1
|
Moftah HK, Mousa MHA, Elrazaz EZ, Kamel AS, Lasheen DS, Georgey HH. Novel quinazolinone Derivatives: Design, synthesis and in vivo evaluation as potential agents targeting Alzheimer disease. Bioorg Chem 2024; 143:107065. [PMID: 38150939 DOI: 10.1016/j.bioorg.2023.107065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/02/2023] [Accepted: 12/23/2023] [Indexed: 12/29/2023]
Abstract
Since Alzheimer disease is one of the most prevalent types of dementia with a high mortality and disability rate, so development of multi-target drugs becomes the major strategy for battling AD. This study shows the development of a series of quinazolinone based derivatives as novel, multifunctional anti-AD drugs that exhibit both cholinesterase inhibitoryand anti-inflammatory properties. The preliminary results of the in vitro AChE inhibition activity showed that compounds 4b, 5a, 6f, 6h and 7b were better represented for further evaluation. Furthermore, in-vivo AChE inhibition activity and behavior Morris water maze test against donepezil as reference drug were evaluated. Additionally, hippocampal inflammatory markers; TNF-α, NFĸB, IL-1β and IL-6 and antioxidant markers; SOD and MDA were assessed to evaluate the efficacy of quinazolinone derivatives against AD hallmarks. The results showed that 6f, 6h and 7b have promising anti-acetylcholinesterase, anti-inflammatory and antioxidant activities thus, have a significant effect in treatment of AD. Moreover, Histopathological examination revealed that 6f, 6h and 7b derivatives have neuroprotective effect against neuronal damage caused by induced scopolamine model in mice. Finally, the binding ability of the synthesized derivatives to the target, AChE was investigated through molecular docking which reflected significant interactions to the target based on their docking binding scores. Hence, the newly designed quinazolinone derivatives possess promising anti-acetylcholinesterase activity and challenging for the management of AD in the future.
Collapse
Affiliation(s)
- Hadeer K Moftah
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Gesr El Suez st, PO 11786, Cairo, Egypt
| | - Mai H A Mousa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Gesr El Suez st, PO 11786, Cairo, Egypt
| | - Eman Z Elrazaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Cairo 11566, Egypt
| | - Ahmed S Kamel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo P.O. Box 11562, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Gesr El Suez st, PO 11786 Cairo, Egypt
| | - Deena S Lasheen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Cairo 11566, Egypt
| | - Hanan H Georgey
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo P.O. Box 11562, Egypt.
| |
Collapse
|
2
|
Bayraktar G, Alptüzün V. Recent Molecular Targets and their Ligands for the Treatment of Alzheimer Disease. Curr Top Med Chem 2024; 24:2447-2464. [PMID: 39171472 DOI: 10.2174/0115680266318722240809050235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/16/2024] [Accepted: 07/11/2024] [Indexed: 08/23/2024]
Abstract
Alzheimer's disease is a multifaceted neurodegenerative disease. Cholinergic dysfunction, amyloid β toxicity, tauopathies, oxidative stress, neuroinflammation are among the main pathologies of the disease. Ligands targeting more than one pathology, multi-target directed ligands, attract attention in the recent years to tackle Alzheimer's disease. In this review, we aimed to cover different biochemical pathways, that are revealed in recent years for the pathology of the disease, as druggable targets such as cannabinoid receptors, matrix metalloproteinases, histone deacetylase and various kinases including, glycogen synthase kinase-3, mitogen-activated protein kinase and c-Jun N-terminal kinase, and their ligands for the treatment of Alzheimer's disease in the hope of providing more realistic insights into the field.
Collapse
Affiliation(s)
- Gülşah Bayraktar
- Department of Pharmaceutical Chemistry, Ege University, Faculty of Pharmacy, Izmir, 35040, Turkey
| | - Vildan Alptüzün
- Department of Pharmaceutical Chemistry, Ege University, Faculty of Pharmacy, Izmir, 35040, Turkey
| |
Collapse
|
3
|
Farihi A, Bouhrim M, Chigr F, Elbouzidi A, Bencheikh N, Zrouri H, Nasr FA, Parvez MK, Alahdab A, Ahami AOT. Exploring Medicinal Herbs' Therapeutic Potential and Molecular Docking Analysis for Compounds as Potential Inhibitors of Human Acetylcholinesterase in Alzheimer's Disease Treatment. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1812. [PMID: 37893530 PMCID: PMC10608285 DOI: 10.3390/medicina59101812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023]
Abstract
Background and Objectives: Alzheimer's disease (AD) stands as a pervasive neurodegenerative ailment of global concern, necessitating a relentless pursuit of remedies. This study aims to furnish a comprehensive exposition, delving into the intricate mechanistic actions of medicinal herbs and phytochemicals. Furthermore, we assess the potential of these compounds in inhibiting human acetylcholinesterase through molecular docking, presenting encouraging avenues for AD therapeutics. Materials and Methods: Our approach entailed a systematic exploration of phytochemicals like curcumin, gedunin, quercetin, resveratrol, nobiletin, fisetin, and berberine, targeting their capability as human acetylcholinesterase (AChE) inhibitors, leveraging the PubChem database. Diverse bioinformatics techniques were harnessed to scrutinize molecular docking, ADMET (absorption, distribution, metabolism, excretion, and toxicity), and adherence to Lipinski's rule of five. Results: Results notably underscored the substantial binding affinities of all ligands with specific amino acid residues within AChE. Remarkably, gedunin exhibited a superior binding affinity (-8.7 kcal/mol) compared to the reference standard. Conclusions: These outcomes accentuate the potential of these seven compounds as viable candidates for oral medication in AD treatment. Notably, both resveratrol and berberine demonstrated the capacity to traverse the blood-brain barrier (BBB), signaling their aptitude for central nervous system targeting. Consequently, these seven molecules are considered orally druggable, potentially surpassing the efficacy of the conventional drug, donepezil, in managing neurodegenerative disorders.
Collapse
Affiliation(s)
- Ayoub Farihi
- Unit of Clinic and Cognitive Neuroscience, Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra 14000, Morocco; (A.F.); (A.O.T.A.)
| | - Mohamed Bouhrim
- Bioengineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal 23000, Morocco; (M.B.); (F.C.); (N.B.)
| | - Fatiha Chigr
- Bioengineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal 23000, Morocco; (M.B.); (F.C.); (N.B.)
| | - Amine Elbouzidi
- Laboratory for Agricultural Production Improvement, Biotechnology, and Environment (LAPABE), Faculty of Science, Mohammed First University, Oujda 60000, Morocco
| | - Noureddine Bencheikh
- Bioengineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal 23000, Morocco; (M.B.); (F.C.); (N.B.)
| | - Hassan Zrouri
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, B.P. 717, Oujda 60000, Morocco;
| | - Fahd A. Nasr
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (F.A.N.); (M.K.P.)
| | - Mohammad Khalid Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (F.A.N.); (M.K.P.)
| | - Ahmad Alahdab
- Institute of Pharmacy, Clinical Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Street 17, 17489 Greifswald, Germany
| | - Ahmed Omar Touhami Ahami
- Unit of Clinic and Cognitive Neuroscience, Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra 14000, Morocco; (A.F.); (A.O.T.A.)
| |
Collapse
|
4
|
Falade AO, Adewole KE, Ishola AA, Gyebi GA, Olajide NR. Computational studies on the cholinesterase, beta-secretase 1 (BACE1) and monoamine oxidase (MAO) inhibitory activities of endophytes-derived compounds: towards discovery of novel neurotherapeutics. J Biomol Struct Dyn 2022; 41:2540-2554. [PMID: 35118932 DOI: 10.1080/07391102.2022.2035255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cholinesterases, beta-secretase 1 (BACE1) and monoamine oxidase (MAO) are significant in the etiology of neurodegenerative diseases. Inhibition of these enzymes is therefore a major strategy for the development of neurotherapeutics. Even though, this strategy has birthed some approved synthetic drugs, they are characterized by adverse effects. It is therefore, imperative to explore promising alternatives. Consequently, we assessed the inhibitory activities of some endophytes-derived compounds against selected targets towards discovery of novel neurotherapeutics. Standard inhibitors and 83 endophytes-derived compounds were docked against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), BACE 1 and MAO using AutodockVina while the molecular interactions between the selected targets and the compounds with notable binding affinity were viewed through Discovery Studio Visualizer. Druglikeness and Absorption-Distribution-Metabolism-Excretion-Toxicity (ADMET) and blood brain barrier (BBB) properties of the top 4 compounds were evaluated using the Swiss online ADME web tool and OSIRIS server; ligands-enzymes complex stability was assessed through molecular dynamics (MD) simulation. From the 83 compounds, asperflavin, ascomfurans C, camptothecine and corynesidone A exhibited remarkable inhibitory activity against all the four target enzymes compared to the respective standard inhibitors. However, only corynesidone A could transverse the BBB and predicted to be safe. MD simulation of the unbound and complexed enzymes with corynesidone A showed that the complexes were stable throughout the simulation time. Given the exceptional inhibitory activity of endophytes-derived corynesidone A against the four selected targets, its ability to permeate the BBB, excellent drugability properties as well as its stability when complexed with the enzymes, it is a good candidate for further studies towards development of new neurotherapeutics.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ayodeji Osmund Falade
- Biotechnology, Computational Biochemistry and Phytomedicine Research Group, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo City, Ondo State, Nigeria
| | - Kayode Ezekiel Adewole
- Biotechnology, Computational Biochemistry and Phytomedicine Research Group, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo City, Ondo State, Nigeria
| | | | - Gideon Ampoma Gyebi
- Department of Biochemistry, Faculty of Science and Technology, Bingham University, Karu, Nasarawa, Nigeria.,NpsBC-Cr: Natural products and structural (Bio-Chem)-informatics Computing Research Lab, Bingham University, Karu, Nasarawa, Nigeria
| | - Nurudeen Rasaq Olajide
- Biotechnology, Computational Biochemistry and Phytomedicine Research Group, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo City, Ondo State, Nigeria
| |
Collapse
|
5
|
LI Z, LI J, LI M, CAI A, LIU H, MIAO G, SHAN T, MA J. Research of therapeutic basis of Astragalus P.E intervention based on the content of matrix metalloproteinase (MMP) protein in the serum of patients with Alzheimer's disease (AD). FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.48622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | | | | | - Hong LIU
- Hebei Engineering University, China
| | | | | | | |
Collapse
|
6
|
BACE1 and cholinesterase inhibitory activities of compounds from Cajanus cajan and Citrus reticulata: an in silico study. In Silico Pharmacol 2021; 9:14. [PMID: 33520593 DOI: 10.1007/s40203-020-00067-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 12/14/2020] [Indexed: 10/22/2022] Open
Abstract
Alzheimer's disease (AD) is one of the major neurodegenerative diseases whose underlying risk factors are yet to be fully understood. However, reduced cellular level of cholinesterase, as well as formation and deposition of amyloid plaques (Aβ) are thought to play critical roles in the pathogenesis of AD. Therefore, increases in cholinergic transmitter levels via cholinesterase (ChE) inhibitors as well as inhibition of amyloid plaques formation and aggregation via beta secretase-1 (BACE1) inhibitors have been proposed as treatment for this disease. This study was aimed at investigating the BACE1 and ChE inhibitory properties of compounds from Cajanus cajan and Citrus reticulata based on their traditional connection with the management of neurodegenerative diseases, coupled with their protective effects on chemical-induced cognitive impairment. Using in silico methods, one hundred and nineteen compounds from C. cajan and C. reticulata were docked with acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and BACE1 using Vina. Molecular interactions of the top-ranked compounds for the 3 protein targets were viewed with Discovery Studio, followed by characterization of their ADME properties using the Swiss online ADME web tool. Among the one hundred and ninety nine compounds screened, 3 compounds, genistin (76), naphthalen-2-yl-acetic acid, 6-hydroxy-6-methyl-cyclodecyl ester (94) and vitexin (119) have remarkable binding affinity for the three protein targets and passed the oral drugability test, while only naphthalen-2-yl-acetic acid, 6-hydroxy-6-methyl-cyclodecyl ester (94) exhibited BBB permeation property. Genistin and vitexin from C. cajan and naphthalen-2-yl-acetic acid, 6-hydroxy-6-methyl-cyclodecyl ester from C. reticulata possibly contributed, at least in part, to the neurotherapeutic potentials of these plants.
Collapse
|
7
|
Auxtero MD, Chalante S, Abade MR, Jorge R, Fernandes AI. Potential Herb-Drug Interactions in the Management of Age-Related Cognitive Dysfunction. Pharmaceutics 2021; 13:124. [PMID: 33478035 PMCID: PMC7835864 DOI: 10.3390/pharmaceutics13010124] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/25/2022] Open
Abstract
Late-life mild cognitive impairment and dementia represent a significant burden on healthcare systems and a unique challenge to medicine due to the currently limited treatment options. Plant phytochemicals have been considered in alternative, or complementary, prevention and treatment strategies. Herbals are consumed as such, or as food supplements, whose consumption has recently increased. However, these products are not exempt from adverse effects and pharmacological interactions, presenting a special risk in aged, polymedicated individuals. Understanding pharmacokinetic and pharmacodynamic interactions is warranted to avoid undesirable adverse drug reactions, which may result in unwanted side-effects or therapeutic failure. The present study reviews the potential interactions between selected bioactive compounds (170) used by seniors for cognitive enhancement and representative drugs of 10 pharmacotherapeutic classes commonly prescribed to the middle-aged adults, often multimorbid and polymedicated, to anticipate and prevent risks arising from their co-administration. A literature review was conducted to identify mutual targets affected (inhibition/induction/substrate), the frequency of which was taken as a measure of potential interaction. Although a limited number of drugs were studied, from this work, interaction with other drugs affecting the same targets may be anticipated and prevented, constituting a valuable tool for healthcare professionals in clinical practice.
Collapse
Affiliation(s)
- Maria D. Auxtero
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| | - Susana Chalante
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| | - Mário R. Abade
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| | - Rui Jorge
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
- Polytechnic Institute of Santarém, School of Agriculture, Quinta do Galinheiro, 2001-904 Santarém, Portugal
- CIEQV, Life Quality Research Centre, IPSantarém/IPLeiria, Avenida Dr. Mário Soares, 110, 2040-413 Rio Maior, Portugal
| | - Ana I. Fernandes
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| |
Collapse
|