1
|
Vicente ATS, Salvador JAR. PROteolysis-Targeting Chimeras (PROTACs) in leukemia: overview and future perspectives. MedComm (Beijing) 2024; 5:e575. [PMID: 38845697 PMCID: PMC11154823 DOI: 10.1002/mco2.575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 06/09/2024] Open
Abstract
Leukemia is a heterogeneous group of life-threatening malignant disorders of the hematopoietic system. Immunotherapy, radiotherapy, stem cell transplantation, targeted therapy, and chemotherapy are among the approved leukemia treatments. Unfortunately, therapeutic resistance, side effects, relapses, and long-term sequelae occur in a significant proportion of patients and severely compromise the treatment efficacy. The development of novel approaches to improve outcomes is therefore an unmet need. Recently, novel leukemia drug discovery strategies, including targeted protein degradation, have shown potential to advance the field of personalized medicine for leukemia patients. Specifically, PROteolysis-TArgeting Chimeras (PROTACs) are revolutionary compounds that allow the selective degradation of a protein by the ubiquitin-proteasome system. Developed against a wide range of cancer targets, they show promising potential in overcoming many of the drawbacks associated with conventional therapies. Following the exponential growth of antileukemic PROTACs, this article reviews PROTAC-mediated degradation of leukemia-associated targets. Chemical structures, in vitro and in vivo activities, pharmacokinetics, pharmacodynamics, and clinical trials of PROTACs are critically discussed. Furthermore, advantages, challenges, and future perspectives of PROTACs in leukemia are covered, in order to understand the potential that these novel compounds may have as future drugs for leukemia treatment.
Collapse
Affiliation(s)
- André T. S. Vicente
- Laboratory of Pharmaceutical ChemistryFaculty of PharmacyUniversity of CoimbraCoimbraPortugal
- Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- Center for Innovative Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
| | - Jorge A. R. Salvador
- Laboratory of Pharmaceutical ChemistryFaculty of PharmacyUniversity of CoimbraCoimbraPortugal
- Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- Center for Innovative Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
| |
Collapse
|
2
|
Lang L, Frontera A, Perez A, Bauzá A. Computational Study of Driving Forces in ATSP, PDIQ, and P53 Peptide Binding: C═O···C═O Tetrel Bonding Interactions at Work. J Chem Inf Model 2023; 63:3018-3029. [PMID: 37014944 PMCID: PMC10207270 DOI: 10.1021/acs.jcim.3c00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Indexed: 04/06/2023]
Abstract
Understanding the molecular interactions that drive peptide folding is crucial to chemistry and biology. In this study, we analyzed the role of CO···CO tetrel bonding (TtB) interactions in the folding mechanism of three different peptides (ATSP, pDIQ, and p53), which exhibit a different propensity to fold in an α helix motif. To achieve this goal, we used both a recently developed Bayesian inference approach (MELDxMD) and Quantum Mechanics (QM) calculations at the RI-MP2/def2-TZVP level of theory. These techniques allowed us to study the folding process and to evaluate the strength of the CO···CO TtBs as well as the synergies between TtBs and hydrogen-bonding (HB) interactions. We believe that the results derived from our study will be helpful for those scientists working in computational biology, peptide chemistry, and structural biology.
Collapse
Affiliation(s)
- Lijun Lang
- Chemistry
Department, University of Florida, Gainesville, Florida 32611, United States
| | - Antonio Frontera
- Department
of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma, Baleares, Spain
| | - Alberto Perez
- Chemistry
Department, University of Florida, Gainesville, Florida 32611, United States
| | - Antonio Bauzá
- Department
of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma, Baleares, Spain
| |
Collapse
|
3
|
Islam MS, Al-Majid AM, Sholkamy EN, Barakat A, Viale M, Menichini P, Speciale A, Loiacono F, Azam M, Verma VP, Yousuf S, Teleb M. Optimized spirooxindole-pyrazole hybrids targeting the p53-MDM2 interplay induce apoptosis and synergize with doxorubicin in A549 cells. Sci Rep 2023; 13:7441. [PMID: 37156796 PMCID: PMC10167355 DOI: 10.1038/s41598-023-31209-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/08/2023] [Indexed: 05/10/2023] Open
Abstract
Recently, cancer research protocols have introduced clinical-stage spirooxindole-based MDM2 inhibitors. However, several studies reported tumor resistance to the treatment. This directed efforts to invest in designing various combinatorial libraries of spirooxindoles. Herein, we introduce new series of spirooxindoles via hybridization of the chemically stable core spiro[3H-indole-3,2'-pyrrolidin]-2(1H)-one and the pyrazole motif inspired by lead pyrazole-based p53 activators, the MDM2 inhibitor BI-0252 and promising molecules previously reported by our group. Single crystal X-ray diffraction analysis confirmed the chemical identity of a representative derivative. Fifteen derivatives were screened for cytotoxic activities via MTT assay against a panel of four cancer cell lines expressing wild-type p53 (A2780, A549, HepG2) and mutant p53 (MDA-MB-453). The hits were 8h against A2780 (IC50 = 10.3 µM) and HepG2 (IC50 = 18.6 µM), 8m against A549 (IC50 = 17.7 µM), and 8k against MDA-MB-453 (IC50 = 21.4 µM). Further MTT experiments showed that 8h and 8j potentiated doxorubicin activity and reduced its IC50 by at least 25% in combinations. Western blot analysis demonstrated that 8k and 8m downmodulated MDM2 in A549 cells. Their possible binding mode with MDM2 were simulated by docking analysis.
Collapse
Affiliation(s)
- Mohammad Shahidul Islam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdullah Mohammed Al-Majid
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Essam Nageh Sholkamy
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Assem Barakat
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Maurizio Viale
- U.O.C. Bioterapie, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132, Genova, Italy
| | - Paola Menichini
- U.O.C. Mutagenesi e Prevenzione Oncologica, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132, Genova, Italy
| | - Andrea Speciale
- U.O.C. Mutagenesi e Prevenzione Oncologica, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132, Genova, Italy
| | - Fabrizio Loiacono
- U.O.C. Immunologia, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132, Genova, Italy
| | - Mohammad Azam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ved Prakash Verma
- Department of Chemistry, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
| | - Sammer Yousuf
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.
| |
Collapse
|
4
|
Soriano-Correa C, Vichi-Ramírez MM, Herrera-Valencia EE, Barrientos-Salcedo C. The role of ETFS amino acids on the stability and inhibition of p53-MDM2 complex of anticancer p53-derivatives peptides: Density functional theory and molecular docking studies. J Mol Graph Model 2023; 122:108472. [PMID: 37086514 DOI: 10.1016/j.jmgm.2023.108472] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/24/2023]
Abstract
Cancer is one of the leading causes of mortality in the world. Despite the existence of diverse antineoplastic treatments, these do not possess the expected efficacy in many cases. Knowledge of the molecular mechanisms involved in tumor processes allows the identification of a greater number of therapeutic targets employed in the study of new anticancer drugs. In the last decades, peptide-based therapy design using computational chemistry has gained importance in the field of oncology therapeutics. This work aims to evaluate the electronic structure, physicochemical properties, stability, and inhibition of ETFS amino acids and peptides derived from the p53-MDM2 binding domain with action in cancer cells; by means of chemical descriptors at the DFT-BHandHLYP level in an aqueous solution, and its intermolecular interactions through molecular docking studies. The results show that The ETFS fragment plays a critical role in the intermolecular interactions. Thus, the amino acids E17, T18 and S20 increase intermolecular interactions through hydrogen bonds and enhance structural stability. F19, W23 and V25 enhance the formation of the alpha-helix. The hydrogen bonds formed by the backbone atoms for PNC-27, PNC-27-B and PNC-28 stabilize the α-helices more than hydrogen bonds formed by the side chains atoms. Also, molecular docking indicated that the PNC27B-MDM2, PNC28B-MDM2, PNC27-MDM2 and PNC28A-MDM2 complexes show the best binding energy. Therefore, DFT and molecular docking studies showed that the proposed peptides: PNC-28B, PNC-27B and PNC-28A could inhibit the binding of MDM2 to the p53 protein, decreasing the translocation and degradation of p53 native protein.
Collapse
Affiliation(s)
- Catalina Soriano-Correa
- Unidad de Química Computacional, Facultad de Estudios Superiores Zaragoza (FES-Zaragoza), Universidad Nacional Autónoma de México (UNAM), Iztapalapa, C.P. 09230, Mexico City, Mexico
| | - Micheel Merari Vichi-Ramírez
- Doctorado en Investigaciones Cerebrales, Instituto de Investigaciones Cerebrales, Universidad Veracruzana, C.P. 91192, Xalapa, Mexico
| | - Edtson E Herrera-Valencia
- Laboratorio de Química Médica y Quimiogenómica, Facultad de Bioanálisis Campus Veracruz, Universidad Veracruzana, C.P. 91700, Veracruz, Mexico
| | - Carolina Barrientos-Salcedo
- Laboratorio de Reología y Fenómenos de Transporte (UMIEZ), Carrera de Ingeniería Química, FES Zaragoza UNAM, Iztapalapa, C.P. 09230, Mexico City, Mexico.
| |
Collapse
|
5
|
Tripathi R, Anifowose A, Lu W, Yang X, Wang B. Upregulation of p53 through induction of MDM2 degradation: improved potency through the introduction of an alkylketone sidechain on the anthraquinone core. J Enzyme Inhib Med Chem 2022; 37:2370-2381. [PMID: 36043494 PMCID: PMC9448394 DOI: 10.1080/14756366.2022.2116699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Overexpression of ubiquitin ligase MDM2 causes depletion of the p53 tumour-suppressor and thus leads to cancer progression. In recent years, anthraquinone analogs have received significant attention due to their ability to downregulate MDM2, thereby promoting p53-induced apoptosis. Previously, we have developed potent anthraquinone compounds having the ability to upregulate p53 via inhibition of MDM2 in both cell culture and animal models of acute lymphocytic leukaemia. Earlier work was focussed on mechanistic work, pharmacological validation of this class of compounds in animal models, and mapping out structural space that allows for further modification and optimisation. Herein, we describe our work in optimising the substituents on the two phenol hydroxyl groups. It was found that the introduction of an alkylketone moiety led to a potent series of analogs with BW-AQ-350 being the most potent compound yet (IC50 = 0.19 ± 0.01 µM) which exerts cytotoxicity by inducing MDM2 degradation and p53 upregulation.
Collapse
Affiliation(s)
- Ravi Tripathi
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Abiodun Anifowose
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Wen Lu
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Xiaoxiao Yang
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Binghe Wang
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
6
|
MDM2-Based Proteolysis-Targeting Chimeras (PROTACs): An Innovative Drug Strategy for Cancer Treatment. Int J Mol Sci 2022; 23:ijms231911068. [PMID: 36232374 PMCID: PMC9570454 DOI: 10.3390/ijms231911068] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Proteolysis-targeting chimeras (PROTACs) are molecules that selectively degrade a protein of interest (POI). The incorporation of ligands that recruit mouse double minute 2 (MDM2) into PROTACs, forming the so-called MDM2-based PROTACs, has shown promise in cancer treatment due to its dual mechanism of action: a PROTAC that recruits MDM2 prevents its binding to p53, resulting not only in the degradation of POI but also in the increase of intracellular levels of the p53 suppressor, with the activation of a whole set of biological processes, such as cell cycle arrest or apoptosis. In addition, these PROTACs, in certain cases, allow for the degradation of the target, with nanomolar potency, in a rapid and sustained manner over time, with less susceptibility to the development of resistance and tolerance, without causing changes in protein expression, and with selectivity to the target, including the respective isoforms or mutations, and to the cell type, overcoming some limitations associated with the use of inhibitors for the same therapeutic target. Therefore, the aim of this review is to analyze and discuss the characteristics of MDM2-based PROTACs developed for the degradation of oncogenic proteins and to understand what potential they have as future anticancer drugs.
Collapse
|
7
|
Discovery of novel, selective, functionalized 5-(2-(5-arylhexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)ethyl)-γ-butyrolactone sigma-2 ligands. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02909-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
|
9
|
Synthesis and evaluation of novel, selective, functionalized γ-butyrolactones as sigma-2 ligands. Med Chem Res 2022. [DOI: 10.1007/s00044-021-02831-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Bhandare RR, Sigalapalli DK, Shaik AB, Canney DJ, Blass BE. Selectivity profile comparison for certain γ-butyrolactone and oxazolidinone-based ligands on a sigma 2 receptor over sigma 1: a molecular docking approach. RSC Adv 2022; 12:20096-20109. [PMID: 35919619 PMCID: PMC9272471 DOI: 10.1039/d2ra03497b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/04/2022] [Indexed: 11/21/2022] Open
Abstract
Sigma receptors (σ1 R and σ2 R) are pharmacologically characterized membrane-bound receptors that bind a wide range of chemical compounds. Alzheimer's disease, traumatic brain injury, schizophrenia, and neuropathic pain have all been associated with abnormal σ2 activity. The σ2 receptor has recently been identified as a potential therapeutic target for inhibiting the formation of amyloid plaques. Numerous laboratories are now investigating the potential of σ2 ligands. Small molecule discovery is the focus of current research, with the goal of using target-based action to treat a variety of illnesses and ailments. Functionalized γ-butyrolactone and oxazolidinone-based ligands, in particular, are pharmacologically important scaffolds in drug discovery research and have been thoroughly examined for σ2 receptor efficacy. The purpose of this study was to evaluate the pharmacophoric features of different σ2 receptor ligands using in silico techniques. This study used a library of 58 compounds having a γ-butyrolactone and oxazolidinone core. To investigate the binding characteristics of the ligands with the σ2 receptor, a 3D homology model was developed. To understand the binding pattern of the γ-butyrolactone and oxazolidinone based ligands, molecular docking studies were performed on both σ1 and σ2 receptors. Furthermore, MM/GBSA binding energy calculations were used to confirm the binding of ligands on the σ2 over σ1 receptor. These in silico findings will aid in the discovery of selective σ2 ligands with good pharmacophoric properties and potency in the future. Selective action of γ-butyrolactones and oxazolidinones towards σ2 receptor.![]()
Collapse
Affiliation(s)
- Richie R. Bhandare
- College of Pharmacy & Health Sciences, Ajman University, PO Box 340, Ajman, United Arab Emirates
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Dilep Kumar Sigalapalli
- Department of Pharmaceutical Chemistry, Vignan Pharmacy College, Jawaharlal Nehru Technological University, Vadlamudi, 522213, Andhra Pradesh, India
| | - Afzal B. Shaik
- Department of Pharmaceutical Chemistry, Vignan Pharmacy College, Jawaharlal Nehru Technological University, Vadlamudi, 522213, Andhra Pradesh, India
| | - Daniel J. Canney
- Temple University School of Pharmacy, 3307 North Broad Street, Philadelphia, PA 194140, USA
| | - Benjamin E. Blass
- Temple University School of Pharmacy, 3307 North Broad Street, Philadelphia, PA 194140, USA
| |
Collapse
|
11
|
Aziz YMA, Lotfy G, Said MM, El Ashry ESH, El Tamany ESH, Soliman SM, Abu-Serie MM, Teleb M, Yousuf S, Dömling A, Domingo LR, Barakat A. Design, Synthesis, Chemical and Biochemical Insights Into Novel Hybrid Spirooxindole-Based p53-MDM2 Inhibitors With Potential Bcl2 Signaling Attenuation. Front Chem 2021; 9:735236. [PMID: 34970530 PMCID: PMC8713455 DOI: 10.3389/fchem.2021.735236] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/07/2021] [Indexed: 11/13/2022] Open
Abstract
The tumor resistance to p53 activators posed a clinical challenge. Combination studies disclosed that concomitant administration of Bcl2 inhibitors can sensitize the tumor cells and induce apoptosis. In this study, we utilized a rapid synthetic route to synthesize two novel hybrid spirooxindole-based p53-MDM2 inhibitors endowed with Bcl2 signaling attenuation. The adducts mimic the thematic features of the chemically stable potent spiro [3H-indole-3,2'-pyrrolidin]-2(1H)-ones p53-MDM2 inhibitors, while installing a pyrrole ring via a carbonyl spacer inspired by the natural marine or synthetic products that efficiently inhibit Bcl2 family functions. A chemical insight into the two synthesized spirooxindoles including single crystal x-ray diffraction analysis unambiguously confirmed their structures. The synthesized spirooxindoles 2a and 2b were preliminarily tested for cytotoxic activities against normal cells, MDA-MB 231, HepG-2, and Caco-2 via MTT assay. 2b was superior to 5-fluorouracil. Mechanistically, 2b induced apoptosis-dependent anticancer effect (43%) higher than that of 5-fluorouracil (34.95%) in three studied cancer cell lines, activated p53 (47%), downregulated the Bcl2 gene (1.25-fold), and upregulated p21 (2-fold) in the treated cancer cells. Docking simulations declared the possible binding modes of the synthesized compounds within MDM2.
Collapse
Affiliation(s)
- Yasmine M. Abdel Aziz
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Gehad Lotfy
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Mohamed M. Said
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - El Sayed H. El Ashry
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| | | | - Saied M. Soliman
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Marwa M. Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Sammer Yousuf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Alexander Dömling
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Luis R. Domingo
- Department of Organic Chemistry, University of Valencia, Valencia, Spain
| | - Assem Barakat
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
12
|
Lotfy G, Abdel Aziz YM, Said MM, El Ashry ESH, El Tamany ESH, Abu-Serie MM, Teleb M, Dömling A, Barakat A. Molecular hybridization design and synthesis of novel spirooxindole-based MDM2 inhibitors endowed with BCL2 signaling attenuation; a step towards the next generation p53 activators. Bioorg Chem 2021; 117:105427. [PMID: 34794098 DOI: 10.1016/j.bioorg.2021.105427] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/30/2021] [Accepted: 10/09/2021] [Indexed: 12/24/2022]
Abstract
Despite the achieved progress in developing efficient MDM2-p53 protein-protein interaction inhibitors (MDM2 inhibitors), the acquired resistance of tumor cells to such p53 activators posed an argument about the druggability of the pathway. Combination studies disclosed that concomitant inhibition of MDM2 and BCL2 functions can sensitize the tumor cells and synergistically induce apoptosis. Herein, we employed a rapid combinatorial approach to generate a novel series of hybrid spirooxindole-based MDM2 inhibitors (5a-s) endowed with BCL2 signaling attenuation. The adducts were designed to mimic the thematic features of the chemically stable potent spiro[3H-indole-3,2'-pyrrolidin]-2(1H)-ones MDM2 inhibitors while installing a pyrrole ring on the core via a carbonyl spacer inspired by the natural product marinopyrrole A that efficiently inhibits BCL2 family functions by various mechanisms. NCI 60 cell-line panel screening revealed their promising broad-spectrum antiproliferative activities. The NCI-selected derivatives were screened for cytotoxic activities against normal fibroblasts, MDA-MB 231, HepG-2, and Caco-2 cells via MTT assay, subjected to mechanistic apoptosis studies for assessment of p53, BCL2, p21, and caspase 3/7 status, then evaluated for potential MDM2 inhibition utilizing MST assay. The most balanced potent and safe derivatives; 5i and 5q were more active than 5-fluorouracil, exhibited low μmrange MDM2 binding (KD=1.32and 1.72 μm, respectively), induced apoptosis-dependent anticancer activities up to 50%, activated p53 by 47-63%, downregulated the BCL2 gene to 59.8%, and reduced its protein level (13.75%) in the treated cancer cells. Further downstream p53 signaling studies revealed > 2 folds p21 upregulation and > 3 folds caspase 3/7 activation. Docking simulations displayed that the active MDM2 inhibitors resided well into the p53 binding sites of MDM2, and shared key interactions with the co-crystalized inhibitor posed by the indolinone scaffold (5i, 5p, and 5q), the halogen substituents (5r), or the installed spiro ring (5s). Finally, in silico ADMET profiling predicted acceptable drug-like properties with full accordance to Lipinski's, Veber's, and Muegge's bioavailability parameters for 5i and a single violation for 5q.
Collapse
Affiliation(s)
- Gehad Lotfy
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Yasmine M Abdel Aziz
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Mohamed M Said
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - El Sayed H El Ashry
- Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria 21321, Egypt
| | - El Sayed H El Tamany
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Egypt
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Alexander Dömling
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, the Netherlands
| | - Assem Barakat
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
13
|
|
14
|
Miles X, Vandevoorde C, Hunter A, Bolcaen J. MDM2/X Inhibitors as Radiosensitizers for Glioblastoma Targeted Therapy. Front Oncol 2021; 11:703442. [PMID: 34307171 PMCID: PMC8296304 DOI: 10.3389/fonc.2021.703442] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/24/2021] [Indexed: 12/24/2022] Open
Abstract
Inhibition of the MDM2/X-p53 interaction is recognized as a potential anti-cancer strategy, including the treatment of glioblastoma (GB). In response to cellular stressors, such as DNA damage, the tumor suppression protein p53 is activated and responds by mediating cellular damage through DNA repair, cell cycle arrest and apoptosis. Hence, p53 activation plays a central role in cell survival and the effectiveness of cancer therapies. Alterations and reduced activity of p53 occur in 25-30% of primary GB tumors, but this number increases drastically to 60-70% in secondary GB. As a result, reactivating p53 is suggested as a treatment strategy, either by using targeted molecules to convert the mutant p53 back to its wild type form or by using MDM2 and MDMX (also known as MDM4) inhibitors. MDM2 down regulates p53 activity via ubiquitin-dependent degradation and is amplified or overexpressed in 14% of GB cases. Thus, suppression of MDM2 offers an opportunity for urgently needed new therapeutic interventions for GB. Numerous small molecule MDM2 inhibitors are currently undergoing clinical evaluation, either as monotherapy or in combination with chemotherapy and/or other targeted agents. In addition, considering the major role of both p53 and MDM2 in the downstream signaling response to radiation-induced DNA damage, the combination of MDM2 inhibitors with radiation may offer a valuable therapeutic radiosensitizing approach for GB therapy. This review covers the role of MDM2/X in cancer and more specifically in GB, followed by the rationale for the potential radiosensitizing effect of MDM2 inhibition. Finally, the current status of MDM2/X inhibition and p53 activation for the treatment of GB is given.
Collapse
Affiliation(s)
- Xanthene Miles
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town, South Africa
| | - Charlot Vandevoorde
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town, South Africa
| | - Alistair Hunter
- Radiobiology Section, Division of Radiation Oncology, Department of Radiation Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| | - Julie Bolcaen
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town, South Africa
| |
Collapse
|
15
|
Zhang Z, Ricci CG, Fan C, Cheng LT, Li B, McCammon JA. Coupling Monte Carlo, Variational Implicit Solvation, and Binary Level-Set for Simulations of Biomolecular Binding. J Chem Theory Comput 2021; 17:2465-2478. [PMID: 33650860 DOI: 10.1021/acs.jctc.0c01109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We develop a hybrid approach that combines the Monte Carlo (MC) method, a variational implicit-solvent model (VISM), and a binary level-set method for the simulation of biomolecular binding in an aqueous solvent. The solvation free energy for the biomolecular complex is estimated by minimizing the VISM free-energy functional of all possible solute-solvent interfaces that are used as dielectric boundaries. This functional consists of the solute volumetric, solute-solvent interfacial, solute-solvent van der Waals interaction, and electrostatic free energy. A technique of shifting the dielectric boundary is used to accurately predict the electrostatic part of the solvation free energy. Minimizing such a functional in each MC move is made possible by our new and fast binary level-set method. This method is based on the approximation of surface area by the convolution of an indicator function with a compactly supported kernel and is implemented by simple flips of numerical grid cells locally around the solute-solvent interface. We apply our approach to the p53-MDM2 system for which the two molecules are approximated by rigid bodies. Our efficient approach captures some of the poses before the final bound state. All-atom molecular dynamics simulations with most of such poses quickly reach the final bound state. Our work is a new step toward realistic simulations of biomolecular interactions. With further improvement of coarse graining and MC sampling, and combined with other models, our hybrid approach can be used to study the free-energy landscape and kinetic pathways of ligand binding to proteins.
Collapse
Affiliation(s)
- Zirui Zhang
- Department of Mathematics, University of California, San Diego, La Jolla, California 92093-0112, United States
| | - Clarisse G Ricci
- Department of Chemistry and Biochemistry and Department of Pharmacology, University of California, San Diego, La Jolla, California 92093-0365, United States
| | - Chao Fan
- Department of Mathematics, University of California, San Diego, La Jolla, California 92093-0112, United States
| | - Li-Tien Cheng
- Department of Mathematics, University of California, San Diego, La Jolla, California 92093-0112, United States
| | - Bo Li
- Department of Mathematics and Quantitative Biology Ph.D. Program, University of California, San Diego, La Jolla, California 92093-0112, United States
| | - J Andrew McCammon
- Department of Chemistry and Biochemistry and Department of Pharmacology, University of California, San Diego, La Jolla, California 92093-0365, United States
| |
Collapse
|