1
|
Diaconu D, Savu M, Ciobanu C, Mangalagiu V, Mangalagiu II. Current strategies in design and synthesis of antifungals hybrid and chimeric diazine derivatives. Bioorg Med Chem 2025; 119:118069. [PMID: 39818112 DOI: 10.1016/j.bmc.2025.118069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/04/2025] [Accepted: 01/09/2025] [Indexed: 01/18/2025]
Abstract
In the last decades fungal infections became a major threat to human health having an unacceptably occurrence, a high rate of mortality and the number of patients at risk for these infections continue to increase every year. An effective, modern and very useful strategy in antifungal therapy is represented by the use of chimeric and hybrid drugs, most of them being with azaheterocycle skeleton. In this review, we present an overview from the last five years of the most representative achievements in the field of chimeric and hybrid diazine derivatives with antifungal properties. Within this work we emphasize the most relevant data concerning the synthesis, design, Structure Activity Relationships (SAR) correlations and antifungal activity of the main classes of diazine: 1,2-diazine (pyridazine), 1,3-diazine (pyrimidine), 1,4-diazine (pyrazine) and their fused derivatives.
Collapse
Affiliation(s)
- Dumitrela Diaconu
- Alexandru Ioan Cuza University of Iasi, Faculty of Chemistry, Bd. Carol 11, 700506 Iasi, Romania; Alexandru Ioan Cuza University of Iasi, Institute of Interdisciplinary Research, RECENT-AIR Center, Bd. Carol 11, 700506 Iasi, Romania
| | - Marius Savu
- Alexandru Ioan Cuza University of Iasi, Faculty of Chemistry, Bd. Carol 11, 700506 Iasi, Romania
| | - Catalina Ciobanu
- Alexandru Ioan Cuza University of Iasi, Institute of Interdisciplinary Research, CERNESIM Center, Bd. Carol 11, 700506 Iasi, Romania
| | - Violeta Mangalagiu
- Alexandru Ioan Cuza University of Iasi, Institute of Interdisciplinary Research, CERNESIM Center, Bd. Carol 11, 700506 Iasi, Romania; Stefan Cel Mare University of Suceava, Faculty of Food Engineering, 13 Universitatii Str., 720229 Suceava, Romania
| | - Ionel I Mangalagiu
- Alexandru Ioan Cuza University of Iasi, Faculty of Chemistry, Bd. Carol 11, 700506 Iasi, Romania.
| |
Collapse
|
2
|
Nandakumar V, Selvi Ramasamy S, Adhigaman K, Arumugam D, Ramasamy S, Vivek R, Athimoolam S, Thangaraj S. Investigating the Antiproliferative Activity of Novel 4-Chloro-8-Nitro-1,2-Dihydro-3-Quinoline Acylhydrazones on Human Cervical Cancer Cell Lines. Chem Biodivers 2024:e202401636. [PMID: 39543828 DOI: 10.1002/cbdv.202401636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/17/2024]
Abstract
A new series of acyl hydrazones have been synthesized from 4-chloro-8-nitro-1,2-dihydroquinoline-3-carbaldehyde. These compounds were characterized using various spectroscopic techniques. Density functional theoretical (DFT) studies were conducted to understand the correlation between electronic parameters and biological activity. The biological activity of the compounds was theoretically examined through molecular docking and ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) analysis. The compounds demonstrated high absorption rates and were found to be non-hepatotoxic. Preliminary cytotoxicity screenings against HeLa cell lines identified compound 7 as the most potent, with an IC50 value of 18.8 μM. This compound was further selected for bioimaging studies. The results indicate that compound 7 induces apoptosis at its IC50 concentration, suggesting its potential as an anticancer agent.
Collapse
Affiliation(s)
- Vandana Nandakumar
- Department of Chemistry, Bharathiar University, 641046, Coimbatore, Tamilnadu, India
| | | | - Kaviyarasu Adhigaman
- Department of Chemistry, Bharathiar University, 641046, Coimbatore, Tamilnadu, India
| | - Deepak Arumugam
- Department of Physics, Bharathiar University, 641046, Coimbatore, Tamilnadu, India
| | - Shankar Ramasamy
- Department of Physics, Bharathiar University, 641046, Coimbatore, Tamilnadu, India
| | - Raju Vivek
- Department of Zoology, Bharathiar University, 641046, Coimbatore, Tamilnadu, India
| | | | - Suresh Thangaraj
- Department of Chemistry, Bharathiar University, 641046, Coimbatore, Tamilnadu, India
| |
Collapse
|
3
|
de Albuquerque IKP, de Santana DL, de Assis Graciano Dos Santos F, Coutinho FN, de Almeida VM, de Faria AR, Macêdo DPC, Neves RP. Novel aza-bicyclic 2-isoxazoline acylhydrazone hybrids and their synergistic potential with fluconazole against a drug-resistant Candida albicans strain. Braz J Microbiol 2024; 55:1811-1816. [PMID: 38739216 PMCID: PMC11153444 DOI: 10.1007/s42770-024-01325-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/01/2024] [Indexed: 05/14/2024] Open
Abstract
As the prevalence of drug-resistant Candida isolates continues to rise, the imperative for identifying novel compounds to enhance the arsenal of antifungal drugs becomes increasingly critical. Consequently, exploring new treatment strategies, including synthesizing molecular hybrids and applying combination therapy, is essential. For this reason, this study evaluated the efficacy of ten molecular hybrids of aza-bicyclic 2-isoxazoline-acylhydrazone belonging to two series 90 and 91 as possible anti-Candida agents. In addition, we also investigated the interaction between the hybrids and fluconazole, a commonly used antifungal drug. We evaluated the antifungal effect of aza-bicyclic 2-isoxazoline-acylhydrazone hybrid compounds against six Candida spp. strains that target planktonic cells. However, none of these new molecules were inhibitory active at the tested concentrations (2 to 1,024 µg/mL). Moreover, we analyzed the interaction between the ten new hybrid molecules and fluconazole using the checkerboard assay, employing two different methodologies for reading the plate. For this, one isolate fluconazole-resistant was selected. We observed that only one combination, 6-(4-tert-butylbenzoil)-4,5,6,6a-tetrahydro-3a-H-pirrole[3,2-d]isoxazole-3-carboxylic(furan-2-metilidene)-hydrazide (91e) and fluconazole, exhibited a synergistic interaction (FICI range 0.0781 to 0.4739). The combination successfully inhibited the growth of C. albicans CA2 fluconazole-resistant, and no interaction was observed in an isolate susceptible to fluconazole. Additionally, these results emphasize the continued need for research into new compounds and the importance of using combined approaches to increase their activity.
Collapse
Affiliation(s)
| | - Débora Lopes de Santana
- Departamento de Medicina Tropical, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | | - Felipe Neves Coutinho
- Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | | - Antônio Rodolfo de Faria
- Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | | - Rejane Pereira Neves
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
- Laboratório Sylvio Campos (Micologia Médica), Departamento de Micologia, Universidade Federal de Pernambuco-UFPE, Av. Prof. Nelson Chaves, Cidade Universitária, Pernambuco, 50670-420, Brazil.
| |
Collapse
|
4
|
Mhaidat I, Banidomi S, Wedian F, Badarneh R, Tashtoush H, Almomani W, Al-Mazaideh GM, Alharbi NS, Thiruvengadam M. Antioxidant and antibacterial activities of 5-mercapto(substitutedthio)-4-substituted-1,2,4-triazol based on nalidixic acid: A comprehensive study on its synthesis, characterization, and In silico evaluation. Heliyon 2024; 10:e28204. [PMID: 38571635 PMCID: PMC10987910 DOI: 10.1016/j.heliyon.2024.e28204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 04/05/2024] Open
Abstract
This study introduces a series of novel Alkyl thio-1,2,4-triazole (4a-p) and mercapto-1,2,4-triazole (3a-d) compounds derived from nalidixic acid. The synthesis was streamlined, involving interactions between nalidixic acid hydrazide and various isothiocyanates to yield cyclic and alkyl(aryl) sulfide compounds, characterized using 1H NMR, 13C NMR, IR, and elemental analysis. Antioxidant capabilities were quantified through DPPH and ABTS assays, highlighting significant potential, especially for compound 3d, which demonstrated an ABTS IC50 value of 0.397 μM, on par with ascorbic acid (IC50 = 0.87 μM). Antibacterial efficacy was established through MIC assessments against a broad spectrum of Gram-positive and Gram-negative bacteria, including Candida albicans. Compounds 3b, 4e, 4h, 4j, 4i, 4m, and 4o showed broad-spectrum activity, with 4k and 4m exhibiting pronounced potency against E. coli. Molecular docking studies validated the antibacterial potential, with compounds 4f and 4h showing high binding affinities (docking scores of -9.8 and -9.6 kcal/mol, respectively), indicating robust interactions with the bacterial enzyme targets. These scores underscore the compounds' mechanistic basis for their antibacterial action and support their therapeutic promise. Furthermore, compounds 3b, 4i, and 4m, identified through drug-likeness and toxicity predictions, were highlighted for their favorable profiles, suggesting their suitability for oral antibiotic therapies. This comprehensive study, blending synthetic, in vitro, and in silico approaches, emphasizes the triazole derivatives' potential as future candidates for antibiotic and antioxidant applications, particularly spotlighting compounds 3b, 4i, and 4m due to their promising efficacy and safety profiles.
Collapse
Affiliation(s)
- Ibrahim Mhaidat
- Department of Chemistry, Faculty of Sciences, Yarmouk University, Irbid, 21163, Jordan
| | - Sojoud Banidomi
- Department of Chemistry, Faculty of Sciences, Yarmouk University, Irbid, 21163, Jordan
| | - Fadel Wedian
- Department of Chemistry, Faculty of Sciences, Yarmouk University, Irbid, 21163, Jordan
| | - Rahaf Badarneh
- Department of Chemistry, Faculty of Sciences, Yarmouk University, Irbid, 21163, Jordan
| | - Hasan Tashtoush
- Department of Chemistry, Faculty of Sciences, Yarmouk University, Irbid, 21163, Jordan
| | - Waleed Almomani
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, 21163, Jordan
| | - Ghassab M. Al-Mazaideh
- Department of Chemistry and Chemical Technology, Tafila Technical University, Tafila, Jordan
| | - Naiyf S. Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Sciences, Konkuk University, Seoul, 05029, South Korea
| |
Collapse
|
5
|
Sumran G, Jain N, Kumar P, Aggarwal R. Trifluoromethyl-β-dicarbonyls as Versatile Synthons in Synthesis of Heterocycles. Chemistry 2024; 30:e202303599. [PMID: 38055226 DOI: 10.1002/chem.202303599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/07/2023]
Abstract
Trifluoromethyl group relishes a privileged position in the realm of medicinal chemistry because its incorporation into organic molecules often enhances the bioactivity by altering pharmacological profile of molecule. Trifluoromethyl-β-dicarbonyls have emerged as pivotal building blocks in synthetic organic chemistry due to their facile accessibility, stability and remarkable versatility. Owing to presence of nucleophilic and electrophilic sites, they offer multifunctional sites for the reaction. This review covers a meticulous exploration of their multifaceted role, encompassing an in-depth analysis of mechanism, extensive scope, limitations and wide-ranging applications in diverse organic synthesis, covering the literature from the 21st century. This comprehensive review encapsulates the applications of trifluoromethyl-β-dicarbonyls and their synthetic equivalents as precursors of complex and diverse heterocyclic scaffolds, fused heterocycles and spirocyclic compounds having medicinal and material importance. Their potent synthetic utility in cyclocondensation reactions with binucleophiles, cycloaddition reactions, C-C bond formations, asymmetric multicomponent reactions using classical/solvent-free/catalytic synthesis have been presented. Influence of unsymmetrical trifluoromethyl-β-diketones on regioselectivity of transformation is also reviewed. This review will benefit the synthetic and pharmaceutical communities to explore trifluoromethyl-β-dicarbonyls as trifluoromethyl building blocks for fabrication of heterocyclic scaffolds having implementation into drug discovery programs in the imminent future.
Collapse
Affiliation(s)
- Garima Sumran
- Department of Chemistry, D. A. V. College (Lahore), Ambala City, 134 003, Haryana, India
| | - Naman Jain
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136 119, India
| | - Prince Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136 119, India
| | - Ranjana Aggarwal
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136 119, India
- CSIR-National Institute of Science Communication and Policy Research, New Delhi, 110012, India
| |
Collapse
|
6
|
Singh A, Singh K, Sharma A, Kaur K, Chadha R, Bedi PMS. Recent advances in antifungal drug development targeting lanosterol 14α-demethylase (CYP51): A comprehensive review with structural and molecular insights. Chem Biol Drug Des 2023; 102:606-639. [PMID: 37220949 DOI: 10.1111/cbdd.14266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 05/25/2023]
Abstract
Fungal infections are posing serious threat to healthcare system due to emerging resistance among available antifungal agents. Among available antifungal agents in clinical practice, azoles (diazole, 1,2,4-triazole and tetrazole) remained most effective and widely prescribed antifungal agents. Now their associated side effects and emerging resistance pattern raised a need of new and potent antifungal agents. Lanosterol 14α-demethylase (CYP51) is responsible for the oxidative removal of 14α-methyl group of sterol precursors lanosterol and 24(28)-methylene-24,25-dihydrolanosterol in ergosterol biosynthesis hence an essential component of fungal life cycle and prominent target for antifungal drug development. This review will shed light on various azole- as well as non-azoles-based derivatives as potential antifungal agents that target fungal CYP51. Review will provide deep insight about structure activity relationship, pharmacological outcomes, and interactions of derivatives with CYP51 at molecular level. It will help medicinal chemists working on antifungal development in designing more rational, potent, and safer antifungal agents by targeting fungal CYP51 for tackling emerging antifungal drug resistance.
Collapse
Affiliation(s)
- Atamjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Karanvir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Aman Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Kirandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Renu Chadha
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Preet Mohinder Singh Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
- Drug and Pollution testing Laboratory, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
7
|
Doraghi F, Mohaghegh F, Qareaghaj OH, Larijani B, Mahdavi M. Synthesis of N-, O-, and S-heterocycles from aryl/alkyl alkynyl aldehydes. RSC Adv 2023; 13:13947-13970. [PMID: 37181524 PMCID: PMC10167737 DOI: 10.1039/d3ra01778h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/26/2023] [Indexed: 05/16/2023] Open
Abstract
In the field of heterocyclic synthesis, alkynyl aldehydes serve as privileged reagents for cyclization reactions with other organic compounds to construct a broad spectrum of N-, O-, and S-heterocycles. Due to the immense application of heterocyclic molecules in pharmaceuticals, natural products, and material chemistry, the synthesis of such scaffolds has received wide attention. The transformations occurred under metal-catalyzed, metal-free-promoted, and visible-light-mediated systems. The present review article highlights the progress made in this field over the past two decades.
Collapse
Affiliation(s)
- Fatemeh Doraghi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | - Farid Mohaghegh
- School of Chemistry, College of Science, University of Tehran Tehran Iran
| | | | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
8
|
Abouzied AS, Alzahrani AM, Abulreesh HH, Elbanna K, Alamri A, Hagbani TA, Alobaida A, Younes KM, Farghaly TA. Assessment of Newly Synthesized Triazole Compounds Using ZnO(NPs) as Antimicrobial Agents and Theoretical Studies for Inhibiting COVID-19. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2153882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Amr S. Abouzied
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, Kingdom of Saudi Arabia
- Department of Pharmaceutical Chemistry, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Asma M. Alzahrani
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukkarramah, Kingdom of Saudi Arabia
| | - Hussein H. Abulreesh
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
- Research Laboratories Unit, Faculty of Applied Science, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Khaled Elbanna
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
- Research Laboratories Unit, Faculty of Applied Science, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
- Department of Agricultural Microbiology, Faculty of Agriculture, Fayoum University, Faiyum, Egypt
| | - Abdulwahab Alamri
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail, Kingdom of Saudi Arabia
| | - Turki Al Hagbani
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il, Kingdom of Saudi Arabia
| | - Ahmed Alobaida
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il, Kingdom of Saudi Arabia
| | - Kareem M. Younes
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, Kingdom of Saudi Arabia
- Department of Analytical Chemistry, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | | |
Collapse
|
9
|
Pyridine Compounds with Antimicrobial and Antiviral Activities. Int J Mol Sci 2022; 23:ijms23105659. [PMID: 35628466 PMCID: PMC9147400 DOI: 10.3390/ijms23105659] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 02/06/2023] Open
Abstract
In the context of the new life-threatening COVID-19 pandemic caused by the SARS-CoV-2 virus, finding new antiviral and antimicrobial compounds is a priority in current research. Pyridine is a privileged nucleus among heterocycles; its compounds have been noted for their therapeutic properties, such as antimicrobial, antiviral, antitumor, analgesic, anticonvulsant, anti-inflammatory, antioxidant, anti-Alzheimer’s, anti-ulcer or antidiabetic. It is known that a pyridine compound, which also contains a heterocycle, has improved therapeutic properties. The singular presence of the pyridine nucleus, or its one together with one or more heterocycles, as well as a simple hydrocarbon linker, or grafted with organic groups, gives the key molecule a certain geometry, which determines an interaction with a specific protein, and defines the antimicrobial and antiviral selectivity for the target molecule. Moreover, an important role of pyridine in medicinal chemistry is to improve water solubility due to its poor basicity. In this article, we aim to review the methods of synthesis of pyridine compounds, their antimicrobial and antiviral activities, the correlation of pharmaceutical properties with various groups present in molecules as well as the binding mode from Molecular Docking Studies.
Collapse
|
10
|
Yang L, Xu WB, Sun L, Zhang C, Jin CH. SAR analysis of heterocyclic compounds with monocyclic and bicyclic structures as antifungal agents. ChemMedChem 2022; 17:e202200221. [PMID: 35475328 DOI: 10.1002/cmdc.202200221] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Indexed: 11/12/2022]
Abstract
Infections caused by eukaryotic organisms, such as fungi, are generally more difficult to treat than bacterial infections. With the widespread use of antifungal drugs in humans and plants, resistance and toxicity have emerged. Therefore, it is desirable to develop new antifungal drugs with low toxicity that are not susceptible to the development of resistance. This review presents a summary of the past 2017 to 2021 years of research on heterocyclic compounds as antifungal agents for use in humans and plants, focusing on the structure-activity relationships (SAR) of these compounds. This review may provide ideas and data for designing and developing new antifungal drugs with fewer side effects compared with currently available drugs.
Collapse
Affiliation(s)
- Liu Yang
- Yanbian University, College of Pharmacy, CHINA
| | - Wen Bo Xu
- Yanbian University, College of Pharmacy, CHINA
| | | | | | - Cheng Hua Jin
- Yanbian University, College of Pharmacy, Gongyuan, 133002, Yanji, CHINA
| |
Collapse
|
11
|
Novel 1, 2, 4-Triazoles as Antifungal Agents. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4584846. [PMID: 35360519 PMCID: PMC8964166 DOI: 10.1155/2022/4584846] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/03/2022] [Indexed: 12/17/2022]
Abstract
The development of innovative antifungal agents is essential. Some fungicidal agents are no longer effective due to resistance development, various side effects, and high toxicity. Therefore, the synthesis and development of some new antifungal agents are necessary. 1,2,4-Triazole is one of the most essential pharmacophore systems between five-membered heterocycles. The structure-activity relationship (SAR) of this nitrogen-containing heterocyclic compound showed potential antifungal activity. The 1,2,4-triazole core is present as the nucleus in a variety of antifungal drug categories. The most potent and broad activity of triazoles have confirmed them as pharmacologically significant moieties. The goal of this review is to highlight recent developments in the synthesis and SAR study of 1,2,4-triazole as a potential fungicidal compound. In this study, we provide the results of a biological activity evaluation using various structures and figures. Literature investigation showed that 1, 2, 4-triazole derivatives reveal the extensive span of antifungal activity. This review will assist researchers in the development of new potential antifungal drug candidates with high effectiveness and selectivity.
Collapse
|
12
|
Strzelecka M, Świątek P. 1,2,4-Triazoles as Important Antibacterial Agents. Pharmaceuticals (Basel) 2021; 14:ph14030224. [PMID: 33799936 PMCID: PMC7999634 DOI: 10.3390/ph14030224] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022] Open
Abstract
The global spread of drug resistance in bacteria requires new potent and safe antimicrobial agents. Compounds containing the 1,2,4-triazole ring in their structure are characterised by multidirectional biological activity. A large volume of research on triazole and their derivatives has been carried out, proving significant antibacterial activity of this heterocyclic core. This review is useful for further investigations on this scaffold to harness its optimum antibacterial potential. Moreover, rational design and development of the novel antibacterial agents incorporating 1,2,4-triazole can help in dealing with the escalating problems of microbial resistance.
Collapse
|