1
|
Soliman MA, Ahmed HEA, Eltamany EH, Boraei ATA, Aljuhani A, Salama SA, Alghamdi R, Aljohani AKB, Almaghrabi M, Aouad MR. Novel bis-benzimidazole-triazole hybrids: anticancer study, in silico approaches, and mechanistic investigation. Future Med Chem 2025; 17:93-107. [PMID: 39670306 DOI: 10.1080/17568919.2024.2437980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/25/2024] [Indexed: 12/14/2024] Open
Abstract
AIM Benzimidazole-triazole conjugates are very active hotspot for design and synthesis of promising anticancer agents. The target analogs showed potent and selective cytotoxicity over different cancer cell lines for breast and lung ones. MATERIALS & METHODS A new series of bis-1,4-disubstituted-1,2,3-triazoles moieties conjugated with a 2-mercapto-benzimidazole 4a-h and 7a-g was synthesized via the click cycloaddition (CuAAC) reaction. The synthesized triazoles were characterized using several spectroscopic tools. In addition, they were tested against variable cell lines representing different cancer types; HepG-2, MCF-7, HCT-116, and A-549. Computational experiments were introduced for understanding their structure-activity relationships. RESULTS & CONCLUSION The data revealed the outperformance of 7a-g analogs over 4a-h one with very effective IC50 values; 4-13 µg/mL compared to the reference drugs. Moreover, detailed mechanistic analyses showed potent Aurora-A Kinase expression for the most active analogs 7a and 7d exhibiting IC50; 3.5 and 5.3 over the control cells 8 ng/mL respectively. Additionally, based on their Aurora-A Kinase inhibitory activity, compound 7a was promising in apoptosis induction and cell cycle arrest. Molecular docking studies with Aurora-A Kinase revealed binding behaviors similar to the co-crystallized ligand sunitinib. Finally, this scaffold exhibits cytotoxic activity via apoptosis, enzyme downregulation, and suppression of cell division.
Collapse
Affiliation(s)
- Moataz A Soliman
- Deanship of Preparatory Year, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Hany E A Ahmed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Egypt
| | - Elsayed H Eltamany
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Ahmed T A Boraei
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Ateyatallah Aljuhani
- Department of Chemistry, College of Science, Taibah University, Al-Madinah, Al-Munawarah, Saudi Arabia
| | - Samir A Salama
- Division of Biochemistry, Department of Pharmacology, College of Pharmacy, Taif University, Taif, Kingdom of Saudi Arabia
| | - Read Alghamdi
- Pharmacognosy and Pharmaceutical Chemistry Department, Pharmacy College, Taibah University, Al-Madinah, Al-Munawarah, Saudi Arabia
| | - Ahmed K B Aljohani
- Pharmacognosy and Pharmaceutical Chemistry Department, Pharmacy College, Taibah University, Al-Madinah, Al-Munawarah, Saudi Arabia
| | - Mohammed Almaghrabi
- Pharmacognosy and Pharmaceutical Chemistry Department, Pharmacy College, Taibah University, Al-Madinah, Al-Munawarah, Saudi Arabia
| | - Mohamed R Aouad
- Department of Chemistry, College of Science, Taibah University, Al-Madinah, Al-Munawarah, Saudi Arabia
| |
Collapse
|
2
|
Albayati S, Uba AI, Yelekçi K. Potential inhibitors of methionine aminopeptidase type II identified via structure-based pharmacophore modeling. Mol Divers 2021; 26:1005-1016. [PMID: 33846894 DOI: 10.1007/s11030-021-10221-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 03/30/2021] [Indexed: 11/29/2022]
Abstract
Methionine aminopeptidase (MetAP2) is a metal-containing enzyme that removes initiator methionine from the N-terminus of a newly synthesized protein. Inhibition of the enzyme is crucial in diminishing cancer growth and metastasis. Fumagillin-a natural irreversible inhibitor of MetAP2-and its derivatives are used as potent MetAP2 inhibitors. However, because of their adverse effects, none of them has progressed to clinical studies. In search for potential reversible inhibitors, we built structure-based pharmacophore models using the crystal structure of MetAP2 complexed with fumagillin (PDB ID: 1BOA). The pharmacophore models were validated using Gunner-Henry scoring method. The best pharmacophore consisting of 1 H-bond donor, 1 H-bond acceptor, and 3 hydrophobic features was used to conduct pharmacophore-based virtual screening of ZINC15 database against MetAP2. The top 10 compounds with pharmacophore fit values > 3.00 were selected for further analysis. These compounds were subjected to absorption, distribution, metabolism, elimination, and toxicity (ADMET) prediction and found to have druglike properties. Furthermore, molecular docking calculations was performed on these hits using AutoDock4 to predict their binding mode and binding energy. Three diverse compounds: ZINC000014903160, ZINC000040174591, and ZINC000409110720 with respective binding energy/docking scores of - 9.22, - 9.21, and -817 kcal/mol, were submitted to 100 ns (MD) simulations using Nanoscale MD (NAMD) software. The compounds showed stable binding mode over time. Therefore, they may serve as a scaffold for further computational and experimental optimization toward the design of more potent and safer MetAP2 inhibitors.
Collapse
Affiliation(s)
- Safana Albayati
- Department of Bioinformatics and Genetics, Faculty of Engineering and Natural Science, Kadir Has University, 34083 Cibali Campus Fatih, Istanbul, Turkey
| | - Abdullahi Ibrahim Uba
- Department of Bioinformatics and Genetics, Faculty of Engineering and Natural Science, Kadir Has University, 34083 Cibali Campus Fatih, Istanbul, Turkey.,Complex Systems Division, Beijing Computational Science Research Center, Beijing, 100193, China
| | - Kemal Yelekçi
- Department of Bioinformatics and Genetics, Faculty of Engineering and Natural Science, Kadir Has University, 34083 Cibali Campus Fatih, Istanbul, Turkey.
| |
Collapse
|
3
|
Novel molecular discovery of promising amidine-based thiazole analogues as potent dual Matrix Metalloproteinase-2 and 9 inhibitors: Anticancer activity data with prominent cell cycle arrest and DNA fragmentation analysis effects. Bioorg Chem 2020; 101:103992. [PMID: 32554279 DOI: 10.1016/j.bioorg.2020.103992] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/20/2020] [Accepted: 05/30/2020] [Indexed: 12/18/2022]
Abstract
Thiazole derivatives are known to possess various biological activities such as antiparasitic, antifungal, antimicrobial and antiproliferative activities. Matrix metalloproteinases (MMPs) are important protease target involved in tumor progression including angiogenesis, tissue invasion, and migration. Therefore, MMPs have also been reported as potential diagnostic and prognostic biomarkers in many types of cancer. Herein, new aryl thiazoles were synthesized and evaluated for their anticancer effects on a panel of cancer cell lines including the invasive MDA-MB-231 line. Some of these compounds showed IC50 values in the submicromolar range in anti-proliferative assays. In order to examine the relationship between their anticancer activity and MMPs targets, the compounds were evaluated for their inhibitory effects on MMP-2 and 9. That data obtained revealed that most of these compounds were potent dual MMP-2/9 inhibitors at nanomolar concentrations. Among these, 2-(1-(2-(2-((E)-4-iodobenzylidene)hydrazineyl)-4-methylthiazol-5-yl)ethylidene)hydrazine-1-carboximidamide (4a) was the most potent non-selective dual MMP-2/9 inhibitor with inhibitory concentrations of 56 and 38 nM respectively. When compound 4a was tested in an MDA-MB-231, HCT-116, MCF-7 model, it effectively inhibited tumor growth, strongly induced cancer cell apoptosis, inhibit cell migration, and suppressed cell cycle progression leading to DNA fragmentation. Taken together, the results of our studies indicate that the newly discovered thiazole-based MMP-2/9 inhibitors have significant potential for anticancer treatment.
Collapse
|
4
|
Ahmed HEA, Ihmaid SK, Omar AM, Shehata AM, Rateb HS, Zayed MF, Ahmed S, Elaasser MM. Design, synthesis, molecular docking of new lipophilic acetamide derivatives affording potential anticancer and antimicrobial agents. Bioorg Chem 2017; 76:332-342. [PMID: 29227917 DOI: 10.1016/j.bioorg.2017.11.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 11/16/2022]
Abstract
Fifteen new substituted N-2-(2-oxo-3-phenylquinoxalin-1(2H)-yl) acetamides 5a-f, 6a-f, and 8a-c were synthesized by reacting ethyl 2-(2-oxo-3-phenylquinoxalin-1(2H)-yl)acetate with various primary amines including benzylamines, sulfonamides, and amino acids. The in vitro antimicrobial screening of the target compounds was screened to assess their antibacterial and antifungal activity. As a result, seven compounds namely; 5a, 5c, 5d, 6a, 6c, 8b and 8c showed a promising broad spectrum antibacterial activity against both Gram-positive and Gram-negative strains. Among these, the analogs 5c and 6d were nearly as equiactive as ciprofloxacin drug. Meanwhile, four compounds namely; 5c, 6a, 6f and 8c exhibited appreciable antifungal activity with MIC values range 33-40 mg/mL comparable with clotrimazole (MIC 25 mg/mL). In addition, the anticancer effects of the synthesized compounds were evaluated against three cancer lines. The data obtained revealed the benzylamines and sulpha derivatives were the most active compounds especially 5f and 6f ones. Further EGFR enzymatic investigation was carried out for these most active compounds 5f and 6f resulting in inhibitory activity by 1.89 and 2.05 µM respectively. Docking simulation was performed as a trial to study the mechanisms and binding modes of these compounds toward the enzyme target, EGFR protein kinase enzyme. The results revealed good compounds placement in the active sites and stable interactions similar to the co-crystallized reference ligand. Collectively, the analogs 5f and 6f could be further utilized and optimized as good cytotoxic agents.
Collapse
Affiliation(s)
- Hany E A Ahmed
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia; Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
| | - Saleh K Ihmaid
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Abdelsattar M Omar
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, King Abdul-Aziz University, Jeddah, Saudi Arabia
| | - Ahmed M Shehata
- Pharmacology and Toxicology Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Egypt
| | - Heba S Rateb
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia; Department of Pharmaceutical and Medicinal Chemistry, Pharmacy College, Misr University for Science and Technology, Cairo, Egypt
| | - Mohammed F Zayed
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia; Pharmaceutical Chemistry Department, Faculty of Pharmacy, King Abdul-Aziz University, Jeddah, Saudi Arabia
| | - Sahar Ahmed
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia; Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Mahmoud M Elaasser
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
5
|
Ihmaid S, Ahmed HE, Al-Sheikh Ali A, Sherif YE, Tarazi HM, Riyadh SM, Zayed MF, Abulkhair HS, Rateb HS. Rational design, synthesis, pharmacophore modeling, and docking studies for identification of novel potent DNA-PK inhibitors. Bioorg Chem 2017; 72:234-247. [DOI: 10.1016/j.bioorg.2017.04.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 04/12/2017] [Accepted: 04/13/2017] [Indexed: 10/19/2022]
|