1
|
Sun JQ, Sheng B, Gao S, Liu XZ, Cui Y, Peng Z, Chen XX, Ding PF, Zhuang Z, Wu LY, Hang CH, Li W. SIRT2 Promotes NLRP3-Mediated Microglia Pyroptosis and Neuroinflammation via FOXO3a Pathway After Subarachnoid Hemorrhage. J Inflamm Res 2024; 17:11679-11698. [PMID: 39741753 PMCID: PMC11687285 DOI: 10.2147/jir.s487716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/14/2024] [Indexed: 01/03/2025] Open
Abstract
Purpose This study primarily elucidating the specific mechanism of SIRT2 on neuroinflammation and microglial pyroptosis in a mouse model of SAH. Patients and Methods CSF were collected from 57 SAH patients and 11 healthy individuals. C57BL/6 mouse SAH model was established using prechiasmatic cistern blood injection and the in vitro hemoglobin (Hb) stimulation microglia model. Lentivirus was used as a vector for RNA interference technology to knock down the SIRT2 gene expression. Small interfering RNA was used to knockdown the expression of FOXO3a. The tools included measurements of brain water content, neurological scores, Western blot, PCR, ELISA, TEM, immunofluorescence, LDH assay, modified Garcia score, and balance beam tests to evaluate changes in pyroptosis and neuroinflammatory responses. Results In CSF samples from SAH patients, elevated levels of SIRT2 and GSDMD were observed, with SIRT2 demonstrating particular diagnostic value for predicting prognosis at the 3-month follow-up. SIRT2 upregulation exacerbated neurological deficits, brain edema, and blood-brain barrier disruption in mice following SAH. SIRT2 increased GSDMD, caspase-1, and IL-1β/IL-18 expression, and amplified GSDMD-positive microglia. FOXO3a was also upregulated post-SAH. siRNA-mediated SIRT2 knockdown ameliorated microglial pyroptosis after SAH. FOXO3a siRNA reduced NLRP3 inflammasome activation and microglial pyroptosis severity, along with neuroinflammation post-SAH. Conclusion In summary, SIRT2 promoted microglial pyroptosis, primarily by increasing the expression and activity of Foxo3a, thereby exacerbating neuroinflammatory damage following subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Jia-Qing Sun
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Drum Tower Hospital Clinical College, Xuzhou Medical University, Nanjing, People’s Republic of China
- Neurosurgery Institute of Nanjing University, Nanjing, People’s Republic of China
| | - Bin Sheng
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, People’s Republic of China
- Neurosurgery Institute of Nanjing University, Nanjing, People’s Republic of China
| | - Sen Gao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, People’s Republic of China
- Neurosurgery Institute of Nanjing University, Nanjing, People’s Republic of China
| | - Xun-Zhi Liu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, People’s Republic of China
- Neurosurgery Institute of Nanjing University, Nanjing, People’s Republic of China
| | - Yue Cui
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
- Neurosurgery Institute of Nanjing University, Nanjing, People’s Republic of China
| | - Zheng Peng
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, People’s Republic of China
- Neurosurgery Institute of Nanjing University, Nanjing, People’s Republic of China
| | - Xiang-Xin Chen
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, People’s Republic of China
- Neurosurgery Institute of Nanjing University, Nanjing, People’s Republic of China
| | - Peng-Fei Ding
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China
- Neurosurgery Institute of Nanjing University, Nanjing, People’s Republic of China
| | - Zong Zhuang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, People’s Republic of China
- Neurosurgery Institute of Nanjing University, Nanjing, People’s Republic of China
| | - Ling-Yun Wu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, People’s Republic of China
- Neurosurgery Institute of Nanjing University, Nanjing, People’s Republic of China
| | - Chun-Hua Hang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Drum Tower Hospital Clinical College, Xuzhou Medical University, Nanjing, People’s Republic of China
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, People’s Republic of China
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
- Neurosurgery Institute of Nanjing University, Nanjing, People’s Republic of China
| | - Wei Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, People’s Republic of China
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
- Neurosurgery Institute of Nanjing University, Nanjing, People’s Republic of China
| |
Collapse
|
2
|
Soldatov V, Venediktov A, Belykh A, Piavchenko G, Naimzada MD, Ogneva N, Kartashkina N, Bushueva O. Chaperones vs. oxidative stress in the pathobiology of ischemic stroke. Front Mol Neurosci 2024; 17:1513084. [PMID: 39723236 PMCID: PMC11668803 DOI: 10.3389/fnmol.2024.1513084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024] Open
Abstract
As many proteins prioritize functionality over constancy of structure, a proteome is the shortest stave in the Liebig's barrel of cell sustainability. In this regard, both prokaryotes and eukaryotes possess abundant machinery supporting the quality of the proteome in healthy and stressful conditions. This machinery, namely chaperones, assists in folding, refolding, and the utilization of client proteins. The functions of chaperones are especially important for brain cells, which are highly sophisticated in terms of structural and functional organization. Molecular chaperones are known to exert beneficial effects in many brain diseases including one of the most threatening and widespread brain pathologies, ischemic stroke. However, whether and how they exert the antioxidant defense in stroke remains unclear. Herein, we discuss the chaperones shown to fight oxidative stress and the mechanisms of their antioxidant action. In ischemic stroke, during intense production of free radicals, molecular chaperones preserve the proteome by interacting with oxidized proteins, regulating imbalanced mitochondrial function, and directly fighting oxidative stress. For instance, cells recruit Hsp60 and Hsp70 to provide proper folding of newly synthesized proteins-these factors are required for early ischemic response and to refold damaged polypeptides. Additionally, Hsp70 upregulates some dedicated antioxidant pathways such as FOXO3 signaling. Small HSPs decrease oxidative stress via attenuation of mitochondrial function through their involvement in the regulation of Nrf- (Hsp22), Akt and Hippo (Hsp27) signaling pathways as well as mitophagy (Hsp27, Hsp22). A similar function has also been proposed for the Sigma-1 receptor, contributing to the regulation of mitochondrial function. Some chaperones can prevent excessive formation of reactive oxygen species whereas Hsp90 is suggested to be responsible for pro-oxidant effects in ischemic stroke. Finally, heat-resistant obscure proteins (Hero) are able to shield client proteins, thus preventing their possible over oxidation.
Collapse
Affiliation(s)
- Vladislav Soldatov
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia
| | - Artem Venediktov
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Andrei Belykh
- Pathophysiology Department, Kursk State Medical University, Kursk, Russia
- Research Institute of General Pathology, Kursk State Medical University, Kursk, Russia
| | - Gennadii Piavchenko
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Mukhammad David Naimzada
- Research Institute of Experimental Medicine, Kursk State Medical University, Kursk, Russia
- Laboratory of Public Health Indicators Analysis and Health Digitalization, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Nastasya Ogneva
- Scientific Center of Biomedical Technologies, Federal Medical and Biological Agency of Russia, Moscow, Russia
| | - Natalia Kartashkina
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Olga Bushueva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, Kursk, Russia
| |
Collapse
|
3
|
Li H, Ye Z, Zheng G, Su Z. Polysaccharides targeting autophagy to alleviate metabolic syndrome. Int J Biol Macromol 2024; 283:137393. [PMID: 39521230 DOI: 10.1016/j.ijbiomac.2024.137393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/25/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Metabolic syndrome is a prevalent non-communicable disease characterized by central obesity, insulin resistance, hypertension, hyperglycemia, and hyperlipidemia. Epidemiological statistics indicate that one-third of the world's population is affected by metabolic syndrome. Unfortunately, owing to complicated pathogenesis and limited pharmacological options, the growing prevalence of metabolic syndrome threatens human health worldwide. Autophagy is an intracellular degradation mechanism that involves the degradation of unfolded or aggregated proteins and damaged cellular organelles, thereby maintaining metabolic homeostasis. Increasing evidence indicates that dysfunctional autophagy is closely associated with the development of metabolic syndrome, making it an attractive therapeutic target. Furthermore, a growing number of plant-derived polysaccharides have been shown to regulate autophagy, thereby alleviating metabolic syndrome, such as Astragalus polysaccharides, Laminaria japonica polysaccharides, Ganoderma lucidum polysaccharides and Lycium barbarum polysaccharides. In this review, we summarize recent advances in the discovery of autophagy modulators of plant polysaccharides for the treatment of metabolic syndrome, with the aim of providing precursor compounds for the development of new therapeutic agents. Additionally, we look forward to seeing more diseases being treated with plant polysaccharides by regulating autophagy, as well as the discovery of more intricate mechanisms that govern autophagy.
Collapse
Affiliation(s)
- Hongxia Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zeting Ye
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guangjuan Zheng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Zuqing Su
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
4
|
Fan X, Wu L, Wang F, Liu D, Cen X, Xia H. Mitophagy Regulates Kidney Diseases. KIDNEY DISEASES (BASEL, SWITZERLAND) 2024; 10:573-587. [PMID: 39664332 PMCID: PMC11631111 DOI: 10.1159/000541486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 08/31/2024] [Indexed: 12/13/2024]
Abstract
Background Mitophagy is a crucial process involved in maintaining cellular homeostasis by selectively eliminating damaged or surplus mitochondria. As the kidney is an organ with a high dynamic metabolic rate and abundant mitochondria, it is particularly crucial to control mitochondrial quality through mitophagy. Dysregulation of mitophagy has been associated with various renal diseases, including acute and chronic kidney diseases, and therefore a better understanding of the links between mitophagy and these diseases may present new opportunities for therapeutic interventions. Summary Mitophagy plays a pivotal role in the development of kidney diseases. Upregulation and downregulation of mitophagy have been observed in various kidney diseases, such as renal ischemia-reperfusion injury, contrast-induced acute kidney injury, diabetic nephropathy, kidney fibrosis, and several inherited renal diseases. A growing body of research has suggested that PINK1 and Parkin, the main mitophagy regulatory proteins, represent promising potential therapeutic targets for kidney diseases. In this review, we summarize the latest insights into how the progression of renal diseases can be mitigated through the regulation of mitophagy, while highlighting their performance in clinical trials. Key Message This review comprehensively outlines the mechanisms of mitophagy and its role in numerous kidney diseases. While early research holds promise, most mitophagy-centered therapeutic approaches have yet to reach the clinical application stage.
Collapse
Affiliation(s)
- Xiaolu Fan
- Research Center of Clinical Pharmacy of The First Affiliated Hospital and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Linlin Wu
- Hangzhou PhecdaMed Co., Ltd, Hangzhou, China
| | - Fengqi Wang
- Research Center of Clinical Pharmacy of The First Affiliated Hospital and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Department of Biochemistry and Research Center of Clinical Pharmacy of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dong Liu
- Hangzhou PhecdaMed Co., Ltd, Hangzhou, China
| | - Xufeng Cen
- Research Center of Clinical Pharmacy of The First Affiliated Hospital and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongguang Xia
- Research Center of Clinical Pharmacy of The First Affiliated Hospital and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Department of Biochemistry and Research Center of Clinical Pharmacy of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
5
|
Tuerxun Z, He Y, Niu Y, Bao Z, Liu X, Yang Y, He P. Analysis of Differentially Expressed Murine miRNAs in Acute Myocardial Infarction and Target Genes Related to Heart Rate. Cell Biochem Biophys 2024:10.1007/s12013-024-01528-x. [PMID: 39325365 DOI: 10.1007/s12013-024-01528-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2024] [Indexed: 09/27/2024]
Abstract
OBJECTIVE This study aims to investigate the expression profile of miRNAs significantly dysregulated after acute myocardial infarction (AMI) and their potential targets. METHODS After the establishment of a mouse model of AMI, RNA was extracted from mouse infarcted myocardium. Paired-end sequencing was then performed using the Illumina NovaSeq 6000 system to explore the expression profile of miRNAs. Target genes of downregulated differentially expressed miRNAs (DEmiRNAs) were predicted with miRanda (version 3.3a) and TargetScan (version 6.0). Cytoscape was used to construct a DEmiRNA-mRNA regulatory network to show the regulatory relationship. RT-qPCR was performed to measure miR-142a-3p expression in H2O2-treated rat cardiomyocyte H9c2 cells and heart tissues of MI rats. Cell counting kit-8 and TUNEL assays were conducted to detect H9c2 cell viability and apoptosis. RESULTS There were 33 differentially expressed miRNAs, of which 3 were significantly upregulated and the rest 30 were significantly downregulated. Target genes of these miRNAs were identified, and their functional enrichment was analyzed using gene ontology (GO) analysis. Importantly, target genes that can regulate heart rate and their paired upstream miRNAs attracted attention. Significant expression correlation between heart rate-related targets (Epas1, Bves, Hcn4, Cacna1e, Ank2, Slc8a1, Pde4d) and paired miRNAs (miR-142a-5p, miR-7b-5p, miR-144-3p, miR-34c-5p, miR-223-3p, miR-18a-5p) in mouse myocardial tissues was identified. MiR-142a-3p was downregulated in H9c2 cells and rat infarct tissues, and overexpressing miR-142a-3p restrains H2O2-induced H9c2 cell apoptosis. CONCLUSION Cardioprotective miRNAs, such as miR-142a-3p, were identified in mouse myocardial tissues, and some specific miRNA-target pairs are associated with heart rate regulation.
Collapse
Affiliation(s)
- Zulikaier Tuerxun
- Heart center of the Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Yuxin He
- University of Edinburgh, Edinburgh, UK
| | - Yunxia Niu
- Department of Cardiovascular Diseases, Gansu Province Hospital of Traditional Chinese Medicine, Lanzhou, 730000, China
| | - Zhen Bao
- Department of Cardiovascular Diseases, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Xuemei Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Yuchun Yang
- Department of Cardiovascular Diseases, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Pengyi He
- Heart center of the Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China.
| |
Collapse
|
6
|
Lyu Y, Meng Z, Hu Y, Jiang B, Yang J, Chen Y, Zhou J, Li M, Wang H. Mechanisms of mitophagy and oxidative stress in cerebral ischemia-reperfusion, vascular dementia, and Alzheimer's disease. Front Mol Neurosci 2024; 17:1394932. [PMID: 39169952 PMCID: PMC11335644 DOI: 10.3389/fnmol.2024.1394932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
Neurological diseases have consistently represented a significant challenge in both clinical treatment and scientific research. As research has progressed, the significance of mitochondria in the pathogenesis and progression of neurological diseases has become increasingly prominent. Mitochondria serve not only as a source of energy, but also as regulators of cellular growth and death. Both oxidative stress and mitophagy are intimately associated with mitochondria, and there is mounting evidence that mitophagy and oxidative stress exert a pivotal regulatory influence on the pathogenesis of neurological diseases. In recent years, there has been a notable rise in the prevalence of cerebral ischemia/reperfusion injury (CI/RI), vascular dementia (VaD), and Alzheimer's disease (AD), which collectively represent a significant public health concern. Reduced levels of mitophagy have been observed in CI/RI, VaD and AD. The improvement of associated pathology has been demonstrated through the increase of mitophagy levels. CI/RI results in cerebral tissue ischemia and hypoxia, which causes oxidative stress, disruption of the blood-brain barrier (BBB) and damage to the cerebral vasculature. The BBB disruption and cerebral vascular injury may induce or exacerbate VaD to some extent. In addition, inadequate cerebral perfusion due to vascular injury or altered function may exacerbate the accumulation of amyloid β (Aβ) thereby contributing to or exacerbating AD pathology. Intravenous tissue plasminogen activator (tPA; alteplase) and endovascular thrombectomy are effective treatments for stroke. However, there is a narrow window of opportunity for the administration of tPA and thrombectomy, which results in a markedly elevated incidence of disability among patients with CI/RI. It is regrettable that there are currently no there are still no specific drugs for VaD and AD. Despite the availability of the U.S. Food and Drug Administration (FDA)-approved clinical first-line drugs for AD, including memantine, donepezil hydrochloride, and galantamine, these agents do not fundamentally block the pathological process of AD. In this paper, we undertake a review of the mechanisms of mitophagy and oxidative stress in neurological disorders, a summary of the clinical trials conducted in recent years, and a proposal for a new strategy for targeted treatment of neurological disorders based on both mitophagy and oxidative stress.
Collapse
Affiliation(s)
- Yujie Lyu
- Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province, Lanzhou, China
- Laboratory for TCM New Products Development Engineering of Gansu Province, Lanzhou, China
| | - Zhipeng Meng
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Yunyun Hu
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Bing Jiang
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Jiao Yang
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Yiqin Chen
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Jun Zhou
- Xichang Hospital of Traditional Chinese Medicine, Xichang, China
| | - Mingcheng Li
- Qujing 69 Hospital, China RongTong Medical Healthcare Group Co. Ltd, Qujing, China
| | - Huping Wang
- Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province, Lanzhou, China
- Laboratory for TCM New Products Development Engineering of Gansu Province, Lanzhou, China
| |
Collapse
|
7
|
Mohamed Abdoul-Latif F, Ainane A, Achenani L, Merito Ali A, Mohamed H, Ali A, Jutur PP, Ainane T. Production of Fucoxanthin from Microalgae Isochrysis galbana of Djibouti: Optimization, Correlation with Antioxidant Potential, and Bioinformatics Approaches. Mar Drugs 2024; 22:358. [PMID: 39195473 DOI: 10.3390/md22080358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 08/29/2024] Open
Abstract
Fucoxanthin, a carotenoid with remarkable antioxidant properties, has considerable potential for high-value biotechnological applications in the pharmaceutical, nutraceutical, and cosmeceutical fields. However, conventional extraction methods of this molecule from microalgae are limited in terms of cost-effectiveness. This study focused on optimizing biomass and fucoxanthin production from Isochrysis galbana, isolated from the coast of Tadjoura (Djibouti), by testing various culture media. The antioxidant potential of the cultures was evaluated based on the concentrations of fucoxanthin, carotenoids, and total phenols. Different nutrient formulations were tested to determine the optimal combination for a maximum biomass yield. Using the statistical methodology of principal component analysis, Walne and Guillard F/2 media were identified as the most promising, reaching a maximum fucoxanthin yield of 7.8 mg/g. Multiple regression models showed a strong correlation between antioxidant activity and the concentration of fucoxanthin produced. A thorough study of the optimization of I. galbana growth conditions, using a design of experiments, revealed that air flow rate and CO2 flow rate were the most influential factors on fucoxanthin production, reaching a value of 13.4 mg/g. Finally, to validate the antioxidant potential of fucoxanthin, an in silico analysis based on molecular docking was performed, showing that fucoxanthin interacts with antioxidant proteins (3FS1, 3L2C, and 8BBK). This research not only confirmed the positive results of I. galbana cultivation in terms of antioxidant activity, but also provided essential information for the optimization of fucoxanthin production, opening up promising prospects for industrial applications and future research.
Collapse
Affiliation(s)
| | - Ayoub Ainane
- Superior School of Technology, University of Sultan Moulay Slimane, P.O. Box 170, Khenifra 54000, Morocco
| | - Laila Achenani
- Superior School of Technology, University of Sultan Moulay Slimane, P.O. Box 170, Khenifra 54000, Morocco
| | - Ali Merito Ali
- Medicinal Research Institute, Center for Research and Study of Djibouti, Djibouti City P.O. Box 486, Djibouti
| | - Houda Mohamed
- Medicinal Research Institute, Center for Research and Study of Djibouti, Djibouti City P.O. Box 486, Djibouti
- Peltier Hospital of Djibouti, Djibouti City P.O. Box 2123, Djibouti
| | - Ahmad Ali
- University Department of Life Sciences, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai 400098, India
| | - Pannaga Pavan Jutur
- Omics of Algae Group, Industrial Biotechnology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Tarik Ainane
- Superior School of Technology, University of Sultan Moulay Slimane, P.O. Box 170, Khenifra 54000, Morocco
| |
Collapse
|
8
|
Jin X, Jin W, Li G, Zheng J, Xu X. Erythropoietin alleviates lung ischemia-reperfusion injury by activating the FGF23/FGFR4/ERK signaling pathway. PeerJ 2024; 12:e17123. [PMID: 38560469 PMCID: PMC10981413 DOI: 10.7717/peerj.17123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Background The purpose of the present study was to investigate the effect of erythropoietin (EPO) on lung ischemia-reperfusion injury (LIRI). Methods Sprague Dawley rats and BEAS-2B cells were employed to construct an ischemia-reperfusion (I/R)-induced model in vivo and in vitro, respectively. Afterward, I/R rats and tert-butyl hydroperoxide (TBHP)-induced cells were treated with different concentrations of EPO. Furthermore, 40 patients with LIRI and healthy controls were enrolled in the study. Results It was observed that lung tissue damage, cell apoptosis and the expression of BAX and caspase-3 were higher in the LIRI model in vivo and in vitro than in the control group, nevertheless, the Bcl-2, FGF23 and FGFR4 expression level was lower than in the control group. EPO administration significantly reduced lung tissue damage and cell apoptosis while also up-regulating the expression of FGF23 and FGFR4. Rescue experiments indicated that EPO exerted a protective role associated with the FGF23/FGFR4/p-ERK1/2 signal pathway. Notably, the expression of serum EPO, FGF23, FGFR4 and Bcl-2 was decreased in patients with LIRI, while the expression of caspase-3 and BAX was higher. Conclusion EPO could effectively improve LIRI, which might be related to the activation of the FGF23/FGFR4/p-ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Xiaosheng Jin
- Pulmonary and Critical Care Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Weijing Jin
- Department of Neonatology, Hangzhou Children’s Hospital, Hangzhou, China
| | - Guoping Li
- Pulmonary and Critical Care Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Jisheng Zheng
- Pulmonary and Critical Care Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Xianrong Xu
- Pulmonary and Critical Care Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| |
Collapse
|
9
|
Wang Y, Zheng J, Long Y, Wu W, Zhu Y. Direct degradation and stabilization of proteins: New horizons in treatment of nonalcoholic steatohepatitis. Biochem Pharmacol 2024; 220:115989. [PMID: 38122854 DOI: 10.1016/j.bcp.2023.115989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is featured with excessive hepatic lipid accumulation and its global prevalence is soaring. Nonalcoholic steatohepatitis (NASH), the severe systemic inflammatory subtype of NAFLD, is tightly associated with metabolic comorbidities, and the hepatocytes manifest severe inflammation and ballooning. Currently the therapeutic options for treating NASH are limited. Potent small molecules specifically intervene with the signaling pathways that promote pathogenesis of NASH. Nevertheless they have obvious adverse effects and show long-term ineffectiveness in clinical trials. It poses the fundamental question to efficiently and safely inhibit the pathogenic processes. Targeted protein degradation (TPD) belongs to the direct degradation strategies and is a burgeoning strategy. It utilizes the small molecules to bind to the target proteins and recruit the endogenous proteasome, lysosome and autophagosome-mediated degradation machineries. They effectively and specifically degrade the target proteins. It has exhibited promising therapeutic effects in treatment of cancer, neurodegenerative diseases and other diseases in a catalytic manner at low doses. We critically discuss the principles of multiple direct degradation strategies, especially PROTAC and ATTEC. We extensively analyze their emerging application in degradation of excessive pathogenic proteins and lipid droplets, which promote the progression of NASH. Moreover, we discuss the opposite strategy that utilizes the small molecules to recruit deubiquinases to stabilize the NASH/MASH-suppressing proteins. Their advantages, limitations, as well as the solutions to address the limitations have been analyzed. In summary, the innovative direct degradation strategies provide new insights into design of next-generation therapeutics to combat NASH with optimal safety paradigm and efficiency.
Collapse
Affiliation(s)
- Yibing Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, PR China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, PR China.
| | - Jianan Zheng
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, PR China
| | - Yun Long
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, PR China
| | - Wenyi Wu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, PR China
| | - Yutong Zhu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, PR China
| |
Collapse
|