School of Medicine, Chongqing University, Chongqing, China
| | - Chao He
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing, China
| | - Yihui Liu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing, China
| | - Caiyu Lin
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing, China
| | - Tao Peng
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing, China
| | - Yuanyao Dou
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Yimin Zhang
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing, China
| | - Fenfen Sun
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing, China
| | - Weiling Jiang
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing, China
| | - Guoqing Yin
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing, China
| | - Rui Han
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing, China
| | - Yong He
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing, China
- School of Medicine, Chongqing University, Chongqing, China
| |
Collapse
|
9
|
Stoup N, Liberelle M, Lebègue N, Van Seuningen I. Emerging paradigms and recent progress in targeting ErbB in cancers. Trends Pharmacol Sci 2024; 45:552-576. [PMID: 38797570 DOI: 10.1016/j.tips.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/29/2024]
Abstract
The epidermal growth factor receptor (EGFR) family is a class of transmembrane proteins, highly regarded as anticancer targets due to their pivotal role in various malignancies. Standard cancer treatments targeting the ErbB receptors include tyrosine kinase inhibitors (TKIs) and monoclonal antibodies (mAbs). Despite their substantial survival benefits, the achievement of curative outcomes is hindered by acquired resistance. Recent advancements in anti-ErbB approaches, such as inhibitory peptides, nanobodies, targeted-protein degradation strategies, and bispecific antibodies (BsAbs), aim to overcome such resistance. More recently, emerging insights into the cell surface interactome of the ErbB family open new avenues for modulating ErbB signaling by targeting specific domains of ErbB partners. Here, we review recent progress in ErbB targeting and elucidate emerging paradigms that underscore the significance of EGF domain-containing proteins (EDCPs) as new ErbB-targeting pathways.
Collapse
Affiliation(s)
- Nicolas Stoup
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Maxime Liberelle
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - LiNC -Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Nicolas Lebègue
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - LiNC -Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Isabelle Van Seuningen
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France.
| |
Collapse
|
10
|
Zhang J, Ji F, Tan Y, Zhao L, Zhao Y, Liu J, Shao L, Shi J, Ye M, He X, Jin J, Zhao B, Huang J, Roessler S, Zheng X, Ji J. Oncogenic Roles of Laminin Subunit Gamma-2 in Intrahepatic Cholangiocarcinoma via Promoting EGFR Translation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309010. [PMID: 38526177 PMCID: PMC11151066 DOI: 10.1002/advs.202309010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/23/2024] [Indexed: 03/26/2024]
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is a highly lethal biliary epithelial cancer in the liver. Here, Laminin subunit gamma-2 (LAMC2) with important oncogenic roles in iCCA is discovered. In a total of 231 cholangiocarcinoma patients (82% of iCCA patients) across four independent cohorts, LAMC2 is significantly more abundant in iCCA tumor tissue compared to normal bile duct and non-tumor liver. Among 26.3% of iCCA patients, LAMC2 gene is amplified, contributing to its over-expression. Functionally, silencing LAMC2 significantly blocks tumor formation in orthotopic iCCA mouse models. Mechanistically, it promotes EGFR protein translation via interacting with nascent unglycosylated EGFR in the endoplasmic reticulum (ER), resulting in activated EGFR signaling. LAMC2-mediated EGFR translation also depends on its interaction with the ER chaperone BiP via their C-terminus. Together LAMC2 and BiP generate a binding "pocket" of nascent EGFR and facilitate EGFR translation. Consistently, LAMC2-high iCCA patients have poor prognosis in two iCCA cohorts. LAMC2-high iCCA cells are highly sensitive to EGFR tyrosine kinase inhibitors (TKIs) treatment both in vitro and in vivo. Together, these data demonstrate LAMC2 as an oncogenic player in iCCA by promoting EGFR translation and an indicator to identify iCCA patients who may benefit from available EGFR-targeted TKIs therapies.
Collapse
Affiliation(s)
- Jianjuan Zhang
- The MOE Key Laboratory of Biosystems Homeostasis & ProtectionZhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
- Center for Life SciencesShaoxing InstituteZhejiang UniversityShaoxingZhejiang321000China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058China
| | - Fubo Ji
- The MOE Key Laboratory of Biosystems Homeostasis & ProtectionZhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
- Center for Life SciencesShaoxing InstituteZhejiang UniversityShaoxingZhejiang321000China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058China
| | - Yaqi Tan
- The MOE Key Laboratory of Biosystems Homeostasis & ProtectionZhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
- Center for Life SciencesShaoxing InstituteZhejiang UniversityShaoxingZhejiang321000China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058China
| | - Lei Zhao
- Shandong Cancer Hospital and InstituteShandong Cancer Hospital of Shandong First Medical UniversityJinanShandong Province250117China
| | - Yongzhi Zhao
- The MOE Key Laboratory of Biosystems Homeostasis & ProtectionZhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
- Center for Life SciencesShaoxing InstituteZhejiang UniversityShaoxingZhejiang321000China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058China
| | - Jiaxin Liu
- The MOE Key Laboratory of Biosystems Homeostasis & ProtectionZhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
- Center for Life SciencesShaoxing InstituteZhejiang UniversityShaoxingZhejiang321000China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058China
| | - Liyuan Shao
- Center for Life SciencesShaoxing InstituteZhejiang UniversityShaoxingZhejiang321000China
| | - Jiong Shi
- Department of PathologyNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsu Province210008China
| | - Meihua Ye
- Zhejiang Provincial People's HospitalHangzhouZhejiang310014China
| | - Xianglei He
- Zhejiang Provincial People's HospitalHangzhouZhejiang310014China
| | - Jianping Jin
- The MOE Key Laboratory of Biosystems Homeostasis & ProtectionZhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
- Center for Life SciencesShaoxing InstituteZhejiang UniversityShaoxingZhejiang321000China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058China
| | - Bin Zhao
- The MOE Key Laboratory of Biosystems Homeostasis & ProtectionZhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
- Center for Life SciencesShaoxing InstituteZhejiang UniversityShaoxingZhejiang321000China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058China
| | - Jun Huang
- The MOE Key Laboratory of Biosystems Homeostasis & ProtectionZhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
- Center for Life SciencesShaoxing InstituteZhejiang UniversityShaoxingZhejiang321000China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058China
| | - Stephanie Roessler
- Institute of PathologyUniversity Hospital Heidelberg69120HeidelbergGermany
| | - Xin Zheng
- Taoharmony Biotech L.L.C.HangzhouZhejiang310018China
| | - Junfang Ji
- The MOE Key Laboratory of Biosystems Homeostasis & ProtectionZhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
- Center for Life SciencesShaoxing InstituteZhejiang UniversityShaoxingZhejiang321000China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058China
| |
Collapse
|
11
|
Chen X, Chen L, Miao J, Huang X, Han X, Zheng L, Xu S, Chen J, Li L. Prognostic significance of collagen signatures in pancreatic ductal adenocarcinoma obtained from second-harmonic generation imaging. BMC Cancer 2024; 24:652. [PMID: 38811917 PMCID: PMC11134950 DOI: 10.1186/s12885-024-12412-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/22/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) ranks among the deadliest types of cancer, and it will be meaningful to search for new biomarkers with prognostic value to help clinicians tailor therapeutic strategies. METHODS Here we tried to use an advanced optical imaging technique, multiphoton microscopy (MPM) combining second-harmonic generation (SHG) and two-photon excited fluorescence (TPEF) imaging, for the label-free detection of PDAC tissues from a cohort of 149 patients. An automated image processing method was used to extract collagen features from SHG images and the Kaplan-Meier survival analysis and Cox proportional hazards regression were used to assess the prognostic value of collagen signatures. RESULTS SHG images clearly show the different characteristics of collagen fibers in tumor microenvironment. We gained eight collagen morphological features, and a Feature-score was derived for each patient by the combination of these features using ridge regression. Statistical analyses reveal that Feature-score is an independent factor, and can predict the overall survival of PDAC patients as well as provide well risk stratification. CONCLUSIONS SHG imaging technique can potentially be a tool for the accurate diagnosis of PDAC, and this optical biomarker (Feature-score) may help clinicians make more approximate treatment decisions.
Collapse
Affiliation(s)
- Xiwen Chen
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, 350007, China
| | - Linying Chen
- Department of Pathology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, China.
| | - Jikui Miao
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, 350007, China
| | - Xingxin Huang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, 350007, China
| | - Xiahui Han
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, 350007, China
| | - Liqin Zheng
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, 350007, China
| | - Shuoyu Xu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jianxin Chen
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, 350007, China
| | - Lianhuang Li
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, 350007, China.
| |
Collapse
|
12
|
Mao Y, Su X, Guo Q, Yao X, Zhao Q, Guo Y, Wang Y, Li X, Lu Y. Long non-coding RNA LINC00930 targeting miR-6792-3p/ZBTB16 regulates the proliferation and EMT of pancreatic cancer. BMC Cancer 2024; 24:638. [PMID: 38789960 PMCID: PMC11127394 DOI: 10.1186/s12885-024-12365-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Emerging evidence suggests the dysregulation of long non-coding RNAs (lncRNAs) involved in pancreatic cancer (PC). However, the function of LINC00930 in PC has not been elaborated. In this study, we found that LINC00930 was significantly down-regulated in PC cell lines and tissues, and associated with tumor size, lymphatic metastasis, TNM stage and poor prognosis. According to the bioinformatics database, the downregulation of LINC00930 was a common event in PC associated with prognosis and EMT. Overexpression of LINC00930 inhibited the aggressive cancer phenotypes including proliferation, metastasis and epithelial-mesenchymal transition (EMT) of PC in vitro and in vivo. Bioinformatics and dual-luciferase reporter assay indicated that miR-6792-3p could directly bind to LINC00930. Additionally, the Zinc finger and BTB domain containing 16 (ZBTB16) was significantly declined in PC, which was predicted to be the downstream gene of miR-6792-3p. MiR-6792-3p mimic rescued the decreased proliferation, metastasis and EMT caused by ZBTB16 in PC cells. The LINC00930/miR-6792-3p/ZBTB16 axis was associated with the malignant progression and process of PC. The relative expression of LINC00930 was negatively correlated with the expression of miR-6792-3p and was closely linked with ZBTB16 levels in PC. LINC00930 might serve as a potential prognostic biomarker and therapeutic target for PC.
Collapse
Affiliation(s)
- Yingqing Mao
- Research Center of Clinical Medical, Department of General Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, P. R. China
- The Sixth People's Hospital of Nantong, Nantong, 226001, P. R. China
| | - Xian Su
- Research Center of Clinical Medical, Department of General Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, P. R. China
- Department of Hepatobiliary Surgery, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, P. R. China
| | - Qingsong Guo
- Research Center of Clinical Medical, Department of General Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, P. R. China
| | - Xihao Yao
- Research Center of Clinical Medical, Department of General Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, P. R. China
| | - Qun Zhao
- Research Center of Clinical Medical, Department of General Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, P. R. China
| | - Yibing Guo
- Research Center of Clinical Medical, Department of General Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, P. R. China
| | - Yao Wang
- Research Center of Clinical Medical, Department of General Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, P. R. China
| | - Xiaohong Li
- Research Center of Clinical Medical, Department of General Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, P. R. China.
| | - Yuhua Lu
- Research Center of Clinical Medical, Department of General Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, P. R. China.
| |
Collapse
|
13
|
Lee DU, Han BS, Jung KH, Hong SS. Tumor Stroma as a Therapeutic Target for Pancreatic Ductal Adenocarcinoma. Biomol Ther (Seoul) 2024; 32:281-290. [PMID: 38590092 PMCID: PMC11063484 DOI: 10.4062/biomolther.2024.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/10/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis owing to its desmoplastic stroma. Therefore, therapeutic strategies targeting this tumor stroma should be developed. In this study, we describe the heterogeneity of cancer-associated fibroblasts (CAFs) and their diverse roles in the progression, immune evasion, and resistance to treatment of PDAC. We subclassified the spatial distribution and functional activity of CAFs to highlight their effects on prognosis and drug delivery. Extracellular matrix components such as collagen and hyaluronan are described for their roles in tumor behavior and treatment outcomes, implying their potential as therapeutic targets. We also discussed the roles of extracellular matrix (ECM) including matrix metalloproteinases and tissue inhibitors in PDAC progression. Finally, we explored the role of the adaptive and innate immune systems in shaping the PDAC microenvironment and potential therapeutic strategies, with a focus on immune cell subsets, cytokines, and immunosuppressive mechanisms. These insights provide a comprehensive understanding of PDAC and pave the way for the development of prognostic markers and therapeutic interventions.
Collapse
Affiliation(s)
- Dae Ui Lee
- Department of Medicine, College of Medicine, Inha University, Incheon 22332, Republic of Korea
| | - Beom Seok Han
- Program in Biomedical Science & Engineering, The Graduate School, Inha University, Incheon 22212, Republic of Korea
| | - Kyung Hee Jung
- Department of Medicine, College of Medicine, Inha University, Incheon 22332, Republic of Korea
| | - Soon-Sun Hong
- Department of Medicine, College of Medicine, Inha University, Incheon 22332, Republic of Korea
- Program in Biomedical Science & Engineering, The Graduate School, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
14
|
Li J, Wei T, Ma K, Zhang J, Lu J, Zhao J, Huang J, Zeng T, Xie Y, Liang Y, Li X, Zhang Q, Liang T. Single-cell RNA sequencing highlights epithelial and microenvironmental heterogeneity in malignant progression of pancreatic ductal adenocarcinoma. Cancer Lett 2024; 584:216607. [PMID: 38246225 DOI: 10.1016/j.canlet.2024.216607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/05/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024]
Abstract
Intraductal papillary mucinous neoplasms (IPMNs) of the pancreas are bona fide precursor lesions of pancreatic ductal adenocarcinoma (PDAC). Single-cell transcriptomics provides a unique perspective for dissecting the epithelial and microenvironmental heterogeneity that accompanies progression from benign IPMNs to invasive PDAC. Single-cell RNA sequencing was performed through droplet-based sequencing on 35 693 cells from three high-grade IPMNs and two IPMN-derived PDACs (all surgically resected). Analysis of single-cell transcriptomes revealed heterogeneous alterations within the epithelium and the tumor microenvironment during the progression of noninvasive dysplasia to invasive cancer. For epithelial cells, we identified acinar-ductal cells and isthmus-pit cells enriched in IPMN lesions and profiled three types of PDAC-unique ductal cells. Notably, a proinflammatory immune component was distinctly observed in IPMNs, comprising CD4+ T cells, CD8+ T cells, and B cells, whereas M2 macrophages were significantly accumulated in PDAC. Through the analysis of cellular communication, the osteopontin gene (SPP1)-CD44 pathway between macrophages and epithelial cells were particularly strengthened in the PDAC group. Further prognostic analysis revealed that SPP1 is a biomarker of IPMN carcinogenesis for surveillance. This study demonstrates the ability to perform high-resolution profiling of single cellular transcriptomes during the progression of high-grade IPMNs to cancer. Notably, single-cell analysis provides an unparalleled insight into both epithelial and microenvironmental heterogeneity associated with early cancer pathogenesis and provides practical markers for surveillance and targets for cancer interception.
Collapse
Affiliation(s)
- Jin Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, 310003, China
| | - Tao Wei
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, 310003, China
| | - Ke Ma
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, 310003, China
| | - Jian Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, 310003, China
| | - Jianfeng Lu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, 310003, China
| | - Jianhui Zhao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, 310003, China
| | - Jinyan Huang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, 310003, China
| | - Tao Zeng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, 310003, China
| | - Yali Xie
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, 310003, China
| | - Yingjiqiong Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, 310003, China
| | - Xuejie Li
- Department of Pathology, The First Affiliated Hospital of Medical School of Zhejiang University, China
| | - Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, 310003, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, 310003, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310014, China.
| |
Collapse
|
15
|
Chauhan N, Patro BS. Emerging roles of lysosome homeostasis (repair, lysophagy and biogenesis) in cancer progression and therapy. Cancer Lett 2024; 584:216599. [PMID: 38135207 DOI: 10.1016/j.canlet.2023.216599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/30/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
In the era of personalized therapy, precise targeting of subcellular organelles holds great promise for cancer modality. Taking into consideration that lysosome represents the intersection site in numerous endosomal trafficking pathways and their modulation in cancer growth, progression, and resistance against cancer therapies, the lysosome is proposed as an attractive therapeutic target for cancer treatment. Based on the recent advances, the current review provides a comprehensive understanding of molecular mechanisms of lysosome homeostasis under 3R responses: Repair, Removal (lysophagy) and Regeneration of lysosomes. These arms of 3R responses have distinct role in lysosome homeostasis although their interdependency along with switching between the pathways still remain elusive. Recent advances underpinning the crucial role of (1) ESCRT complex dependent/independent repair of lysosome, (2) various Galectins-based sensing and ubiquitination in lysophagy and (3) TFEB/TFE proteins in lysosome regeneration/biogenesis of lysosome are outlined. Later, we also emphasised how these recent advancements may aid in development of phytochemicals and pharmacological agents for targeting lysosomes for efficient cancer therapy. Some of these lysosome targeting agents, which are now at various stages of clinical trials and patents, are also highlighted in this review.
Collapse
Affiliation(s)
- Nitish Chauhan
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, Maharashtra, 400094, India
| | - Birija Sankar Patro
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, Maharashtra, 400094, India.
| |
Collapse
|
16
|
Tong D, Wang X, Liu L, Wen T, Chen Q, Huang C. LAMC2 promotes EGFR cell membrane localization and acts as a novel biomarker for tyrosine kinase inhibitors (TKIs) sensitivity in lung cancer. Cancer Gene Ther 2023; 30:1498-1512. [PMID: 37542131 PMCID: PMC10645587 DOI: 10.1038/s41417-023-00654-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/11/2023] [Accepted: 07/27/2023] [Indexed: 08/06/2023]
Abstract
The epidermal growth factor receptor (EGFR) is one of the first and most prominent driver genes known to promote malignant lung cancer. Investigating regulatory mechanisms beyond ligand-receptor binding, phosphorylation, and receptor kinase activation as means of EGFR signaling activation is important for improving EGFR-targeted therapy. Here, we report that Laminin-5γ-2 (LAMC2) retained high oncogenic capacity in lung cancer, silencing LAMC2 inhibited EGFR-induced cell proliferation and tumor growth in vivo. Deletion mutation experiments showed that both the EGF-Lam and LamB regions of LAMC2 are necessary for EGFR receptor binding, and that LAMC2 and EGFR were found to co-localize at the endoplasmic reticulum (ER) membrane. In addition, LAMC2 overexpression enhanced EGFR membrane deposition and promoted EGFR transport from the ER. Moreover, LAMC2 was necessary for preventing EGFR protein degradation via ubiquitination. Lastly, our study showed that high LAMC2 expression is positively associated with response to gefitinib (EGFR tyrosine kinase inhibitor) treatment. Overall, our study revealed a new regulatory mechanism of LAMC2 in promoting EGFR protein expression and stability by facilitating ER transport and preventing protein degradation via ubiquitination. Moreover, LAMC2 may serve as a stratifying biomarker for patients suitable for EGFR-TKI treatment.
Collapse
Affiliation(s)
- Dongdong Tong
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Xiaofei Wang
- Biomedical Experimental Center of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Liying Liu
- Biomedical Experimental Center of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Ting Wen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - QiaoYi Chen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.
| | - Chen Huang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.
- Biomedical Experimental Center of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, 710061, China.
| |
Collapse
|
17
|
Panwar V, Singh A, Bhatt M, Tonk RK, Azizov S, Raza AS, Sengupta S, Kumar D, Garg M. Multifaceted role of mTOR (mammalian target of rapamycin) signaling pathway in human health and disease. Signal Transduct Target Ther 2023; 8:375. [PMID: 37779156 PMCID: PMC10543444 DOI: 10.1038/s41392-023-01608-z] [Citation(s) in RCA: 185] [Impact Index Per Article: 92.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/25/2023] [Accepted: 08/14/2023] [Indexed: 10/03/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) is a protein kinase that controls cellular metabolism, catabolism, immune responses, autophagy, survival, proliferation, and migration, to maintain cellular homeostasis. The mTOR signaling cascade consists of two distinct multi-subunit complexes named mTOR complex 1/2 (mTORC1/2). mTOR catalyzes the phosphorylation of several critical proteins like AKT, protein kinase C, insulin growth factor receptor (IGF-1R), 4E binding protein 1 (4E-BP1), ribosomal protein S6 kinase (S6K), transcription factor EB (TFEB), sterol-responsive element-binding proteins (SREBPs), Lipin-1, and Unc-51-like autophagy-activating kinases. mTOR signaling plays a central role in regulating translation, lipid synthesis, nucleotide synthesis, biogenesis of lysosomes, nutrient sensing, and growth factor signaling. The emerging pieces of evidence have revealed that the constitutive activation of the mTOR pathway due to mutations/amplification/deletion in either mTOR and its complexes (mTORC1 and mTORC2) or upstream targets is responsible for aging, neurological diseases, and human malignancies. Here, we provide the detailed structure of mTOR, its complexes, and the comprehensive role of upstream regulators, as well as downstream effectors of mTOR signaling cascades in the metabolism, biogenesis of biomolecules, immune responses, and autophagy. Additionally, we summarize the potential of long noncoding RNAs (lncRNAs) as an important modulator of mTOR signaling. Importantly, we have highlighted the potential of mTOR signaling in aging, neurological disorders, human cancers, cancer stem cells, and drug resistance. Here, we discuss the developments for the therapeutic targeting of mTOR signaling with improved anticancer efficacy for the benefit of cancer patients in clinics.
Collapse
Affiliation(s)
- Vivek Panwar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Aishwarya Singh
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, 201313, India
| | - Manini Bhatt
- Department of Biomedical Engineering, Indian Institute of Technology, Ropar, Punjab, 140001, India
| | - Rajiv K Tonk
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, 110017, India
| | - Shavkatjon Azizov
- Laboratory of Biological Active Macromolecular Systems, Institute of Bioorganic Chemistry, Academy of Sciences Uzbekistan, Tashkent, 100125, Uzbekistan
- Faculty of Life Sciences, Pharmaceutical Technical University, 100084, Tashkent, Uzbekistan
| | - Agha Saquib Raza
- Rajive Gandhi Super Speciality Hospital, Tahirpur, New Delhi, 110093, India
| | - Shinjinee Sengupta
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, 201313, India.
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, 201313, India.
| |
Collapse
|
18
|
Iliesiu A, Toma RV, Ciongariu AM, Costea R, Zarnescu N, Bîlteanu L. A pancreatic adenocarcinoma mimicking hepatoid carcinoma of uncertain histogenesis: A case report and literature review. Oncol Lett 2023; 26:442. [PMID: 37720666 PMCID: PMC10502951 DOI: 10.3892/ol.2023.14029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 06/19/2023] [Indexed: 09/19/2023] Open
Abstract
In rare cases, metastatic adenocarcinomas of different origin may exhibit the features of hepatoid carcinoma (HC), a rare malignant epithelial tumor, most commonly occurring in the ovaries and stomach, as well as in the pancreas and biliary ducts. A case of a 72-year-old female patient who developed a highly aggressive, poorly differentiated pancreatic ductal adenocarcinoma with peritoneal carcinomatosis, demonstrating hepatoid differentiation upon conventional hematoxylin and eosin staining is reported in the present study. The patient presented with severe abdominal pain, and the radiological investigations performed revealed ovarian and hepatic tumor masses and peritoneal lesions, which were surgically removed. The gross examination of the peritoneum and omentum revealed multiple solid, firm, grey-white nodules, diffusely infiltrating the adipose tissue. The microscopic examination revealed a malignant epithelial proliferation, composed of polygonal cells with abundant eosinophilic cytoplasm and irregular, pleomorphic nuclei. Certain cells presented with intracytoplasmic mucus inclusions, raising suspicion of a HC with an uncertain histogenesis. Immunohistochemical staining was performed, and the tumor cells were found to be positive for cytokeratin (CK)7, CK18 and mucin 5AC, whereas negative staining for CK20, caudal-type homeobox transcription factor 2, α-fetoprotein, paired box gene 8, GATA-binding protein 3 and Wilms tumor 1 were documented. Thus, the diagnosis of metastatic pancreatic adenocarcinoma was established. The main aim of the present study was to provide further knowledge concerning poorly differentiated metastatic adenocarcinoma resembling HC, emphasizing the histopathological and immunohistochemical features of these malignant lesions and raising awareness of the diagnostic difficulties that may arise, as well as the importance of the use immunohistochemistry in differentiating carcinomas of uncertain histogenesis.
Collapse
Affiliation(s)
- Andreea Iliesiu
- Department of Pathology, University Emergency Hospital of Bucharest, Bucharest 014461, Romania
- Faculty of General Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest 050474, Romania
| | - Radu-Valeriu Toma
- Faculty of General Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest 050474, Romania
- Oncological Institute ‘Alexandru Trestioreanu’, Bucharest 022328, Romania
| | - Ana Maria Ciongariu
- Department of Pathology, University Emergency Hospital of Bucharest, Bucharest 014461, Romania
- Faculty of General Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest 050474, Romania
| | - Radu Costea
- Faculty of General Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest 050474, Romania
- Second Department of Surgery, University Emergency Hospital of Bucharest, Bucharest 050098, Romania
| | - Narcis Zarnescu
- Faculty of General Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest 050474, Romania
- Second Department of Surgery, University Emergency Hospital of Bucharest, Bucharest 050098, Romania
| | - Liviu Bîlteanu
- Oncological Institute ‘Alexandru Trestioreanu’, Bucharest 022328, Romania
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine, Bucharest 050097, Romania
| |
Collapse
|
19
|
Okura GC, Bharadwaj AG, Waisman DM. Recent Advances in Molecular and Cellular Functions of S100A10. Biomolecules 2023; 13:1450. [PMID: 37892132 PMCID: PMC10604489 DOI: 10.3390/biom13101450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
S100A10 (p11, annexin II light chain, calpactin light chain) is a multifunctional protein with a wide range of physiological activity. S100A10 is unique among the S100 family members of proteins since it does not bind to Ca2+, despite its sequence and structural similarity. This review focuses on studies highlighting the structure, regulation, and binding partners of S100A10. The binding partners of S100A10 were collated and summarized.
Collapse
Affiliation(s)
- Gillian C. Okura
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (G.C.O.); (A.G.B.)
| | - Alamelu G. Bharadwaj
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (G.C.O.); (A.G.B.)
- Departments of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 1X5, Canada
| | - David M. Waisman
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (G.C.O.); (A.G.B.)
- Departments of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 1X5, Canada
| |
Collapse
|
20
|
Sari B, Gulbey O, Hamill KJ. Laminin 332 expression levels predict clinical outcomes and chemotherapy response in patients with pancreatic adenocarcinoma. Front Cell Dev Biol 2023; 11:1242706. [PMID: 37779898 PMCID: PMC10540629 DOI: 10.3389/fcell.2023.1242706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
Poor outcomes and chemotherapy resistance for patients with pancreatic adenocarcinoma (PAAD) are a challenge worldwide, and new or improved prognostic biomarkers are urgently required. Individual laminin family members have been established as cancer-associated markers, predicting patient outcomes in many cancer types, including PAAD. Here, we used multiple modalities including RNAseq and gene chip, and genomic and proteomic data to examine the relationships of all laminin genes in PAAD with clinical outcomes. These analyses identified that LAMA3, LAMB3, and LAMC2 expression levels are increased at the mRNA and protein levels in PAAD tumours with evidence of co-regulation. Increased expression of all three genes was associated with decreased promoter methylation status, TP53 mutations, and altered receptor tyrosine kinase (RTK) pathways. Clinically, high LAMA3, LAMB3, and LAMC2 transcript abundance was each related to an advanced histological grade. Moreover, high expression of these genes individually predicted poor patient survival, while a signature of combined high expression of LAMA3, LAMB3, and LAMC2 was a stronger predictor of patient outcomes than each gene alone. Interestingly, cell lines with high expression of LM332 chains were not sensitive to the commonly used PAAD chemotherapy drugs paclitaxel and gemcitabine; however, increased sensitivity was evident for erlotinib, afatinib, gefitinib, and cetuximab epidermal growth factor (EGFR) RTK inhibitors. To explore possible mechanisms, we investigated co-expressed genes, identifying eight hub genes, namely, GJB3, ITGB6, SERPINB5, GPRC5A, PLEK2, TMPRSS4, P2RY2, and TRIM29, which are co-expressed with all three of LAMA3, LAMB3, and LAMC2. Of these, only SERPINB5 provided a stronger predictive value than the laminin-encoding genes. Together, these multiple integrated analyses suggest that the combined expression of LM332 is a useful prognostic biomarker for PAAD and could help patient stratification and therapeutic selection.
Collapse
Affiliation(s)
- Bilge Sari
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Ozcan Gulbey
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Kevin J. Hamill
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
21
|
Rekowska AK, Obuchowska K, Bartosik M, Kimber-Trojnar Ż, Słodzińska M, Wierzchowska-Opoka M, Leszczyńska-Gorzelak B. Biomolecules Involved in Both Metastasis and Placenta Accreta Spectrum-Does the Common Pathophysiological Pathway Exist? Cancers (Basel) 2023; 15:cancers15092618. [PMID: 37174083 PMCID: PMC10177254 DOI: 10.3390/cancers15092618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
The process of epithelial-to-mesenchymal transition (EMT) is crucial in the implantation of the blastocyst and subsequent placental development. The trophoblast, consisting of villous and extravillous zones, plays different roles in these processes. Pathological states, such as placenta accreta spectrum (PAS), can arise due to dysfunction of the trophoblast or defective decidualization, leading to maternal and fetal morbidity and mortality. Studies have drawn parallels between placentation and carcinogenesis, with both processes involving EMT and the establishment of a microenvironment that facilitates invasion and infiltration. This article presents a review of molecular biomarkers involved in both the microenvironment of tumors and placental cells, including placental growth factor (PlGF), vascular endothelial growth factor (VEGF), E-cadherin (CDH1), laminin γ2 (LAMC2), the zinc finger E-box-binding homeobox (ZEB) proteins, αVβ3 integrin, transforming growth factor β (TGF-β), β-catenin, cofilin-1 (CFL-1), and interleukin-35 (IL-35). Understanding the similarities and differences in these processes may provide insights into the development of therapeutic options for both PAS and metastatic cancer.
Collapse
Affiliation(s)
- Anna K Rekowska
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Karolina Obuchowska
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Magdalena Bartosik
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Żaneta Kimber-Trojnar
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Magdalena Słodzińska
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland
| | | | | |
Collapse
|
22
|
Yang L, Su J, Wang W, Zhou F. The efficacy and safety of Nab-paclitaxel plus gemcitabine versus mFOLFIRINOX in the first-line treatment of metastatic pancreatic cancer: a retrospective study. World J Surg Oncol 2023; 21:19. [PMID: 36691032 PMCID: PMC9869579 DOI: 10.1186/s12957-023-02896-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/10/2023] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Nab-paclitaxel plus gemcitabine (AG) and modified FOLFIRINOX (FFX) are two systemic therapies that have been widely used as standard first-line chemotherapy regimens in metastatic pancreatic cancer. However, since there is no clinical trial to directly compare the efficacy and safety of the two regimens, it is not clear which regimen is more effective. In this study, we aim to examine and compare the efficacy and safety of AG and FFX as first-line chemotherapy regimens in Chinese patients with metastatic pancreatic cancer in a real-world setting. METHODS We retrospectively evaluated the outcomes of 44 patients who were diagnosed with metastatic pancreatic cancer and were treated with either AG (n = 24) or FFX (n = 20) as first-line chemotherapy between March 2017 and February 2022 at Zhongnan Hospital of Wuhan University. Prognostic nutrition index (PNI) was calculated based on the serum albumin level and peripheral lymphocyte count. According to the optimal cutoff value of PNI, patients were divided into low PNI group (PNI < 43.70) and high PNI group (PNI ≥ 43.70). RESULTS Of 44 patients in this study, 24 were treated with AG, and 20 were treated with FFX as first-line chemotherapy. No significant differences in baseline characteristics were found between the two groups. The objective response rate (ORR) was 16.7% in the AG group and 20.0% in the FFX group. The disease control rate (DCR) was 70.8% in the AG group and 60.0% in the FFX group. There was no significant difference in PFS or OS between the AG group and the FFX group. The median progression-free survival (PFS) was 4.67 months (95% confidence interval [CI], 2.91-6.42) in the AG group and 3.33 months (95% CI, 1.87-4.79, p = 0.106) in the FFX group. The median overall survival (OS) was 9.00 months (95% CI, 7.86-12.19) in the AG group and 10.00 months (95% CI, 7.70-12.27, p = 0.608) in the FFX group. The second-line treatment rate was 62.5% in the AG group and 55.0% in the FFX group. Immune checkpoint inhibitors (ICIs) based regimens are common second-line treatment options whether in AG or FFX group. Significantly more grade 3-4 peripheral neuropathy occurred in the AG than FFX groups (4 (20.8%) vs 0 (0.0%), p = 0.030*). The patients in the PNI (Prognostic nutrition index) ≥ 43.7 group had a significant longer median OS (PNI ≥ 43.7 vs PNI < 43.7: 10.33 vs 8.00 months, p = 0.019). CONCLUSION AG and FFX showed comparable efficacy outcomes in patients with metastatic pancreatic cancer. Pancreatic cancer patients receiving first-line chemotherapy with good nutritional status are likely to have a better prognosis.
Collapse
Affiliation(s)
- Lei Yang
- Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China.
- Department of Radiation Oncology & Medical Oncology, Zhongnan Hospital, Wuhan University, No 169 Donghu Road, Wuchang District, Hubei, Wuhan 430071, China.
| | - Jing Su
- Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
- Department of Radiation Oncology & Medical Oncology, Zhongnan Hospital, Wuhan University, No 169 Donghu Road, Wuchang District, Hubei, Wuhan 430071, China
| | - Wenbo Wang
- Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
- Department of Radiation Oncology & Medical Oncology, Zhongnan Hospital, Wuhan University, No 169 Donghu Road, Wuchang District, Hubei, Wuhan 430071, China
| | - Fuxiang Zhou
- Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China.
- Department of Radiation Oncology & Medical Oncology, Zhongnan Hospital, Wuhan University, No 169 Donghu Road, Wuchang District, Hubei, Wuhan 430071, China.
| |
Collapse
|
23
|
Paskeh MDA, Ghadyani F, Hashemi M, Abbaspour A, Zabolian A, Javanshir S, Razzazan M, Mirzaei S, Entezari M, Goharrizi MASB, Salimimoghadam S, Aref AR, Kalbasi A, Rajabi R, Rashidi M, Taheriazam A, Sethi G. Biological impact and therapeutic perspective of targeting PI3K/Akt signaling in hepatocellular carcinoma: Promises and Challenges. Pharmacol Res 2023; 187:106553. [PMID: 36400343 DOI: 10.1016/j.phrs.2022.106553] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
Cancer progression results from activation of various signaling networks. Among these, PI3K/Akt signaling contributes to proliferation, invasion, and inhibition of apoptosis. Hepatocellular carcinoma (HCC) is a primary liver cancer with high incidence rate, especially in regions with high prevalence of viral hepatitis infection. Autoimmune disorders, diabetes mellitus, obesity, alcohol consumption, and inflammation can also lead to initiation and development of HCC. The treatment of HCC depends on the identification of oncogenic factors that lead tumor cells to develop resistance to therapy. The present review article focuses on the role of PI3K/Akt signaling in HCC progression. Activation of PI3K/Akt signaling promotes glucose uptake, favors glycolysis and increases tumor cell proliferation. It inhibits both apoptosis and autophagy while promoting HCC cell survival. PI3K/Akt stimulates epithelial-to-mesenchymal transition (EMT) and increases matrix-metalloproteinase (MMP) expression during HCC metastasis. In addition to increasing colony formation capacity and facilitating the spread of tumor cells, PI3K/Akt signaling stimulates angiogenesis. Therefore, silencing PI3K/Akt signaling prevents aggressive HCC cell behavior. Activation of PI3K/Akt signaling can confer drug resistance, particularly to sorafenib, and decreases the radio-sensitivity of HCC cells. Anti-cancer agents, like phytochemicals and small molecules can suppress PI3K/Akt signaling by limiting HCC progression. Being upregulated in tumor tissues and clinical samples, PI3K/Akt can also be used as a biomarker to predict patients' response to therapy.
Collapse
Affiliation(s)
- Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Ghadyani
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Alireza Abbaspour
- Cellular and Molecular Research Center,Qazvin University of Medical Sciences, Qazvin, Iran
| | - Amirhossein Zabolian
- Resident of department of Orthopedics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Salar Javanshir
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrnaz Razzazan
- Medical Student, Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Translational Sciences, Xsphera Biosciences Inc. 6, Tide Street, Boston, MA 02210, USA
| | - Alireza Kalbasi
- Department of Pharmacy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.
| |
Collapse
|
24
|
S100A10 Promotes Pancreatic Ductal Adenocarcinoma Cells Proliferation, Migration and Adhesion through JNK/LAMB3-LAMC2 Axis. Cancers (Basel) 2022; 15:cancers15010202. [PMID: 36612197 PMCID: PMC9818352 DOI: 10.3390/cancers15010202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive tumors, characterized by diagnosis at an advanced stage and a poor prognosis. As a member of the S100 protein family, S100A10 regulates multiple biological functions related to cancer progression and metastasis. However, the role of S100A10 in PDAC is still not completely elucidated. In this study, we reported that S100A10 was significantly up-regulated in PDAC tissue and associated with a poor prognosis by integrated bioinformatic analysis and human PDAC tissue samples. In vitro, down-regulation of S100A10 reduced the proliferation, migration, and adhesion of PDAC cell lines, whereas up-regulation of S100A10 showed the opposite effect. Furthermore, LAMB3 was proved to be activated by S100A10 using RNA-sequencing and western blotting. The effect of LAMB3 on the proliferation, migration, and adhesion of PDAC cells was similar to that of S100A10. Up-regulation or down-regulation of LAMB3 could reverse the corresponding effect of S100A10. Moreover, we validated S100A10 activates LAMB3 through the JNK pathway, and LAMB3 was further proved to interact with LAMC2. Mice-bearing orthotopic pancreatic tumors showed that S100A10 knocked-down PANC-1 cells had a smaller tumor size than the control group. In conclusion, S100A10 promotes PDAC cells proliferation, migration, and adhesion through JNK/LAMB3-LAMC2 axis.
Collapse
|
25
|
Reprogramming of glycolysis by chemical carcinogens during tumor development. Semin Cancer Biol 2022; 87:127-136. [PMID: 36265806 DOI: 10.1016/j.semcancer.2022.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
Abstract
Indiscriminate usage and mismanagement of chemicals in the agricultural and industrial sectors have contaminated different environmental compartments. Exposure to these persistent and hazardous pollutants like heavy metals, endocrine disruptors, aromatic hydrocarbons, and pesticides can result in various health adversities, including cancer. Chemical carcinogens follow a similar pattern of carcinogenesis, like oxidative stress, chromosomal aberration, DNA double-strand break, mismatch repair, and misregulation of oncogenic and/or tumor suppressors. Out of several cancer-associated endpoints, cellular metabolic homeostasis is the commonest to be deregulated upon chemical exposure. Chemical carcinogens hamper glycolytic reprogramming to fuel the malignant transformation of the cells and/or promote cancer progression. Several regulators like Akt, ERK, Ras, c-Myc, HIF-1α, and p53 regulate glycolysis in chemical-induced carcinogenesis. However, the deregulation of the anabolic biochemistry of glucose during chemical-induced carcinogenesis remains to be uncovered. This review comprehensively covers the environmental chemical-induced glycolytic shift during carcinogenesis and its mechanism. The focus is also to fill the major gaps associated with understanding the fairy tale between environmental carcinogens and metabolic reprogramming. Although evidence from studies regarding glycolytic reprogramming in chemical carcinogenesis provides valuable insights into cancer therapy, exposure to a mixture of toxicants and their mechanism of inducing carcinogenesis still needs to be studied.
Collapse
|
26
|
Abstract
OBJECTIVES Accumulating evidence suggested that the laminin γ2 (LAMC2) expression level was upregulated in various cancers. However, the potential prognostic value of LAMC2 in cancers remains unclear. We conducted a meta-analysis to clarify the association of LAMC2 expression with prognosis. DESIGN We searched Embase, Web of Science and PubMed (up to 25 November 2021) to collect all eligible studies, and meta-analysis was performed to interpret the association of LAMC2 expression with clinicopathological parameters, overall survival (OS), disease-specific survival (DSS) and progression-free survival (PFS). ELIGIBILITY CRITERIA FOR INCLUDING STUDIES We included studies that investigate the relationship between LAMC2 and prognosis of cancers, patients were divided into two groups, and associations of LAMC2 expression with clinicopathological features were described. RESULTS Seven studies were finally included. We found that increased LAMC2 expression was significantly associated with lymph node metastasis (log OR 0.88, 95% CI 0.38 to 1.38, p<0.001), tumour-node-metastasis stages (log OR: 0.95, 95% CI 0.39 to 1.50, p<0.001) and tumour status (log OR 1.26, 95% CI 0.84 to 1.68, p<0.001), but not with age (log OR -0.05, 95% CI -0.37 to 0.27, p=0.75) or gender (log OR -0.07, 95% CI -0.52 to 0.38, p=0.75). In addition, higher LAMC2 expression was found to be significantly associated with OS/PFS/DSS (HR 1.85, 95% CI 1.31 to 2.40, p<0.001). A similar result was found in The Cancer Genome Atlas database. High LAMC2 expression was significantly associated with OS in lung adenocarcinoma, mesothelioma, skin cutaneous melanoma, neck squamous cell carcinoma and brain lower grade glioma. CONCLUSION Our results suggested that higher LAMC2 expression was correlated with worse survival, lymph node metastasis, tumour-node-metastasis stages and tumour status. This study was subject to inherent limitations, but the results presented here provide insights regarding the potential use of LAMC2 as a biomarker for human cancer. STUDY REGISTRATION researchregistry.com (researchregistry1319).
Collapse
Affiliation(s)
- Tao Fu
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, Chongqing, China
- Chongqing Key Laboratory of Human Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, Chongqing, China
| | - Jun-Xia Liu
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, Chongqing, China
- Chongqing Key Laboratory of Human Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, Chongqing, China
| | - Juan Xie
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, Chongqing, China
- Chongqing Key Laboratory of Human Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, Chongqing, China
| | - Zhen Gao
- College of Animal Veterinary Medicine, Northwest A & F University, Yangling, China
| | - Zhenshan Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
27
|
Overexpression of Laminin 5γ2 Chain Correlates with Tumor Cell Proliferation, Invasion, and Poor Prognosis in Laryngeal Squamous Cell Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:7248064. [PMID: 36284634 PMCID: PMC9588344 DOI: 10.1155/2022/7248064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/24/2022] [Indexed: 11/17/2022]
Abstract
Objective Laryngeal squamous cell carcinoma (LSCC) is a common malignant tumor. Laminin 5γ2 chain (LAMC2) was reported to be associated with tumorigenesis. This study explored the role of LAMC2 on LSCC progression by regulating the integrinβ1/FAK/Src/AKT pathway. Methods The level of LAMC2 in 46 LSCC patients was detected by qRT-PCR and western blot. Then the relationship between LAMC2 expression and LSCC malignancy as well as prognosis was analyzed, and the effect of LAMC2 expression on LSCC patient survival was also analyzed using the Kaplan–Meier survival curves. Afterwards, the LSCC cells were transfected with LAMC2 overexpression and knockdown vectors, the effect of LAMC2 on LSCC cell viability, proliferation ability, cell cycle, cell migration, and invasion were detected by CCK-8, colony formation, flow cytometry, wound healing, and Transwell assays. The expression of EMT-related biomarkers and integrin β1/FAK/Src/AKT signaling-related proteins was detected by western blot. Moreover, the effect of LAMC2 on LSCC tumor growth was evaluated by in vivo xenograft experiments and western blot. Results LAMC2 was expressed at high level in LSCC tissues and associated with poor prognosis. LAMC2 overexpression increased TU177 cell viability, proliferation ability, promoted cell cycle, cell migration, and invasion capacity. The expression of N-cadherin, vimentin, and integrinβ1/FAK/Src/AKT related proteins was increased, while the expression of E-cadherin protein was decreased. When the LAMC2 knockdown in AMC-HN-8 cells had opposite effects. Furthermore, shLAMC2 decreased tumor volume and the expression of LAMC2, Ki-67 and integrinβ1, but increased the expression of E-cadherin in LSCC tumor-bearing mice. Conclusion The findings suggested that LAMC2 was overexpressed in LSCC and correlated with poor prognosis. LAMC2 knockdown inhibited LSCC progression by regulating the integrinβ1/FAK/Src/AKT signaling pathway. Therefore, LAMC2 could be a target for LSCC therapy.
Collapse
|
28
|
Berndt A, Gaßler N, Franz M. Invasion-Associated Reorganization of Laminin 332 in Oral Squamous Cell Carcinomas: The Role of the Laminin γ2 Chain in Tumor Biology, Diagnosis, and Therapy. Cancers (Basel) 2022; 14:cancers14194903. [PMID: 36230826 PMCID: PMC9564360 DOI: 10.3390/cancers14194903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary The destructive growth of carcinomas is associated with crossing the border between the epithelial and the connective tissue parts of an organ. One component of this borderline, the basement membrane, is the heterotrimeric laminin 332, which mediates the adhesion of basal epithelial cells. This protein, in particular its gamma 2 chain, is fundamentally reorganized during tumor cell invasion. Specific deposition patterns of laminin 332 are also present in oral squamous cell carcinomas and have been shown to be of high diagnostic and predictive value. Furthermore, laminin 332 restructuring is associated with important tumor biological processes, e.g., stromal activation, the development of a motile phenotype, and tumor spreading. In this review, current knowledge in the field is summarized and the recommendation to consider laminin 332 as a promising grading and monitoring parameter and as a potential therapeutic target is discussed. Abstract Invasion of the connective tissue by carcinoma cells is accompanied by disintegration and reorganization of the hemidesmosomes, which connect the basement membrane to the basal epithelial cells. In terms of mediating the basement membrane, i.e., basal cell interactions, the heterotrimeric laminin 332 is the most important bridging molecule. Due to this distinct function, laminin 332, especially its gamma 2 chain, came into the focus of cancer research. Specific de novo synthesis and deposition patterns of laminin 332 are evident upon development and progression of oral squamous cell carcinomas (OSCCs). Loss from the basement membrane, cytoplasmic accumulation, and extracellular deposition are associated with crucial processes such as stromal activation and immune response, epithelial to mesenchymal transition, and tumor cell budding. In networks with components of the tumor microenvironment, altered expression of laminin 332 chains, proteolytic processing, and interaction with integrin receptors seem to promote cancer cell migration. Indeed, reorganization patterns are shown to have a high diagnostic and prognostic value. Here, we summarize the current knowledge on laminin 332 reorganization in OSCCs with special focus on its gamma 2 chain and provide, based on the current literature, evidence on its promising role as a grading and monitoring parameter and as a potential therapeutic target.
Collapse
Affiliation(s)
- Alexander Berndt
- Section Pathology, Institute of Legal Medicine, University Hospital Jena, 07747 Jena, Germany
- Correspondence: ; Tel.: +49-3641-939-70-61
| | - Nikolaus Gaßler
- Section Pathology, Institute of Legal Medicine, University Hospital Jena, 07747 Jena, Germany
| | - Marcus Franz
- Department of Internal Medicine I, University Hospital Jena, 07747 Jena, Germany
| |
Collapse
|
29
|
Okuno K, Xu C, Pascual-Sabater S, Tokunaga M, Han H, Fillat C, Kinugasa Y, Goel A. Berberine Overcomes Gemcitabine-Associated Chemoresistance through Regulation of Rap1/PI3K-Akt Signaling in Pancreatic Ductal Adenocarcinoma. Pharmaceuticals (Basel) 2022; 15:1199. [PMID: 36297310 PMCID: PMC9611392 DOI: 10.3390/ph15101199] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Gemcitabine (Gem)-based chemotherapy is one of the first-line treatments for pancreatic ductal adenocarcinoma (PDAC). However, its clinical effect is limited due to development of chemoresistance. Various naturally occurring compounds, including Berberine (BBR), provide an anti-cancer efficacy with time-tested safety, individually and in combination with chemotherapeutic drugs. Accordingly, we hypothesized that BBR might enhance the chemosensitivity to Gem in PDAC. In this study, cell culture studies using MIA PaCa-2 and BxPC-3 cells, followed by analysis in patient-derived organoids were performed to evaluate the anti-cancer effects of BBR in PDAC. Considering that cancer is a significant manifestation of increased chronic inflammatory stress, systems biology approaches are prudent for the identification of molecular pathways and networks responsible for phytochemical-induced anti-cancer activity, we used these approaches for BBR-mediated chemosensitization to Gem. Firstly, Gem-resistant (Gem-R) PDAC cells were established, and the combination of BBR and Gem revealed superior anti-cancer efficacy in Gem-R cells. Furthermore, the combination treatment induced cell cycle arrest and apoptosis in Gem-R PDAC cells. Transcriptomic profiling investigated the Rap1 and PI3K-Akt signaling pathway as a key regulator of Gem-resistance and was a key mediator for BBR-mediated chemosensitization in PDAC cells. All cell culture-based findings were successfully validated in patient-derived organoids. In conclusion, we demonstrate that BBR-mediated reversal of chemoresistance to Gem manifests through Rap1/PI3K-Akt signaling in PDAC.
Collapse
Affiliation(s)
- Keisuke Okuno
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA 91016, USA
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Caiming Xu
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA 91016, USA
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116004, China
| | - Silvia Pascual-Sabater
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Masanori Tokunaga
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Haiyong Han
- Molecular Medicine Division, The Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Cristina Fillat
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Yusuke Kinugasa
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA 91016, USA
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
30
|
Kanojia D, Kirtonia A, Srujana NSV, Jeevanandan SP, Shyamsunder P, Sampath SS, Dakle P, Mayakonda A, Kaur H, Yanyi J, Koeffler HP, Garg M. Transcriptome analysis identifies TODL as a novel lncRNA associated with proliferation, differentiation, and tumorigenesis in liposarcoma through FOXM1 Running Title: TODL lncRNA as a potential therapeutic target for liposarcoma. Pharmacol Res 2022; 185:106462. [PMID: 36167276 DOI: 10.1016/j.phrs.2022.106462] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 11/15/2022]
Abstract
Liposarcoma, the most common soft tissue sarcoma, is a group of fat cell mesenchymal tumors with different histological subtypes. The dysregulation of long non-coding RNAs (lncRNAs) has been observed in human cancers including a few studies in sarcoma. However, the global transcriptome analysis and potential role of lncRNAs remain unexplored in liposarcoma. The present investigation uncovers the transcriptomic profile of liposarcoma by RNA sequencing to gain insight into the global transcriptional changes in liposarcoma. Our RNA sequencing analysis has identified that many oncogenic lncRNAs are differentially expressed in different subtypes of liposarcoma including MALAT1, PVT1, SNHG15, LINC00152, and MIR210HG. Importantly, we identified a highly overexpressed, unannotated, and novel lncRNA in dedifferentiated liposarcomas. We have named it TODL, transcript overexpressed in dedifferentiated liposarcoma. TODL lncRNA displayed significantly higher expression in dedifferentiated liposarcoma cell lines and patient samples. Interestingly, functional studies revealed that TODL lncRNA has an oncogenic function in liposarcoma cells by regulating proliferation, cell cycle, apoptosis, differentiation, and tumorigenesis in the murine model. Silencing of TODL lncRNA highlighted the enrichment of several key oncogenic signaling pathways including cell cycle, transcriptional misregulation, FOXM1 network, p53 signaling, PLK1 signaling, FoxO, and signaling Aurora signaling pathways. RNA pull-down assay revealed the binding of TODL lncRNA with FOXM1, an oncogenic transcription factor, and the key regulator of the cell cycle. Silencing of TODL lncRNA also induces adipogenesis in dedifferentiated liposarcomas. Altogether, our finding indicates that TODL could be utilized as a novel, specific diagnostic biomarker, and a pharmacological target for therapeutic development in controlling aggressive and metastatic dedifferentiated liposarcomas.
Collapse
Affiliation(s)
- Deepika Kanojia
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore.
| | - Anuradha Kirtonia
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida, Uttar Pradesh, 201313, India
| | | | | | - Pavithra Shyamsunder
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
| | | | - Pushkar Dakle
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
| | - Anand Mayakonda
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Harvinder Kaur
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
| | - Jiang Yanyi
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
| | - H Phillip Koeffler
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Division of Hematology/Oncology, Cedars-Sinai Medical Center, University of California, School of Medicine, Los Angeles, California, 90048, USA
| | - Manoj Garg
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida, Uttar Pradesh, 201313, India.
| |
Collapse
|
31
|
Liu Q, Ma Z, Cao Q, Zhao H, Guo Y, Liu T, Li J. Perineural invasion-associated biomarkers for tumor development. Biomed Pharmacother 2022; 155:113691. [PMID: 36095958 DOI: 10.1016/j.biopha.2022.113691] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Perineural invasion (PNI) is the process of neoplastic invasion of peripheral nerves and is considered to be the fifth mode of cancer metastasis. PNI has been detected in head and neck tumors and pancreatic, prostate, bile duct, gastric, and colorectal cancers. It leads to poor prognostic outcomes and high local recurrence rates. Despite the increasing number of studies on PNI, targeted therapeutic modalities have not been proposed. The identification of PNI-related biomarkers would facilitate the non-invasive and early diagnosis of cancers, the establishment of prognostic panels, and the development of targeted therapeutic approaches. In this review, we compile information on the molecular mediators involved in PNI-associated cancers. The expression and prognostic significance of molecular mediators and their receptors in PNI-associated cancers are analyzed, and the possible mechanisms of action of these mediators in PNI are explored, as well as the association of cells in the microenvironment where PNI occurs.
Collapse
Affiliation(s)
- Qi Liu
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130041, China
| | - Zhiming Ma
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130041, China
| | - Qian Cao
- Department of Education, The Second Hospital of Jilin University, Changchun 130041, China
| | - Hongyu Zhao
- Gastroenterology and Center of Digestive Endoscopy, The Second Hospital of Jilin University, Changchun 130041, China
| | - Yu Guo
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130041, China
| | - Tongjun Liu
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130041, China
| | - Jiannan Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130041, China.
| |
Collapse
|