1
|
Ciccone V, Diotallevi A, Gómez-Benmansour M, Maestrini S, Mantellini F, Mari G, Galluzzi L, Lucarini S, Favi G. Easy one-pot synthesis of multifunctionalized indole-pyrrole hybrids as a new class of antileishmanial agents. RSC Adv 2024; 14:15713-15720. [PMID: 38746834 PMCID: PMC11092366 DOI: 10.1039/d4ra02790f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/07/2024] [Indexed: 01/06/2025] Open
Abstract
A chemoselective one-pot synthesis of pharmaceutically prospective indole-pyrrole hybrids by the formal [3 + 2] cycloaddition of 3-cyanoacetyl indoles (CAIs) with 1,2-diaza-1,3-dienes (DDs) has been developed. The new indole-pyrrole hybrids were phenotypically screened for efficacy against Leishmania infantum promastigotes. The most active compounds 3c, 3d, and 3j showed IC50 < 20 μM and moderate cytotoxicity, lower than miltefosine. Compound 3d was the most active with IC50 = 9.6 μM and a selectivity index of 5. Consequently, 3d could be a new lead compound for the generation of a new class of antileishmanial hybrids.
Collapse
Affiliation(s)
- Vittorio Ciccone
- Department of Biomolecular Sciences, University of Urbino Carlo Bo 61029 Urbino (PU) Italy +39-0722303333 +39-0722303444
| | - Aurora Diotallevi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo 61029 Urbino (PU) Italy +39-0722303333 +39-0722303444
| | - Miriam Gómez-Benmansour
- Department of Biomolecular Sciences, University of Urbino Carlo Bo 61029 Urbino (PU) Italy +39-0722303333 +39-0722303444
| | - Sara Maestrini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo 61029 Urbino (PU) Italy +39-0722303333 +39-0722303444
| | - Fabio Mantellini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo 61029 Urbino (PU) Italy +39-0722303333 +39-0722303444
| | - Giacomo Mari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo 61029 Urbino (PU) Italy +39-0722303333 +39-0722303444
| | - Luca Galluzzi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo 61029 Urbino (PU) Italy +39-0722303333 +39-0722303444
| | - Simone Lucarini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo 61029 Urbino (PU) Italy +39-0722303333 +39-0722303444
| | - Gianfranco Favi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo 61029 Urbino (PU) Italy +39-0722303333 +39-0722303444
| |
Collapse
|
2
|
Taha M, Rahim F, Uddin N, Khan IU, Iqbal N, Anouar EH, Salahuddin M, Farooq RK, Gollapalli M, Khan KM, Zafar A. Exploring indole-based-thiadiazole derivatives as potent acetylcholinesterase and butyrylcholinesterase enzyme inhibitors. Int J Biol Macromol 2021; 188:1025-1036. [PMID: 34390751 DOI: 10.1016/j.ijbiomac.2021.08.065] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/26/2021] [Accepted: 08/08/2021] [Indexed: 11/27/2022]
Abstract
Indole based thiadiazole derivatives (1-18) were synthesized and evaluated for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibition. The IC50 values of the synthesized analogues ranging between 0.17 ± 0.05 to 33.10 ± 0.6 μM against (AChE) and 0.30 ± 0.1 to 37.60 ± 0.6 μM against (BChE) enzymes. Among the series compounds 8 (IC50 = 0.17 ± 0.05 μM) (IC50 = 0.30 ± 0.1 μM), 9 (IC50 = 0.30 ± 0.05 μM) (IC50 = 0.60 ± 0.05 μM) and 10 (IC50 = 1.30 ± 0.1 μM) (IC50 = 2.60 ± 0.1) were found to be the most potent analogues bearing para, ortho, and meta-fluoro substitutions on phenyl ring attached to thiadiazole. In addition, all the synthesized scaffolds were characterized by using 1H NMR, 13C NMR spectroscopy, and high-resolution Mass Spectrometry (HR-MS). To apprehend the binding mode of interaction of the most potent synthesized derivatives, a molecular docking study was performed.
Collapse
Affiliation(s)
- Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam 31441, Saudi Arabia.
| | - Fazal Rahim
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Nizam Uddin
- Department of Chemistry, University of Karachi, Karachi 75270, Pakistan
| | - Ihsan Ullah Khan
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Naveed Iqbal
- Department of Chemistry, University of Poonch, Rawalakot, AJK, Pakistan
| | - El Hassane Anouar
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohammed Salahuddin
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam 31441, Saudi Arabia
| | - Rai Khalid Farooq
- Department of Neuroscience Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mohammed Gollapalli
- College of Computer Science & Information Technology (CCSIT), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Aljouf, Saudi Arabia
| |
Collapse
|
3
|
Xavier JS, Jayabalan K, Ragavendran V, Manoharan MT, Nityananda Shetty A. Virtual and experimental high throughput screening of substituted hydrazones on β-Tubulin polymerization. Bioorg Chem 2021; 114:105094. [PMID: 34167017 DOI: 10.1016/j.bioorg.2021.105094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/02/2021] [Accepted: 06/10/2021] [Indexed: 10/21/2022]
Abstract
Microtubule targeting agents that disrupt the dynamic functioning of the mitotic spindle are some of the best chemotherapeutic agents. Interruption of microtubule dynamics through polymerization or depolymerization causes cell arrest leading to apoptosis. We report a novel class of aroylhydrazones with anticancer properties. Tubulin inhibition studies were performed using both computational and biological methods. Docking and pharmacophore mapping showed efficient binding between the ligands and the protein. Tubulin inhibition assay showed the aroylhydrazones to be inhibitors of tubulin polymerization. DFT studies explains the geometrical and electronic properties of the compounds. Furthermore, anticancer studies using lung and liver cancer cell lines gave low IC50 values with the methyl substituted hydrazone MH-2 being the most potent. (IC50 of 0.0896 and 0.1040 µM respectively). The methyl group is responsible for the effective binding to the protein. Thus, a new class of tubulin binding agents have been identified as potential agents in cancer therapy.
Collapse
Affiliation(s)
- Janet Sabina Xavier
- Department of Chemistry, Sathyabama Institute of Science and Technology, Chennai 600119, India
| | - Karthikeyan Jayabalan
- Department of Chemistry, Sathyabama Institute of Science and Technology, Chennai 600119, India.
| | - V Ragavendran
- Department of Physics, Sri Chandrasekharendra Saraswathi Viswa Mahavidyalaya, Kanchipuram 631561, India
| | - Muthu Tamizh Manoharan
- Department of Chemistry, Siddha Central Research Institute, Central Council for Research in Siddha, Arumbakkam, Chennai 600106, India
| | - A Nityananda Shetty
- Department of Chemistry, National Institute of Technology Karnataka, Mangalore 575025, India
| |
Collapse
|
4
|
Azimi F, Ghasemi JB, Azizian H, Najafi M, Faramarzi MA, Saghaei L, Sadeghi-Aliabadi H, Larijani B, Hassanzadeh F, Mahdavi M. Design and synthesis of novel pyrazole-phenyl semicarbazone derivatives as potential α-glucosidase inhibitor: Kinetics and molecular dynamics simulation study. Int J Biol Macromol 2020; 166:1082-1095. [PMID: 33157144 DOI: 10.1016/j.ijbiomac.2020.10.263] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 01/17/2023]
Abstract
A series of novel pyrazole-phenyl semicarbazone derivatives were designed, synthesized, and screened for in vitro α-glucosidase inhibitory activity. Given the importance of hydrogen bonding in promoting the α-glucosidase inhibitory activity, pharmacophore modification was established. The docking results rationalized the idea of the design. All newly synthesized compounds exhibited excellent in vitro yeast α-glucosidase inhibition (IC50 values in the range of 65.1-695.0 μM) even much more potent than standard drug acarbose (IC50 = 750.0 μM). Among them, compounds 8o displayed the most potent α-glucosidase inhibitory activity (IC50 = 65.1 ± 0.3 μM). Kinetic study of compound 8o revealed that it inhibited α-glucosidase in a competitive mode (Ki = 87.0 μM). Limited SAR suggested that electronic properties of substitutions have little effect on inhibitory potential of compounds. Cytotoxic studies demonstrated that the active compounds (8o, 8k, 8p, 8l, 8i, and 8a) compounds are also non-cytotoxic. The binding modes of the most potent compounds 8o, 8k, 8p, 8l and 8i was studied through in silico docking studies. Molecular dynamic simulations have been performed in order to explain the dynamic behavior and structural changes of the systems by the calculation of the root mean square deviation (RMSD) and root mean square fluctuation (RMSF).
Collapse
Affiliation(s)
- Fateme Azimi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461, Isfahan, Iran
| | - Jahan B Ghasemi
- School of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Homa Azizian
- Department of Medicinal Chemistry, School of Pharmacy-International Campus, Iran University of Medical Science, Tehran, Iran
| | - Mohammad Najafi
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran 1417614411, Iran
| | - Lotfollah Saghaei
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461, Isfahan, Iran.
| | - Hojjat Sadeghi-Aliabadi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461, Isfahan, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshid Hassanzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461, Isfahan, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Schadich E, Kryshchyshyn-Dylevych A, Holota S, Polishchuk P, Džubak P, Gurska S, Hajduch M, Lesyk R. Assessing different thiazolidine and thiazole based compounds as antileishmanial scaffolds. Bioorg Med Chem Lett 2020; 30:127616. [PMID: 33091607 DOI: 10.1016/j.bmcl.2020.127616] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 10/14/2020] [Indexed: 11/28/2022]
Abstract
The compounds from eight different thiazolidine and thiazole series were assessed as potential antileishmanial scaffolds. They were tested for antileishmanial activity against promastigotes of Leishmania major using in vitro primary screen and dose response assays. The compounds from six thiazolidine and thiazole series were identified as the hits with antileishmanial activity against L. major. However, the analyses of structure-activity relations (SARs) showed that the interpretable SARs were obtained only for phenyl-indole hybrids (compounds C1, C2, C3 and C5) as the most effective compounds against L. major promastigotes (IC50 < 10 µM) with low toxicity to human fibroblasts. For the scaffold of these compounds, the most significant SAR patterns were: free N3 position of thiazolidinone core, absence of big fragments at the C5 position of thiazolidinone core and presence of halogen atoms or nitro group in the phenyl ring of phenyl-indole fragment. As previous studies showed that these compounds also have activity against the two Trypanosoma species, Trypanosoma brucei and Trypanosoma gambiense, their scaffold could be associated with a broader antiparasitic activity.
Collapse
Affiliation(s)
- Ermin Schadich
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 5, 779 00 Olomouc, Czech Republic
| | - Anna Kryshchyshyn-Dylevych
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv, 79010, Ukraine
| | - Serhiy Holota
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv, 79010, Ukraine
| | - Pavel Polishchuk
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 5, 779 00 Olomouc, Czech Republic
| | - Petr Džubak
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 5, 779 00 Olomouc, Czech Republic
| | - Sona Gurska
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 5, 779 00 Olomouc, Czech Republic
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 5, 779 00 Olomouc, Czech Republic
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv, 79010, Ukraine; Department of Public Health, Dietetics and Lifestyle Disorders, Faculty of Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland.
| |
Collapse
|
6
|
Taha M, Rahim F, Khan AA, Anouar EH, Ahmed N, Shah SAA, Ibrahim M, Zakari ZA. Synthesis of diindolylmethane (DIM) bearing thiadiazole derivatives as a potent urease inhibitor. Sci Rep 2020; 10:7969. [PMID: 32409737 PMCID: PMC7224224 DOI: 10.1038/s41598-020-64729-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/26/2020] [Indexed: 11/30/2022] Open
Abstract
The current study describes synthesis of diindolylmethane (DIM) derivatives based-thiadiazole as a new class of urease inhibitors. Diindolylmethane is natural product alkaloid reported to use in medicinal chemistry extensively. Diindolylmethane-based-thiadiazole analogs (1–18) were synthesized and characterized by various spectroscopic techniques 1HNMR, 13C-NMR, EI-MS and evaluated for urease (jack bean urease) inhibitory potential. All compounds showed excellent to moderate inhibitory potential having IC50 value within the range of 0.50 ± 0.01 to 33.20 ± 1.20 µM compared with the standard thiourea (21.60 ± 0.70 µM). Compound 8 (IC50 = 0.50 ± 0.01 µM) was the most potent inhibitor amongst all derivatives. Structure-activity relationships have been established for all compounds. The key binding interactions of most active compounds with enzyme were confirmed through molecular docking studies.
Collapse
Affiliation(s)
- Muhammad Taha
- Department of clinical pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 31441, Dammam, Saudi Arabia.
| | - Fazal Rahim
- Department of Chemistry, Hazara University, Mansehra, 21300, Khyber Pakhtunkhwa, Pakistan
| | - Aftab Ahmad Khan
- Department of Chemistry, Hazara University, Mansehra, 21300, Khyber Pakhtunkhwa, Pakistan
| | - El Hassane Anouar
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Naveed Ahmed
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Syed Adnan Ali Shah
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia, 42300, D. E., Selangor, Malaysia.,Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia, 42300, Darul Ehsan, Selangor, Malaysia
| | - Mohamed Ibrahim
- Department of clinical pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 31441, Dammam, Saudi Arabia
| | - Zainul Amiruddin Zakari
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia. .,Halal Institute Research Institute, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
7
|
|
8
|
Nasli‐Esfahani E, Mohammadi‐Khanaposhtani M, Rezaei S, Sarrafi Y, Sharafi Z, Samadi N, Faramarzi MA, Bandarian F, Hamedifar H, Larijani B, Hajimiri M, Mahdavi M. A new series of Schiff base derivatives bearing 1,2,3‐triazole: Design, synthesis, molecular docking, and α‐glucosidase inhibition. Arch Pharm (Weinheim) 2019; 352:e1900034. [DOI: 10.1002/ardp.201900034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/18/2019] [Accepted: 05/01/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Ensieh Nasli‐Esfahani
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical Sciences Tehran Iran
| | - Maryam Mohammadi‐Khanaposhtani
- Cellular and Molecular Biology Research Center, Health Research InstituteBabol University of Medical Sciences Babol Iran
| | - Sepideh Rezaei
- School of PharmacyTabriz University of Medical Sciences Tabriz Iran
| | | | - Zeinab Sharafi
- Razi Herbal Medicines Research CenterLorestan University of Medical Sciences Khorramabad Iran
| | - Nasser Samadi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research CenterTehran University of Medical Sciences Tehran Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research CenterTehran University of Medical Sciences Tehran Iran
| | - Fatemeh Bandarian
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical Sciences Tehran Iran
| | - Haleh Hamedifar
- CinnaGen Medical Biotechnology Research CenterAlborz University of Medical Sciences Karaj Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical Sciences Tehran Iran
| | - Mirhamed Hajimiri
- Nano Alvand Company, Avicenna Tech ParkTehran University of Medical Sciences Tehran Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical Sciences Tehran Iran
| |
Collapse
|
9
|
Leishmania treatment and prevention: Natural and synthesized drugs. Eur J Med Chem 2018; 160:229-244. [DOI: 10.1016/j.ejmech.2018.10.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 12/31/2022]
|
10
|
De Luca L, Ferro S, Buemi MR, Monforte AM, Gitto R, Schirmeister T, Maes L, Rescifina A, Micale N. Discovery of benzimidazole-based Leishmania mexicana cysteine protease CPB2.8ΔCTE inhibitors as potential therapeutics for leishmaniasis. Chem Biol Drug Des 2018; 92:1585-1596. [PMID: 29729080 DOI: 10.1111/cbdd.13326] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 02/22/2018] [Accepted: 04/15/2018] [Indexed: 02/07/2023]
Abstract
Chemotherapy is currently the only effective approach to treat all forms of leishmaniasis. However, its effectiveness is severely limited due to high toxicity, long treatment length, drug resistance, or inadequate mode of administration. As a consequence, there is a need to identify new molecular scaffolds and targets as potential therapeutics for the treatment of this disease. We report a small series of 1,2-substituted-1H-benzo[d]imidazole derivatives (9a-d) showing affinity in the submicromolar range (Ki = 0.15-0.69 μM) toward Leishmania mexicanaCPB2.8ΔCTE, one of the more promising targets for antileishmanial drug design. The compounds confirmed activity in vitro against intracellular amastigotes of Leishmania infantum with the best result being obtained with derivative 9d (IC50 = 6.8 μM), although with some degree of cytotoxicity (CC50 = 8.0 μM on PMM and CC50 = 32.0 μM on MCR-5). In silico molecular docking studies and ADME-Tox properties prediction were performed to validate the hypothesis of the interaction with the intended target and to assess the drug-likeness of these derivatives.
Collapse
Affiliation(s)
- Laura De Luca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Stefania Ferro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Maria Rosa Buemi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Anna-Maria Monforte
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Rosaria Gitto
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Tanja Schirmeister
- Institute of Pharmacy and Biochemistry, University of Mainz, Mainz, Germany
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | | | - Nicola Micale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
11
|
Coa JC, Cardona-Galeano W, Restrepo A. Fe3+chelating quinoline–hydrazone hybrids with proven cytotoxicity, leishmanicidal, and trypanocidal activities. Phys Chem Chem Phys 2018; 20:20382-20390. [DOI: 10.1039/c8cp04174a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Neglected tropical diseases cause great concern in developing countries where there are millions of reported infected humans. Our calculations support a direct relationship between biological activity and the Fe3+chelating ability of the shown set of quinoline–hydrazone hybrids.
Collapse
Affiliation(s)
- Juan Carlos Coa
- Instituto de Química
- Universidad de Antioquia UdeA
- Medellín
- Colombia
| | | | - Albeiro Restrepo
- Instituto de Química
- Universidad de Antioquia UdeA
- Medellín
- Colombia
| |
Collapse
|
12
|
Şener N, Erişkin S, Yavuz S, Şener İ. Synthesis, Characterization, Solvatochromic Properties, and Antimicrobial-radical Scavenging Activities of New Diazo Dyes Derived from Pyrazolo[1,5-a]pyrimidine. J Heterocycl Chem 2017. [DOI: 10.1002/jhet.2977] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Nesrin Şener
- Department of Chemistry, Faculty of Science-Arts; Kastamonu University; 37200 Kastamonu Turkey
| | - Selinay Erişkin
- Department of Chemistry, Faculty of Science-Art; Pamukkale University; 20200 Denizli Turkey
| | - Serkan Yavuz
- Department of Chemistry, Faculty of Science; Gazi University; 06500 Ankara Turkey
| | - İzzet Şener
- Department of Food Engineering, Faculty of Engineering and Architecture; Kastamonu University; 37200 Kastamonu Turkey
| |
Collapse
|
13
|
Vergara S, Carda M, Agut R, Yepes LM, Vélez ID, Robledo SM, Galeano WC. Synthesis, antiprotozoal activity and cytotoxicity in U-937 macrophages of triclosan–hydrazone hybrids. Med Chem Res 2017. [DOI: 10.1007/s00044-017-2019-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Taha M, Ismail NH, Imran S, Anouar EH, Selvaraj M, Jamil W, Ali M, Kashif SM, Rahim F, Khan KM, Adenan MI. Synthesis and molecular modelling studies of phenyl linked oxadiazole-phenylhydrazone hybrids as potent antileishmanial agents. Eur J Med Chem 2016; 126:1021-1033. [PMID: 28012342 DOI: 10.1016/j.ejmech.2016.12.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 12/06/2016] [Accepted: 12/09/2016] [Indexed: 01/24/2023]
Abstract
Molecular hybridization yielded phenyl linked oxadiazole-benzohydrazones hybrids 6-35 and were evaluated for their antileishmanial potentials. Compound 10, a 3,4-dihydroxy analog with IC50 value of 0.95 ± 0.01 μM, was found to be the most potent antileishmanial agent (7 times more active) than the standard drug pentamidine (IC50 = 7.02 ± 0.09 μM). The current series 6-35 conceded in the identification of thirteen (13) potent antileishmanial compounds with the IC50 values ranging between 0.95 ± 0.01-78.6 ± 1.78 μM. Molecular docking analysis against pteridine reductase (PTR1) were also performed to probe the mode of action. Selectivity index showed that compounds with higher number of hydroxyl groups have low selectivity index. Theoretical stereochemical assignment was also done for certain derivatives by using density functional calculations.
Collapse
Affiliation(s)
- Muhammad Taha
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia; Faculty of Applied Science UiTM, 40450 Shah Alam, Selangor, Malaysia.
| | - Nor Hadiani Ismail
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia; Faculty of Applied Science UiTM, 40450 Shah Alam, Selangor, Malaysia
| | - Syahrul Imran
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia; Faculty of Applied Science UiTM, 40450 Shah Alam, Selangor, Malaysia
| | - El Hassane Anouar
- Chemistry Department, College of Sciences and Humanities, Prince Sattam bin Abdulaziz University, Saudi Arabia
| | - Manikandan Selvaraj
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia; Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Waqas Jamil
- Institute of Advance Research Studies in Chemical Sciences, University of Sindh Jamshoro, 76080 Hyderabad, Pakistan
| | - Muhammad Ali
- Department of Chemistry, COMSATS Institute of Information Technology, University Road, Abbottbad 22060, KPK, Pakistan
| | - Syed Muhammad Kashif
- Institute of Advance Research Studies in Chemical Sciences, University of Sindh Jamshoro, 76080 Hyderabad, Pakistan
| | - Fazal Rahim
- Depatment of Chemistry, Hazara University, Mansehra, Pakistan
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Mohd Ilham Adenan
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia; Faculty of Applied Science UiTM, 40450 Shah Alam, Selangor, Malaysia
| |
Collapse
|
15
|
Synthesis, β-glucuronidase inhibition and molecular docking studies of hybrid bisindole-thiosemicarbazides analogs. Bioorg Chem 2016; 68:56-63. [DOI: 10.1016/j.bioorg.2016.07.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/30/2016] [Accepted: 07/17/2016] [Indexed: 11/20/2022]
|
16
|
Antileishmanial activity of new thiophene–indole hybrids: Design, synthesis, biological and cytotoxic evaluation, and chemometric studies. Bioorg Med Chem 2016; 24:3972-3977. [DOI: 10.1016/j.bmc.2016.04.057] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/19/2016] [Accepted: 04/26/2016] [Indexed: 10/21/2022]
|
17
|
Evaluation of 2-indolcarbohydrazones as potent α-glucosidase inhibitors, in silico studies and DFT based stereochemical predictions. Bioorg Chem 2015; 63:24-35. [DOI: 10.1016/j.bioorg.2015.09.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/03/2015] [Accepted: 09/07/2015] [Indexed: 01/22/2023]
|
18
|
Imran S, Taha M, Ismail NH, Kashif SM, Rahim F, Jamil W, Hariono M, Yusuf M, Wahab H. Synthesis of novel flavone hydrazones: in-vitro evaluation of α-glucosidase inhibition, QSAR analysis and docking studies. Eur J Med Chem 2015; 105:156-70. [PMID: 26491979 DOI: 10.1016/j.ejmech.2015.10.017] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 09/08/2015] [Accepted: 10/07/2015] [Indexed: 11/28/2022]
Abstract
Thirty derivatives of flavone hydrazone (5-34) had been synthesized through a five-step reaction and screened for their α-glucosidase inhibition activity. Chalcone 1 was synthesized through aldol condensation then subjected through oxidative cyclization, esterification, and condensation reaction to afford the final products. The result for baker's yeast α-glucosidase (EC 3.2.1.20) inhibition assay showed that all compounds are active with reference to the IC50 value of the acarbose (standard drug) except for compound 3. Increase in activity observed for compounds 2 to 34 clearly highlights the importance of flavone, hydrazide and hydrazone linkage in suppressing the activity of α-glucosidase. Additional functional group on N-benzylidene moiety further enhances the activity significantly. Compound 5 (15.4 ± 0.22 μM), a 2,4,6-trihydroxy substituted compound, is the most active compound in the series. Other compounds which were found to be active are those having chlorine, fluorine, and nitro substituents. Compounds with methoxy, pyridine, and methyl substituents are weakly active. Further studies showed that they are not active in inhibiting histone deacetylase activity and do not possess any cytotoxic properties. QSAR model was being developed to further identify the structural requirements contributing to the activity. Using Discovery Studio (DS) 2.5, various 2D descriptors were being used to develop the model. The QSAR model is able to predict the pIC50 and could be used as a prediction tool for compounds having the same skeletal framework. Molecular docking was done for all compounds using homology model of α-glucosidase to identify important binding modes responsible for inhibition activity.
Collapse
Affiliation(s)
- Syahrul Imran
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA, Puncak Alam Campus, 42300, Selangor D.E., Malaysia; Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, 40450, Selangor D.E., Malaysia
| | - Muhammad Taha
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA, Puncak Alam Campus, 42300, Selangor D.E., Malaysia; Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, 40450, Selangor D.E., Malaysia.
| | - Nor Hadiani Ismail
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA, Puncak Alam Campus, 42300, Selangor D.E., Malaysia; Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, 40450, Selangor D.E., Malaysia.
| | - Syed Muhammad Kashif
- Institute of Advance Research Studies in Chemical Sciences, University of Sindh, 76080, Jamshoro, Pakistan
| | - Fazal Rahim
- Department of Chemistry, Hazara University, 21300, Mansehra, Pakistan
| | - Waqas Jamil
- Institute of Advance Research Studies in Chemical Sciences, University of Sindh, 76080, Jamshoro, Pakistan
| | - Maywan Hariono
- Pharmaceutical Design and Simulation Laboratory, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
| | - Muhammad Yusuf
- Pharmaceutical Design and Simulation Laboratory, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
| | - Habibah Wahab
- Pharmaceutical Design and Simulation Laboratory, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
| |
Collapse
|
19
|
Synthesis, biological evaluation, and docking studies of novel thiourea derivatives of bisindolylmethane as carbonic anhydrase II inhibitor. Bioorg Chem 2015; 62:83-93. [PMID: 26275866 DOI: 10.1016/j.bioorg.2015.08.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/29/2015] [Accepted: 08/05/2015] [Indexed: 11/20/2022]
Abstract
This article describes discovery of 29 novel bisindolylmethanes consisting of thiourea moiety, which had been synthesized through three steps. These novel bisindolylmethane derivatives evaluated for their potential inhibitory activity against carbonic anhydrase (CA) II. The results for in vitro assay of carbonic anhydrase II inhibition activity showed that some of the compounds are capable of suppressing the activity of carbonic anhydrase II. Bisindoles having halogen at fifth position showed better inhibitory activity as compared to unsubstituted bisindoles. Derivatives showing inhibition activity docked to further, understand the binding behavior of these compounds with carbonic anhydrase II. Docking studies for the active compound 3j showed that nitro substituent at para position fits into the core of the active site. The nitro substituent of compound 3j is capable of interacting with Zn ion. This interaction believed to be the main factor causing inhibition activity to take place.
Collapse
|
20
|
Taha M, Ismail NH, Khan A, Shah SAA, Anwar A, Halim SA, Fatmi MQ, Imran S, Rahim F, Khan KM. Synthesis of novel derivatives of oxindole, their urease inhibition and molecular docking studies. Bioorg Med Chem Lett 2015; 25:3285-9. [PMID: 26077497 DOI: 10.1016/j.bmcl.2015.05.069] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/21/2015] [Accepted: 05/23/2015] [Indexed: 11/16/2022]
Abstract
We synthesized a series of novel 5-24 derivatives of oxindole. The synthesis started from 5-chlorooxindole, which was condensed with methyl 4-carboxybezoate and result in the formation of benzolyester derivatives of oxindole which was then treated with hydrazine hydrate. The oxindole benzoylhydrazide was treated with aryl acetophenones and aldehydes to get target compounds 5-24. The synthesized compounds were evaluated for urease inhibition; the compound 5 (IC50 = 13.00 ± 0.35 μM) and 11 (IC50 = 19.20 ± 0.50 μM) showed potent activity as compared to the standard drug thiourea (IC50 = 21.00 ± 0.01 μM). Other compounds showed moderate to weak activity. All synthetic compounds were characterized by different spectroscopic techniques including (1)H NMR, (13)C NMR, IR and EI MS. The molecular interactions of the active compounds within the binding site of urease enzyme were studied through molecular docking simulations.
Collapse
Affiliation(s)
- Muhammad Taha
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor D. E., Malaysia; Faculty of Applied Science UiTM, 40450 Shah Alam, Selangor, Malaysia.
| | - Nor Hadiani Ismail
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor D. E., Malaysia; Faculty of Applied Science UiTM, 40450 Shah Alam, Selangor, Malaysia
| | - Ajmal Khan
- Department of Chemistry, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan
| | - Syed Adnan Ali Shah
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor D. E., Malaysia; Faculty of Pharmacy, Universiti Teknologi MARA Puncak Alam, 42300 Bandar Puncak Alam, Selangor D. E., Malaysia
| | - Ammarah Anwar
- Department of Biosciences, COMSATS Institute of Information Technology, Park Road, Chak Shahzad, Islamabad, Pakistan
| | - Sobia Ahsan Halim
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 53700, Pakistan
| | - M Qaiser Fatmi
- Department of Biosciences, COMSATS Institute of Information Technology, Park Road, Chak Shahzad, Islamabad, Pakistan
| | - Syahrul Imran
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor D. E., Malaysia; Faculty of Applied Science UiTM, 40450 Shah Alam, Selangor, Malaysia
| | - Fazal Rahim
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Khalid Mohammed Khan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|