1
|
Zhong D, Wan Z, Cai J, Quan L, Zhang R, Teng T, Gao H, Fan C, Wang M, Guo D, Zhang H, Jia Z, Sun Y. mPGES-2 blockade antagonizes β-cell senescence to ameliorate diabetes by acting on NR4A1. Nat Metab 2022; 4:269-283. [PMID: 35228744 DOI: 10.1038/s42255-022-00536-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/19/2022] [Indexed: 12/14/2022]
Abstract
β-cell dysfunction is a hallmark of type 1 and type 2 diabetes. Type 2 diabetes is strongly associated with ageing-related β-cell abnormalities that arise through unknown mechanisms. Here we show better β-cell identity, less β-cell senescence, enhanced glucose-stimulated insulin secretion and improved glucose homeostasis in global microsomal prostaglandin E synthase-2 (mPGES-2)-deficient mice challenged with a high-fat diet or bred with a genetic model of type 2 diabetes (db/db mice). Furthermore, the function of mPGES-2 in β-cells is validated using mice with β-cell-specific mPGES-2 deficiency or overexpression. Mechanistically, the protective role of mPGES-2 deletion is induced by antagonizing β-cell senescence via interference of the PGE2-EP3-NR4A1 signalling axis. We also discover an inhibitor of mPGES-2, SZ0232, which protects against β-cell dysfunction and diabetes, similar to mPGES-2 deletion. We conclude that mPGES-2 contributes to ageing-associated β-cell senescence and dysfunction via the PGE2-EP3-NR4A1 signalling axis. Pharmacologic blockade of mPGES-2 might be effective for treating ageing-associated β-cell dysfunction and diabetes.
Collapse
Affiliation(s)
- Dandan Zhong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
| | - Zhikang Wan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, P. R. China
| | - Jie Cai
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
- Public Experimental Research Center of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, P. R. China
| | - Lingling Quan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
| | - Rumeng Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
- Public Experimental Research Center of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, P. R. China
| | - Tian Teng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
| | - Hang Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
| | - Chenyu Fan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
| | - Meng Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, P. R. China
| | - Dong Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
| | - Hongxing Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, P. R. China
| | - Zhanjun Jia
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China.
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, P. R. China.
| | - Ying Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China.
| |
Collapse
|
2
|
Synthesis and evaluation of new phenyl acrylamide derivatives as potent non-nucleoside anti-HBV agents. Bioorg Med Chem 2020; 29:115892. [PMID: 33285406 DOI: 10.1016/j.bmc.2020.115892] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022]
Abstract
As a continuation of our previous work, a series of new phenyl acrylamide derivatives (4Aa-g, 4Ba-t, 5 and 6a-c) were designed and synthesized as non-nucleoside anti-HBV agents. Among them, compound 4Bs could potently inhibit HBV DNA replication in wild-type and lamivudine (3TC)/entecavir resistant HBV mutant strains with IC50 values of 0.19 and 0.18 μM, respectively. Notably, the selective index value of 4Bs was above 526, indicating the favorable safety profile. Interestingly, unlike nucleoside analogue 3TC, 4Bs could significantly inhibit 3.5 kb pgRNA expression. Molecular docking study revealed that 4Bs could fit well into the dimer-dimer interface of HBV core protein by hydrophobic, π-π and H-bond interactions. Considering the potent anti-HBV activity, low toxicity and diverse anti-HBV mechanism from that of nucleoside anti-HBV agent 3TC, compound 4Bs might be a promising lead to develop novel non-nucleoside anti-HBV therapeutic agents, and warranted further investigation.
Collapse
|
3
|
Cheng XJ, Gu JX, Pang YP, Liu J, Xu T, Li XR, Hua YZ, Newell KA, Huang XF, Yu Y, Liu Y. Tacrine-Hydrogen Sulfide Donor Hybrid Ameliorates Cognitive Impairment in the Aluminum Chloride Mouse Model of Alzheimer's Disease. ACS Chem Neurosci 2019; 10:3500-3509. [PMID: 31244052 DOI: 10.1021/acschemneuro.9b00120] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder, characterized by progressive loss of memory and cognitive function, and is associated with the deficiency of synaptic acetylcholine, as well as chronic neuroinflmmation. Tacrine, a potent acetylcholinesterase (AChE) inhibitor, was previously a prescribed clinical therapeutic agent for AD, but it was recently withdrawn because it caused widespread hepatotoxicity. Hydrogen sulfide (H2S) has neuroprotective, hepatoprotective, and anti-inflammatory effects. In this study, we synthesized a new compound, a tacrine-H2S donor hybrid (THS) by introducing H2S-releasing moieties (ACS81) to tacrine. Subsequently, pharmacological and biological evaluations of THS were conducted in the aluminum trichloride (AlCl3)-induced AD mice model. We found that THS (15 mmol/kg) improved cognitive and locomotor activity in AD mice in the step-through test and open field test, respectively. THS showed strong AChE inhibitory activity in the serum and hippocampus of AD mice and induced increased hippocampal H2S levels. Furthermore, THS reduced mRNA expression of the proinflammatory cytokines, TNF-α, IL-6, and IL-1β and increased synapse-associated proteins (synaptophysin and postsynaptic density protein 95) in the hippocampus of AD mice. Importantly, THS, unlike tacrine, did not increase liver transaminases (alanine transaminase and aspartate transaminase) or proinflammatory cytokines, indicating THS is much safer than tacrine. Therefore, the multifunctional effects of this new hybrid compound of tacrine and H2S indicate it is a promising compound for further research into the treatment of AD.
Collapse
Affiliation(s)
- Xiao-jing Cheng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jing-xue Gu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yi-peng Pang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jiao Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Ting Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xin-rui Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yu-zhou Hua
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Kelly A. Newell
- Illawarra Health and Medical Research Institute and Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Xu-Feng Huang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Illawarra Health and Medical Research Institute and Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Illawarra Health and Medical Research Institute and Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Yi Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| |
Collapse
|