1
|
Helm-Kwasny BK, Bullert A, Wang H, Chimenti MS, Adamcakova-Dodd A, Jing X, Li X, Meyerholz DK, Thorne PS, Lehmler HJ, Ankrum JA, Klingelhutz AJ. Upregulation of fatty acid synthesis genes in the livers of adolescent female rats caused by inhalation exposure to PCB52 (2,2',5,5'-Tetrachlorobiphenyl). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104520. [PMID: 39067718 PMCID: PMC11377153 DOI: 10.1016/j.etap.2024.104520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Elevated airborne PCB levels in older schools are concerning due to their health impacts, including cancer, metabolic dysfunction-associated steatotic liver disease (MASLD), cardiovascular issues, neurodevelopmental diseases, and diabetes. During a four-week inhalation exposure to PCB52, an air pollutant commonly found in school environments, adolescent rats exhibited notable presence of PCB52 and its hydroxylated forms in their livers, alongside changes in gene expression. Female rats exhibited more pronounced changes in gene expression compared to males, particularly in fatty acid synthesis genes regulated by the transcription factor SREBP1. In vitro studies with human liver cells showed that the hydroxylated metabolite of PCB52, 4-OH-PCB52, but not the parent compound, upregulated genes involved in fatty acid biosynthesis similar to in vivo exposure. These findings highlight the sex-specific effects of PCB52 exposure on livers, particularly in females, suggesting a potential pathway for increased MASLD susceptibility.
Collapse
Affiliation(s)
| | - Amanda Bullert
- Interdisciplinary Graduate Program in Neuroscience, The University of Iowa, Iowa City, IA, USA; Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA, USA
| | - Hui Wang
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA, USA
| | - Michael S Chimenti
- Iowa Institute of Human Genetics, Bioinformatics Division, The University of Iowa, Iowa City, IA, USA
| | - Andrea Adamcakova-Dodd
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA, USA
| | - Xuefang Jing
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA, USA
| | - Xueshu Li
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA, USA
| | - David K Meyerholz
- Department of Pathology, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Peter S Thorne
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA, USA
| | - James A Ankrum
- Roy J. Carver Department of Biomedical Engineering, The University of Iowa, Iowa City, IA, USA; Fraternal Order of Eagles Diabetes Research Center, The University of Iowa, Iowa City, IA, USA
| | - Aloysius J Klingelhutz
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA; Fraternal Order of Eagles Diabetes Research Center, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
2
|
Sonkar R, Ma H, Waxman DJ. Steatotic liver disease induced by TCPOBOP-activated hepatic constitutive androstane receptor: primary and secondary gene responses with links to disease progression. Toxicol Sci 2024; 200:324-345. [PMID: 38710495 DOI: 10.1093/toxsci/kfae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024] Open
Abstract
Constitutive androstane receptor (CAR, Nr1i3), a liver nuclear receptor and xenobiotic sensor, induces drug, steroid, and lipid metabolizing enzymes, stimulates liver hypertrophy and hyperplasia, and ultimately, hepatocellular carcinogenesis. The mechanisms linking early CAR responses to later disease development are poorly understood. Here we show that exposure of CD-1 mice to TCPOBOP (1,4-bis[2-(3,5-dichloropyridyloxy)]benzene), a halogenated xenochemical and selective CAR agonist ligand, induces pericentral steatosis marked by hepatic accumulation of cholesterol and neutral lipid, and elevated circulating alanine aminotransferase, indicating hepatocyte damage. TCPOBOP-induced steatosis was weaker in the pericentral region but stronger in the periportal region in females compared with males. Early (1 day) TCPOBOP transcriptional responses were enriched for CAR-bound primary response genes, and for lipogenesis and xenobiotic metabolism and oxidative stress protection pathways; late (2 weeks) TCPOBOP responses included many CAR binding-independent secondary response genes, with enrichment for macrophage activation, immune response, and cytokine and reactive oxygen species production. Late upstream regulators specific to TCPOBOP-exposed male liver were linked to proinflammatory responses and hepatocellular carcinoma progression. TCPOBOP administered weekly to male mice using a high corn oil vehicle induced carbohydrate-responsive transcription factor (MLXIPL)-regulated target genes, dysregulated mitochondrial respiratory and translation regulatory pathways, and induced more advanced liver pathology. Overall, TCPOBOP exposure recapitulates histological and gene expression changes characteristic of emerging steatotic liver disease, including secondary gene responses in liver nonparenchymal cells indicative of transition to a more advanced disease state. Upstream regulators of both the early and late TCPOBOP response genes include novel biomarkers for foreign chemical-induced metabolic dysfunction-associated steatotic liver disease.
Collapse
Affiliation(s)
- Ravi Sonkar
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA
| | - Hong Ma
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA
| | - David J Waxman
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
3
|
Agarwal M, Roth K, Yang Z, Sharma R, Maddipati K, Westrick J, Petriello MC. Loss of flavin-containing monooxygenase 3 modulates dioxin-like polychlorinated biphenyl 126-induced oxidative stress and hepatotoxicity. ENVIRONMENTAL RESEARCH 2024; 250:118492. [PMID: 38373550 PMCID: PMC11102846 DOI: 10.1016/j.envres.2024.118492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/21/2024]
Abstract
Dioxin-like pollutants (DLPs), such as polychlorinated biphenyl 126 (PCB 126), are synthetic chemicals classified as persistent organic pollutants. They accumulate in adipose tissue and have been linked to cardiometabolic disorders, including fatty liver disease. The toxicity of these compounds is associated with activation of the aryl hydrocarbon receptor (Ahr), leading to the induction of phase I metabolizing enzyme cytochrome P4501a1 (Cyp1a1) and the subsequent production of reactive oxygen species (ROS). Recent research has shown that DLPs can also induce the xenobiotic detoxification enzyme flavin-containing monooxygenase 3 (FMO3), which plays a role in metabolic homeostasis. We hypothesized whether genetic deletion of Fmo3 could protect mice, particularly in the liver, where Fmo3 is most inducible, against PCB 126 toxicity. To test this hypothesis, male C57BL/6 wild-type (WT) mice and Fmo3 knockout (Fmo3 KO) mice were exposed to PCB 126 or vehicle (safflower oil) during a 12-week study, at weeks 2 and 4. Various analyses were performed, including hepatic histology, RNA-sequencing, and quantitation of PCB 126 and F2-isoprostane concentrations. The results showed that PCB 126 exposure caused macro and microvesicular fat deposition in WT mice, but this macrovesicular fatty change was absent in Fmo3 KO mice. Moreover, at the pathway level, the hepatic oxidative stress response was significantly different between the two genotypes, with the induction of specific genes observed only in WT mice. Notably, the most abundant F2-isoprostane, 8-iso-15-keto PGE2, increased in WT mice in response to PCB 126 exposure. The study's findings also demonstrated that hepatic tissue concentrations of PCB 126 were higher in WT mice compared to Fmo3 KO mice. In summary, the absence of FMO3 in mice led to a distinctive response to dioxin-like pollutant exposure in the liver, likely due to alterations in lipid metabolism and storage, underscoring the complex interplay of genetic factors in the response to environmental toxins.
Collapse
Affiliation(s)
- Manisha Agarwal
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, 48202, USA; Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Katherine Roth
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Zhao Yang
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Rahul Sharma
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Krishnarao Maddipati
- Department of Pathology, Lipidomic Core Facility, Wayne State University, Detroit, MI, 48202, USA
| | - Judy Westrick
- Department of Chemistry, Lumigen Instrumentation Center, Wayne State University, Detroit, MI, 48202, USA
| | - Michael C Petriello
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, 48202, USA; Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, 48202, USA.
| |
Collapse
|
4
|
Luo YS, Ying RY, Chen XT, Yeh YJ, Wei CC, Chan CC. Integrating high-throughput phenotypic profiling and transcriptomic analyses to predict the hepatosteatosis effects induced by per- and polyfluoroalkyl substances. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133891. [PMID: 38457971 DOI: 10.1016/j.jhazmat.2024.133891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/18/2024] [Accepted: 02/23/2024] [Indexed: 03/10/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) is a large compound class (n > 12,000) that is extensively present in food, drinking water, and aquatic environments. Reduced serum triglycerides and hepatosteatosis appear to be the common phenotypes for different PFAS chemicals. However, the hepatosteatosis potential of most PFAS chemicals remains largely unknown. This study aims to investigate PFAS-induced hepatosteatosis using in vitro high-throughput phenotype profiling (HTPP) and high-throughput transcriptomic (HTTr) data. We quantified the in vitro hepatosteatosis effects and mitochondrial damage using high-content imaging, curated the transcriptomic data from the Gene Expression Omnibus (GEO) database, and then calculated the point of departure (POD) values for HTPP phenotypes or HTTr transcripts, using the Bayesian benchmark dose modeling approach. Our results indicated that PFAS compounds with fully saturated C-F bonds, sulfur- and nitrogen-containing functional groups, and a fluorinated carbon chain length greater than 8 have the potential to produce biological effects consistent with hepatosteatosis. PFAS primarily induced hepatosteatosis via disturbance in lipid transport and storage. The potency rankings of PFAS compounds are highly concordant among in vitro HTPP, HTTr, and in vivo hepatosteatosis phenotypes (ρ = 0.60-0.73). In conclusion, integrating the information from in vitro HTPP and HTTr analyses can accurately project in vivo hepatosteatosis effects induced by PFAS compounds.
Collapse
Affiliation(s)
- Yu-Syuan Luo
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei City, Taiwan; Master of Public Health Program, College of Public Health, National Taiwan University, Taipei City, Taiwan.
| | - Ren-Yan Ying
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei City, Taiwan
| | - Xsuan-Ting Chen
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei City, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei City, Taiwan
| | - Yu-Jia Yeh
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei City, Taiwan
| | - Chia-Cheng Wei
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei City, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei City, Taiwan
| | - Chang-Chuan Chan
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei City, Taiwan
| |
Collapse
|
5
|
Piell KM, Petri BJ, Xu J, Cai L, Rai SN, Li M, Wilkey DW, Merchant ML, Cave MC, Klinge CM. Chronic Aroclor 1260 exposure alters the mouse liver proteome, selenoproteins, and metals in steatotic liver disease. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104430. [PMID: 38552755 DOI: 10.1016/j.etap.2024.104430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/19/2024] [Accepted: 03/23/2024] [Indexed: 04/09/2024]
Abstract
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) continues to increase due in part to the obesity epidemic and to environmental exposures to metabolism disrupting chemicals. A single gavage exposure of male mice to Aroclor 1260 (Ar1260), an environmentally relevant mixture of non-dioxin-like polychlorinated biphenyls (PCBs), resulted in steatohepatitis and altered RNA modifications in selenocysteine tRNA 34 weeks post-exposure. Unbiased approaches identified the liver proteome, selenoproteins, and levels of 25 metals. Ar1260 altered the abundance of 128 proteins. Enrichment analysis of the liver Ar1260 proteome included glutathione metabolism and translation of selenoproteins. Hepatic glutathione peroxidase 4 (GPX4) and Selenoprotein O (SELENOO) were increased and Selenoprotein F (SELENOF), Selenoprotein S (SELENOS), Selenium binding protein 2 (SELENBP2) were decreased with Ar1260 exposure. Increased copper, selenium (Se), and zinc and reduced iron levels were detected. These data demonstrate that Ar1260 exposure alters the (seleno)proteome, Se, and metals in MASLD-associated pathways.
Collapse
Affiliation(s)
- Kellianne M Piell
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Belinda J Petri
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA; Kentucky IDeA Networks of Biomedical Research Excellence (KY INBRE) Bioinformatics Core, University of Louisville, Louisville, KY 40202, USA
| | - Jason Xu
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40292, USA; Departments of Radiation Oncology, Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA; University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), University of Louisville, Louisville, KY 40292, USA
| | - Shesh N Rai
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Ming Li
- Division of Nephrology & Hypertension, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Daniel W Wilkey
- University of Louisville Hepatobiology and Toxicology Center; University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Michael L Merchant
- University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), University of Louisville, Louisville, KY 40292, USA; Division of Nephrology & Hypertension, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA; University of Louisville Hepatobiology and Toxicology Center; University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Matthew C Cave
- University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), University of Louisville, Louisville, KY 40292, USA; University of Louisville Hepatobiology and Toxicology Center; University of Louisville School of Medicine, Louisville, KY 40202, USA; Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA; The University of Louisville Superfund Research Center, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Carolyn M Klinge
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA; University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), University of Louisville, Louisville, KY 40292, USA.
| |
Collapse
|
6
|
Lavery TC, Spiegelhoff A, Wang K, Kennedy CL, Ridlon M, Keil Stietz KP. Polychlorinated biphenyl (PCB) exposure in adult female mice can influence bladder contractility. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2023; 11:367-384. [PMID: 37941647 PMCID: PMC10628623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/21/2023] [Indexed: 11/10/2023]
Abstract
Lower urinary tract symptoms (LUTS) greatly reduce quality of life. While LUTS etiology is not completely understood, it is plausible that environmental contaminants could play a role. Polychlorinated biphenyls (PCBs), are a group of persistent environmental toxicants frequently documented in animal and human tissues. PCBs are capable of influencing voiding function in mouse offspring exposed developmentally, however whether PCB exposure during adulthood can also influence voiding dynamics is unknown. Therefore, the purpose of this study was to determine whether PCB exposure in adult female mice can impact voiding function. As part of a larger study to generate developmentally exposed offspring, adult female C57Bl/6J mice were dosed orally with the MARBLES PCB mixture (0.1, 1, or 6 mg/kg/day) or vehicle control beginning two weeks before mating and throughout gestation and lactation (9 weeks). Adult dosed female dams then underwent void spot assay, uroflowmetry, and anesthetized cystometry to assess voiding function. Bladder contractility was assessed in ex vivo bladder bath assays, and bladders were collected for morphology and histology assessments. While voiding behavior endpoints were minimally impacted, alterations to bladder contractility dynamics were more pronounced. Adult female mice dosed with 1 mg/kg/d PCB showed an increase in urine spots 2-3 cm2 in size, increased bladder contractility in response to electrical field stimulation, and decreased bladder wall thickness compared to vehicle control. PCBs also altered contractile response to cholinergic agonist in a dose-dependent manner. Overall, these results indicate that exposure to PCBs in adult female mice is sufficient to produce changes in bladder physiology. These results also highlight the critical role of timing of exposure in influencing voiding function.
Collapse
Affiliation(s)
- Thomas Cm Lavery
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison Madison, Wisconsin 53706, USA
| | - Audrey Spiegelhoff
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison Madison, Wisconsin 53706, USA
| | - Kathy Wang
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison Madison, Wisconsin 53706, USA
| | - Conner L Kennedy
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison Madison, Wisconsin 53706, USA
| | - Monica Ridlon
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison Madison, Wisconsin 53706, USA
| | - Kimberly P Keil Stietz
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison Madison, Wisconsin 53706, USA
| |
Collapse
|
7
|
Petri BJ, Piell KM, Wahlang B, Head KZ, Rouchka EC, Park JW, Hwang JY, Banerjee M, Cave MC, Klinge CM. Altered splicing factor and alternative splicing events in a mouse model of diet- and polychlorinated biphenyl-induced liver disease. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 103:104260. [PMID: 37683712 PMCID: PMC10591945 DOI: 10.1016/j.etap.2023.104260] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is associated with human environmental exposure to polychlorinated biphenyls (PCBs). Alternative splicing (AS) is dysregulated in steatotic liver disease and is regulated by splicing factors (SFs) and N-6 methyladenosine (m6A) modification. Here integrated analysis of hepatic mRNA-sequencing data was used to identify differentially expressed SFs and differential AS events (ASEs) in the livers of high fat diet-fed C57BL/6 J male mice exposed to Aroclor1260, PCB126, Aroclor1260 + PCB126, or vehicle control. Aroclor1260 + PCB126 co-exposure altered 100 SFs and replicate multivariate analysis of transcript splicing (rMATS) identified 449 ASEs in 366 genes associated with NAFLD pathways. These ASEs were similar to those resulting from experimental perturbations in m6A writers, readers, and erasers. These results demonstrate specific hepatic SF and AS regulatory mechanisms are disrupted by HFD and PCB exposures, contributing to the expression of altered isoforms that may play a role in NAFLD progression to NASH.
Collapse
Affiliation(s)
- Belinda J Petri
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Kellianne M Piell
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Banrida Wahlang
- University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), USA; University of Louisville Hepatobiology and Toxicology Center, USA; The University of Louisville Superfund Research Center, USA; Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, University of Louisville School of Medicine, USA
| | - Kimberly Z Head
- University of Louisville Hepatobiology and Toxicology Center, USA; The University of Louisville Superfund Research Center, USA; Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, University of Louisville School of Medicine, USA
| | - Eric C Rouchka
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA; KY INBRE Bioinformatics Core, University of Louisville, USA
| | - Juw Won Park
- University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), USA; KY INBRE Bioinformatics Core, University of Louisville, USA; Department of Computer Science and Engineering, University of Louisville, Louisville, KY 40292, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292 USA
| | - Jae Yeon Hwang
- Department of Computer Science and Engineering, University of Louisville, Louisville, KY 40292, USA
| | - Mayukh Banerjee
- University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292 USA
| | - Matthew C Cave
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA; University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), USA; University of Louisville Hepatobiology and Toxicology Center, USA; The University of Louisville Superfund Research Center, USA; Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, University of Louisville School of Medicine, USA
| | - Carolyn M Klinge
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA; University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), USA.
| |
Collapse
|
8
|
Rashid CS, Preston JD, Ngo Tenlep SY, Cook MK, Blalock EM, Zhou C, Swanson HI, Pearson KJ. PCB126 exposure during pregnancy alters maternal and fetal gene expression. Reprod Toxicol 2023; 119:108385. [PMID: 37080397 PMCID: PMC10358324 DOI: 10.1016/j.reprotox.2023.108385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 04/22/2023]
Abstract
Polychlorinated biphenyls (PCBs) are organic pollutants that can have lasting impacts on offspring health. Here, we sought to examine maternal and fetal gene expression differences of aryl hydrocarbon receptor (AHR)-regulated genes in a mouse model of prenatal PCB126 exposure. Female mice were bred and gavaged with 1 µmole/kg bodyweight PCB126 or vehicle control on embryonic days 0 and 14, and maternal and fetal tissues were collected on embryonic day 18.5. Total RNAs were isolated, and gene expression levels were analyzed in both maternal and fetal tissues using the NanoString nCounter system. Interestingly, we found that the expression levels of cytochrome P450 (Cyp)1a1 and Cyp1b1 were significantly increased in response to PCB exposure in the tested maternal and fetal tissues. Furthermore, PCB exposure altered the expression of several other genes related to energy balance, oxidative stress, and epigenetic regulation in a manner that was less consistent across tissue types. These results indicate that maternal PCB126 exposure significantly alters gene expression in both developing fetuses and pregnant dams, and such changes vary in intensity and expressivity depending on tissue type. The altered gene expression may provide insights into pathophysiological mechanisms by which in utero PCB exposures contribute to PCB-induced postnatal metabolic diseases.
Collapse
Affiliation(s)
- Cetewayo S Rashid
- Pharmacology & Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Joshua D Preston
- Nutrition and Health Sciences, Laney Graduate School, Emory University, Atlanta, GA 30322, USA; Medical Scientist Training Program, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sara Y Ngo Tenlep
- Pharmacology & Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Marissa K Cook
- Pharmacology & Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Eric M Blalock
- Pharmacology & Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Changcheng Zhou
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92507, USA
| | - Hollie I Swanson
- Pharmacology & Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Kevin J Pearson
- Pharmacology & Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| |
Collapse
|
9
|
Karri K, Waxman DJ. TCDD dysregulation of lncRNA expression, liver zonation and intercellular communication across the liver lobule. Toxicol Appl Pharmacol 2023; 471:116550. [PMID: 37172768 PMCID: PMC10330769 DOI: 10.1016/j.taap.2023.116550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/21/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
The persistent environmental aryl hydrocarbon receptor agonist and hepatotoxin TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) induces hepatic lipid accumulation (steatosis), inflammation (steatohepatitis) and fibrosis. Thousands of liver-expressed, nuclear-localized lncRNAs with regulatory potential have been identified; however, their roles in TCDD-induced hepatoxicity and liver disease are unknown. We analyzed single nucleus (sn)RNA-seq data from control and subchronic (4 wk) TCDD-exposed mouse liver to determine liver cell-type specificity, zonation and differential expression profiles for thousands of lncRNAs. TCDD dysregulated >4000 of these lncRNAs in one or more liver cell types, including 684 lncRNAs specifically dysregulated in liver non-parenchymal cells. Trajectory inference analysis revealed major disruption by TCDD of hepatocyte zonation, affecting >800 genes, including 121 lncRNAs, with strong enrichment for lipid metabolism genes. TCDD also dysregulated expression of >200 transcription factors, including 19 Nuclear Receptors, most notably in hepatocytes and Kupffer cells. TCDD-induced changes in cell-cell communication patterns included marked decreases in EGF signaling from hepatocytes to non-parenchymal cells and increases in extracellular matrix-receptor interactions central to liver fibrosis. Gene regulatory networks constructed from the snRNA-seq data identified TCDD-exposed liver network-essential lncRNA regulators linked to functions such as fatty acid metabolic process, peroxisome and xenobiotic metabolism. Networks were validated by the striking enrichments that predicted regulatory lncRNAs showed for specific biological pathways. These findings highlight the power of snRNA-seq to discover functional roles for many xenobiotic-responsive lncRNAs in both hepatocytes and liver non-parenchymal cells and to elucidate novel aspects of foreign chemical-induced hepatotoxicity and liver disease, including dysregulation of intercellular communication within the liver lobule.
Collapse
Affiliation(s)
- Kritika Karri
- Department of Biology and Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | - David J Waxman
- Department of Biology and Bioinformatics Program, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
10
|
Wahlang B. RISING STARS: Sex differences in toxicant-associated fatty liver disease. J Endocrinol 2023; 258:e220247. [PMID: 37074385 PMCID: PMC10330380 DOI: 10.1530/joe-22-0247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 04/19/2023] [Indexed: 04/20/2023]
Abstract
Based on biological sex, the consequential health outcomes from exposures to environmental chemicals or toxicants can differ in disease pathophysiology, progression, and severity. Due to basal differences in cellular and molecular processes resulting from sexual dimorphism of organs including the liver and additional factors influencing 'gene-environment' interactions, males and females can exhibit different responses to toxicant exposures. Associations between environmental/occupational chemical exposures and fatty liver disease (FLD) have been well-acknowledged in human epidemiologic studies and their causal relationships demonstrated in experimental models. However, studies related to sex differences in liver toxicology are still limited to draw any inferences on sex-dependent chemical toxicity. The purpose of this review is to highlight the present state of knowledge on the existence of sex differences in toxicant-associated FLD (TAFLD), discuss potential underlying mechanisms driving these differences, implications of said differences on disease susceptibility, and emerging concepts. Chemicals of interest include various categories of pollutants that have been investigated in TAFLD, namely persistent organic pollutants, volatile organic compounds, and metals. Insight into research areas requiring further development is also discussed, with the objective of narrowing the knowledge gap on sex differences in environmental liver diseases. Major conclusions from this review exercise are that biological sex influences TAFLD risks, in part due to (i) toxicant disruption of growth hormone and estrogen receptor signaling, (ii) basal sex differences in energy mobilization and storage, and (iii) differences in chemical metabolism and subsequent body burden. Finally, further sex-dependent toxicological assessments are warranted for the development of sex-specific intervention strategies.
Collapse
Affiliation(s)
- Banrida Wahlang
- Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
- UofL Superfund Research Center, University of Louisville, Louisville, KY, 40202, USA
- The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY, 40202, USA
| |
Collapse
|
11
|
Karri K, Waxman DJ. Dysregulation of murine long noncoding single-cell transcriptome in nonalcoholic steatohepatitis and liver fibrosis. RNA (NEW YORK, N.Y.) 2023; 29:977-1006. [PMID: 37015806 PMCID: PMC10275269 DOI: 10.1261/rna.079580.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
LncRNAs comprise a heterogeneous class of RNA-encoding genes typified by low expression, nuclear enrichment, high tissue-specificity, and functional diversity, but the vast majority remain uncharacterized. Here, we assembled the mouse liver noncoding transcriptome from >2000 bulk RNA-seq samples and discovered 48,261 liver-expressed lncRNAs, a majority novel. Using these lncRNAs as a single-cell transcriptomic reference set, we elucidated lncRNA dysregulation in mouse models of high fat diet-induced nonalcoholic steatohepatitis and carbon tetrachloride-induced liver fibrosis. Trajectory inference analysis revealed lncRNA zonation patterns across the liver lobule in each major liver cell population. Perturbations in lncRNA expression and zonation were common in several disease-associated liver cell types, including nonalcoholic steatohepatitis-associated macrophages, a hallmark of fatty liver disease progression, and collagen-producing myofibroblasts, a central feature of liver fibrosis. Single-cell-based gene regulatory network analysis using bigSCale2 linked individual lncRNAs to specific biological pathways, and network-essential regulatory lncRNAs with disease-associated functions were identified by their high network centrality metrics. For a subset of these lncRNAs, promoter sequences of the network-defined lncRNA target genes were significantly enriched for lncRNA triplex formation, providing independent mechanistic support for the lncRNA-target gene linkages predicted by the gene regulatory networks. These findings elucidate liver lncRNA cell-type specificities, spatial zonation patterns, associated regulatory networks, and temporal patterns of dysregulation during hepatic disease progression. A subset of the liver disease-associated regulatory lncRNAs identified have human orthologs and are promising candidates for biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Kritika Karri
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
- Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA
| | - David J Waxman
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
- Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
12
|
Piell KM, Petri BJ, Head KZ, Wahlang B, Xu R, Zhang X, Pan J, Rai SN, de Silva K, Chariker JH, Rouchka EC, Tan M, Li Y, Cave MC, Klinge CM. Disruption of the mouse liver epitranscriptome by long-term aroclor 1260 exposure. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104138. [PMID: 37137421 PMCID: PMC10330322 DOI: 10.1016/j.etap.2023.104138] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/26/2023] [Accepted: 04/29/2023] [Indexed: 05/05/2023]
Abstract
Chronic environmental exposure to polychlorinated biphenyls (PCBs) is associated with non-alcoholic fatty liver disease (NAFLD) and exacerbated by a high fat diet (HFD). Here, chronic (34 wks.) exposure of low fat diet (LFD)-fed male mice to Aroclor 1260 (Ar1260), a non-dioxin-like (NDL) mixture of PCBs, resulted in steatohepatitis and NAFLD. Twelve hepatic RNA modifications were altered with Ar1260 exposure including reduced abundance of 2'-O-methyladenosine (Am) and N(6)-methyladenosine (m6A), in contrast to increased Am in the livers of HFD-fed, Ar1260-exposed mice reported previously. Differences in 13 RNA modifications between LFD- and HFD- fed mice, suggest that diet regulates the liver epitranscriptome. Integrated network analysis of epitranscriptomic modifications identified a NRF2 (Nfe2l2) pathway in the chronic, LFD, Ar1260-exposed livers and an NFATC4 (Nfatc4) pathway for LFD- vs. HFD-fed mice. Changes in protein abundance were validated. The results demonstrate that diet and Ar1260 exposure alter the liver epitranscriptome in pathways associated with NAFLD.
Collapse
Affiliation(s)
- Kellianne M Piell
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Belinda J Petri
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Kimberly Z Head
- University of Louisville Hepatobiology and Toxicology Center, USA
| | - Banrida Wahlang
- University of Louisville Hepatobiology and Toxicology Center, USA
| | - Raobo Xu
- University of Louisville Hepatobiology and Toxicology Center, USA; Department of Chemistry, University of Louisville College of Arts and Sciences, USA
| | - Xiang Zhang
- University of Louisville Hepatobiology and Toxicology Center, USA; Department of Chemistry, University of Louisville College of Arts and Sciences, USA; University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), USA
| | - Jianmin Pan
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; Cancer Data Science Center, Biostatistics and Informatics Shared Resource, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Shesh N Rai
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; Cancer Data Science Center, Biostatistics and Informatics Shared Resource, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Kalpani de Silva
- KY INBRE Bioinformatics Core, University of Louisville, Louisville, KY 40292, USA; Department of Neuroscience Training, University of Louisville, Louisville, KY 40292, USA
| | - Julia H Chariker
- KY INBRE Bioinformatics Core, University of Louisville, Louisville, KY 40292, USA; Department of Neuroscience Training, University of Louisville, Louisville, KY 40292, USA
| | - Eric C Rouchka
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA; KY INBRE Bioinformatics Core, University of Louisville, Louisville, KY 40292, USA
| | - Min Tan
- Division of Surgical Oncology, Department of Surgery, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Yan Li
- Division of Surgical Oncology, Department of Surgery, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Matthew C Cave
- University of Louisville Hepatobiology and Toxicology Center, USA; University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), USA; Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA; The University of Louisville Superfund Research Center, USA
| | - Carolyn M Klinge
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA; University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), USA.
| |
Collapse
|
13
|
Gripshover TC, Wahlang B, Head KZ, Young JL, Luo J, Mustafa MT, Kirpich IA, Cave MC. The environmental pollutant, polychlorinated biphenyl 126, alters liver function in a rodent model of alcohol-associated liver disease. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:60-75. [PMID: 36377258 PMCID: PMC9974797 DOI: 10.1111/acer.14976] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND The prevalence of alcohol-associated liver disease (ALD), a subtype of fatty liver disease (FLD), continues to rise. ALD is a major cause of preventable death. Polychlorinated biphenyl (PCB) 126 is an environmentally relevant, dioxin-like pollutant whose negative metabolic effects have been well documented. In human and animal studies, PCB has been associated with the severity of nonalcoholic fatty liver disease (NAFLD). However, few studies have investigated whether exposures to environmental toxicants can worsen ALD. Thus, the objective of the current study was to develop an alcohol-plus-toxicant model to study how an environmental pollutant, PCB 126, impacts rodent ALD pathology. METHODS Briefly, male C57BL/6J mice were exposed to 0.2 mg/kg PCB 126 or corn oil vehicle four days prior to ethanol feeding using the chronic-binge (10-plus-one) model. RESULTS Concentrations of macromolecules, including hepatic lipids, carbohydrates, and protein (albumin) were impacted. Exposure to PCB 126 exacerbated hepatic steatosis and hepatomegaly in mice exposed to the chemical and fed an ethanol diet. Gene expression and the analysis of blood chemistry showed a potential net increase and retention of hepatic lipids and reductions in lipid oxidation and clearance capabilities. Depletion of glycogen and glucose was evident, which contributes to disease progression by generating systemic malnutrition. Granulocytic immune infiltrates were present but driven solely by ethanol feeding. Hepatic albumin gene expression and plasma levels were decreased by ~50% indicating a potential compromise of liver function. Finally, gene expression analyses indicated that the aryl hydrocarbon receptor and constitutive androstane receptor were activated by PCB 126 and ethanol, respectively. CONCLUSIONS Various environmental toxicants are known to modify or enhance FLD in high-fat diet models. Findings from the present study suggest that they interact with other lifestyle factors such as alcohol consumption to reprogram intermediary metabolism resulting in exacerbated ethanol-associated systemic malnutrition in ALD.
Collapse
Affiliation(s)
- Tyler C. Gripshover
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA
- University of Louisville Superfund Research Program, University of Louisville, Louisville, KY 40202, USA
| | - Banrida Wahlang
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA
- Hepatobiology & Toxicology COBRE, University of Louisville School of Medicine, Louisville, KY 40202, USA
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA
- University of Louisville Superfund Research Program, University of Louisville, Louisville, KY 40202, USA
| | - Kimberly Z. Head
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA
- Hepatobiology & Toxicology COBRE, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Jamie L. Young
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Jianzhu Luo
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Muhammad T. Mustafa
- The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY, 40202, USA
| | - Irina A. Kirpich
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA
- Hepatobiology & Toxicology COBRE, University of Louisville School of Medicine, Louisville, KY 40202, USA
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA
| | - Matthew C. Cave
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA
- The Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA
- The Liver Transplant Program at UofL Health - Jewish Hospital Trager Transplant Center, Louisville, KY 40202 USA
- Hepatobiology & Toxicology COBRE, University of Louisville School of Medicine, Louisville, KY 40202, USA
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA
- University of Louisville Superfund Research Program, University of Louisville, Louisville, KY 40202, USA
- The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY, 40202, USA
| |
Collapse
|
14
|
Petri BJ, Piell KM, Wahlang B, Head KZ, Andreeva K, Rouchka EC, Cave MC, Klinge CM. Polychlorinated biphenyls alter hepatic m6A mRNA methylation in a mouse model of environmental liver disease. ENVIRONMENTAL RESEARCH 2023; 216:114686. [PMID: 36341798 PMCID: PMC10120843 DOI: 10.1016/j.envres.2022.114686] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/30/2022] [Accepted: 10/25/2022] [Indexed: 05/21/2023]
Abstract
Exposure to polychlorinated biphenyls (PCBs) has been associated with liver injury in human cohorts and with nonalcoholic steatohepatitis (NASH) in mice fed a high fat diet (HFD). N (6)-methyladenosine (m6A) modification of mRNA regulates transcript fate, but the contribution of m6A modification on the regulation of transcripts in PCB-induced steatosis and fibrosis is unknown. This study tested the hypothesis that PCB and HFD exposure alters the levels of m6A modification in transcripts that play a role in NASH in vivo. Male C57Bl6/J mice were fed a HFD (12 wks) and administered a single oral dose of Aroclor1260, PCB126, or Aroclor1260 + PCB126. Genome-wide identification of m6A peaks was accomplished by m6A mRNA immunoprecipitation sequencing (m6A-RIP) and the mRNA transcriptome identified by RNA-seq. Exposure of HFD-fed mice to Aroclor1260 decreased the number of m6A peaks and m6A-containing genes relative to PCB vehicle control whereas PCB126 or the combination of Aroclor1260 + PCB126 increased m6A modification frequency. ∼41% of genes had one m6A peak and ∼49% had 2-4 m6A peaks. 117 m6A peaks were common in the four experimental groups. The Aroclor1260 + PCB126 exposure group showed the highest number (52) of m6A-peaks. qRT-PCR confirmed enrichment of m6A-containing fragments of the Apob transcript with PCB exposure. A1cf transcript abundance, m6A peak count, and protein abundance was increased with Aroclor1260 + PCB126 co-exposure. Irrespective of the PCB type, all PCB groups exhibited enriched pathways related to lipid/lipoprotein metabolism and inflammation through the m6A modification. Integrated analysis of m6A-RIP-seq and mRNA-seq identified 242 differentially expressed genes (DEGs) with increased or reduced number of m6A peaks. These data show that PCB exposure in HFD-fed mice alters the m6A landscape offering an additional layer of regulation of gene expression affecting a subset of gene responses in NASH.
Collapse
Affiliation(s)
- Belinda J Petri
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Kellianne M Piell
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Banrida Wahlang
- University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), USA; University of Louisville Hepatobiology and Toxicology Center, USA; The University of Louisville Superfund Research Center, USA; Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, University of Louisville School of Medicine, USA
| | - Kimberly Z Head
- University of Louisville Hepatobiology and Toxicology Center, USA
| | - Kalina Andreeva
- KY INBRE Bioinformatics Core, University of Louisville, USA; Department of Genetics, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Eric C Rouchka
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA; KY INBRE Bioinformatics Core, University of Louisville, USA
| | - Matthew C Cave
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA; Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, University of Louisville School of Medicine, USA
| | - Carolyn M Klinge
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA; University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), USA.
| |
Collapse
|
15
|
Guillotin S, Delcourt N. Studying the Impact of Persistent Organic Pollutants Exposure on Human Health by Proteomic Analysis: A Systematic Review. Int J Mol Sci 2022; 23:ijms232214271. [PMID: 36430748 PMCID: PMC9692675 DOI: 10.3390/ijms232214271] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Persistent organic pollutants (POPs) are organic chemical substances that are widely distributed in environments around the globe. POPs accumulate in living organisms and are found at high concentrations in the food chain. Humans are thus continuously exposed to these chemical substances, in which they exert hepatic, reproductive, developmental, behavioral, neurologic, endocrine, cardiovascular, and immunologic adverse health effects. However, considerable information is unknown regarding the mechanism by which POPs exert their adverse effects in humans, as well as the molecular and cellular responses involved. Data are notably lacking concerning the consequences of acute and chronic POP exposure on changes in gene expression, protein profile, and metabolic pathways. We conducted a systematic review to provide a synthesis of knowledge of POPs arising from proteomics-based research. The data source used for this review was PubMed. This study was carried out following the PRISMA guidelines. Of the 742 items originally identified, 89 were considered in the review. This review presents a comprehensive overview of the most recent research and available solutions to explore proteomics datasets to identify new features relevant to human health. Future perspectives in proteomics studies are discussed.
Collapse
Affiliation(s)
- Sophie Guillotin
- Poison Control Centre, Toulouse University Hospital, 31059 Toulouse, France
- INSERM UMR 1295, Centre d’Epidémiologie et de Recherche en Santé des Populations, 31000 Toulouse, France
| | - Nicolas Delcourt
- Poison Control Centre, Toulouse University Hospital, 31059 Toulouse, France
- INSERM UMR 1214, Toulouse NeuroImaging Center, 31024 Toulouse, France
- Correspondence: ; Tel.: +33-(0)-567691640
| |
Collapse
|
16
|
Tian Y, Rimal B, Gui W, Koo I, Smith PB, Yokoyama S, Patterson AD. Early Life Polychlorinated Biphenyl 126 Exposure Disrupts Gut Microbiota and Metabolic Homeostasis in Mice Fed with High-Fat Diet in Adulthood. Metabolites 2022; 12:metabo12100894. [PMID: 36295797 PMCID: PMC9609008 DOI: 10.3390/metabo12100894] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Evidence supports the potential influence of persistent organic pollutants (POPs) on the pathogenesis and progression of obesity and diabetes. Diet-toxicant interactions appear to be important in diet-induced obesity/diabetes; however, the factors influencing this interaction, especially the early life environmental exposure, are unclear. Herein, we investigated the metabolic effects following early life five-day exposure (24 μg/kg body weight per day) to 3,3′,4,4′,5-pentacholorobiphenyl (PCB 126) at four months after exposure in mice fed with control (CTRL) or high-fat diet (HFD). Activation of aryl hydrocarbon receptor (AHR) signaling as well as higher levels of liver nucleotides were observed at 4 months after PCB 126 exposure in mice, independent of diet status. Inflammatory responses including higher levels of serum cytokines and adipose inflammatory gene expression caused by early life PCB 126 were observed only in HFD-fed mice in adulthood. Notably, early life PCB 126 exposure worsened HFD-induced impaired glucose homeostasis characterized by glucose intolerance and elevated gluconeogenesis and tricarboxylic acid (TCA) cycle flux without worsening the effects of HFD related to adiposity in adulthood. Furthermore, early life PCB 126 exposure resulted in diet-dependent changes in bacterial community structure and function later in life, as indicated by metagenomic and metabolomic analyses. These data contribute to a more comprehensive understanding of the interactions between diet and early life environmental chemical exposure.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Bipin Rimal
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Wei Gui
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Imhoi Koo
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Philip B. Smith
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Shigetoshi Yokoyama
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Andrew D. Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Correspondence:
| |
Collapse
|
17
|
Recombinant FGF21 Attenuates Polychlorinated Biphenyl-Induced NAFLD/NASH by Modulating Hepatic Lipocalin-2 Expression. Int J Mol Sci 2022; 23:ijms23168899. [PMID: 36012166 PMCID: PMC9408415 DOI: 10.3390/ijms23168899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022] Open
Abstract
Although recent studies have demonstrated that polychlorinated biphenyls (PCB) exposure leads to toxicant-associated steatohepatitis, the underlying mechanism of this condition remains unsolved. Male C57Bl/6 mice fed a standard diet (SD) or 60% high fat diet (HFD) were exposed to the nondioxin-like PCB mixture Aroclor1260 or dioxin-like PCB congener PCB126 by intraperitoneal injection for a total of four times for six weeks. We observed hepatic injury, steatosis, inflammation, and fibrosis in not only the Aroclor1260-treated mice fed a HFD but the PCB126-treated mice fed either a SD or a HFD. We also observed that both types of PCB exposure induced hepatic iron overload (HIO). Noticeably, the expression of hepatic lipocalin-2 (LCN2) was significantly increased in the PCB-induced nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH) models. The knockdown of LCN2 resulted in improvement of PCB-induced lipid and iron accumulation in vitro, suggesting that LCN2 plays a pivotal role in PCB-induced NAFLD/NASH. We observed that recombinant FGF21 improved hepatic steatosis and HIO in the PCB-induced NAFLD/NASH models. Importantly, recombinant FGF21 reduced the PCB-induced overexpression of hepatic LCN2 in vivo and in vitro. Our findings indicate that recombinant FGF21 attenuates PCB-induced NAFLD/NASH by modulating hepatic lipocalin-2 expression. Our data suggest that hepatic LCN2 might represent a suitable therapeutic target for improving PCB-induced NAFLD/NASH accompanying HIO.
Collapse
|
18
|
Petri BJ, Piell KM, Wahlang B, Head KZ, Andreeva K, Rouchka EC, Pan J, Rai SN, Cave MC, Klinge CM. Multiomics analysis of the impact of polychlorinated biphenyls on environmental liver disease in a mouse model. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 94:103928. [PMID: 35803474 DOI: 10.1016/j.etap.2022.103928] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/27/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Exposure to high fat diet (HFD) and persistent organic pollutants including polychlorinated biphenyls (PCBs) is associated with liver injury in human populations and non-alcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH) in animal models. Previously, exposure of HFD-fed male mice to the non-dioxin-like (NDL) PCB mixture Aroclor1260, dioxin-like (DL) PCB126, or Aroclor1260 + PCB126 co-exposure caused toxicant-associated steatohepatitis (TASH) and differentially altered the liver proteome. Here unbiased mRNA and miRNA sequencing (mRNA- and miRNA- seq) was used to identify biological pathways altered in these liver samples. Fewer transcripts and miRs were up- or down- regulated by PCB126 or Aroclor1260 compared to the combination, suggesting that crosstalk between the receptors activated by these PCBs amplifies changes in the transcriptome. Pathway enrichment analysis identified "positive regulation of Wnt/β-catenin signaling" and "role of miRNAs in cell migration, survival, and angiogenesis" for differentially expressed mRNAs and miRNAs, respectively. We evaluated the five miRNAs increased in human plasma with PCB exposure and suspected TASH and found that miR-192-5p was increased with PCB exposure in mouse liver. Although we observed little overlap between differentially expressed mRNA transcripts and proteins, biological pathway-relevant PCB-induced miRNA-mRNA and miRNA-protein inverse relationships were identified that may explain protein changes. These results provide novel insights into miRNA and mRNA transcriptome changes playing direct and indirect roles in the functional protein pathways in PCB-related hepatic lipid accumulation, inflammation, and fibrosis in a mouse model of TASH and its relevance to human liver disease in exposed populations.
Collapse
Affiliation(s)
- Belinda J Petri
- Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine University of Louisville, Louisville, KY 40292, USA
| | - Kellianne M Piell
- Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine University of Louisville, Louisville, KY 40292, USA
| | - Banrida Wahlang
- University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), USA; University of Louisville Hepatobiology and Toxicology Center, USA; The University of Louisville Superfund Research Center, USA; Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, University of Louisville School of Medicine, USA
| | - Kimberly Z Head
- University of Louisville Hepatobiology and Toxicology Center, USA
| | | | - Eric C Rouchka
- Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine University of Louisville, Louisville, KY 40292, USA; KY INBRE Bioinformatics Core, University of Louisville, USA
| | - Jianmin Pan
- Biostatistics and Bioinformatics Facility, Brown Cancer Center, USA
| | - Shesh N Rai
- University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), USA; University of Louisville Hepatobiology and Toxicology Center, USA; Biostatistics and Bioinformatics Facility, Brown Cancer Center, USA
| | - Matthew C Cave
- Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine University of Louisville, Louisville, KY 40292, USA; University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), USA; University of Louisville Hepatobiology and Toxicology Center, USA; The University of Louisville Superfund Research Center, USA; Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, University of Louisville School of Medicine, USA
| | - Carolyn M Klinge
- Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine University of Louisville, Louisville, KY 40292, USA; University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), USA.
| |
Collapse
|
19
|
Cave MC, Pinkston CM, Rai SN, Wahlang B, Pavuk M, Head KZ, Carswell GK, Nelson GM, Klinge CM, Bell DA, Birnbaum LS, Chorley BN. Circulating MicroRNAs, Polychlorinated Biphenyls, and Environmental Liver Disease in the Anniston Community Health Survey. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:17003. [PMID: 34989596 PMCID: PMC8734566 DOI: 10.1289/ehp9467] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 05/19/2023]
Abstract
BACKGROUND Polychlorinated biphenyl (PCB) exposures have been associated with liver injury in human cohorts, and steatohepatitis with liver necrosis in model systems. MicroRNAs (miRs) maintain cellular homeostasis and may regulate the response to environmental stress. OBJECTIVES We tested the hypothesis that specific miRs are associated with liver disease and PCB exposures in a residential cohort. METHODS Sixty-eight targeted hepatotoxicity miRs were measured in archived serum from 734 PCB-exposed participants in the cross-sectional Anniston Community Health Survey. Necrotic and other liver disease categories were defined by serum keratin 18 (K18) biomarkers. Associations were determined between exposure biomarkers (35 ortho-substituted PCB congeners) and disease biomarkers (highly expressed miRs or previously measured cytokines), and Ingenuity Pathway Analysis was performed. RESULTS The necrotic liver disease category was associated with four up-regulated miRs (miR-99a-5p, miR-122-5p, miR-192-5p, and miR-320a) and five down-regulated miRs (let-7d-5p, miR-17-5p, miR-24-3p, miR-197-3p, and miR-221-3p). Twenty-two miRs were associated with the other liver disease category or with K18 measurements. Eleven miRs were associated with 24 PCBs, most commonly congeners with anti-estrogenic activities. Most of the exposure-associated miRs were associated with at least one serum hepatocyte death, pro-inflammatory cytokine or insulin resistance bioarker, or with both. Within each biomarker category, associations were strongest for the liver-specific miR-122-5p. Pathways of liver toxicity that were identified included inflammation/hepatitis, hyperplasia/hyperproliferation, cirrhosis, and hepatocellular carcinoma. Tumor protein p53 and tumor necrosis factor α were well integrated within the top identified networks. DISCUSSION These results support the human hepatotoxicity of environmental PCB exposures while elucidating potential modes of PCB action. The MiR-derived liquid liver biopsy represents a promising new technique for environmental hepatology cohort studies. https://doi.org/10.1289/EHP9467.
Collapse
Affiliation(s)
- Matthew C. Cave
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, Kentucky, USA
- Department of Pharmacology & Toxicology, School of Medicine, University of Louisville, Louisville, Kentucky, USA
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Hepatobiology and Toxicology Center, University of Louisville, Louisville, Kentucky, USA
- Superfund Research Center, University of Louisville, Louisville, Kentucky, USA
- Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, Kentucky, USA
- Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky, USA
- Liver Transplant Program at UofL Health–Jewish Hospital Trager Transplant Center, Louisville, Kentucky, USA
- University of Louisville Alcohol Research Center, Louisville, Kentucky, USA
| | - Christina M. Pinkston
- Hepatobiology and Toxicology Center, University of Louisville, Louisville, Kentucky, USA
- Department of Bioinformatics and Biostatistics, University of Louisville School of Public Health and Information Sciences, Louisville, Kentucky, USA
- Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Shesh N. Rai
- Hepatobiology and Toxicology Center, University of Louisville, Louisville, Kentucky, USA
- Superfund Research Center, University of Louisville, Louisville, Kentucky, USA
- Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, Kentucky, USA
- University of Louisville Alcohol Research Center, Louisville, Kentucky, USA
- Department of Bioinformatics and Biostatistics, University of Louisville School of Public Health and Information Sciences, Louisville, Kentucky, USA
- Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Banrida Wahlang
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, Kentucky, USA
- Superfund Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Marian Pavuk
- Agency for Toxic Substances and Disease Registry, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Kimberly Z. Head
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, Kentucky, USA
- Hepatobiology and Toxicology Center, University of Louisville, Louisville, Kentucky, USA
| | - Gleta K. Carswell
- United States Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Gail M. Nelson
- United States Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Carolyn M. Klinge
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Douglas A. Bell
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Linda S. Birnbaum
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Brian N. Chorley
- United States Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| |
Collapse
|
20
|
Beier JI, Arteel GE. Environmental exposure as a risk-modifying factor in liver diseases: Knowns and unknowns. Acta Pharm Sin B 2021; 11:3768-3778. [PMID: 35024305 PMCID: PMC8727918 DOI: 10.1016/j.apsb.2021.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/24/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023] Open
Abstract
Liver diseases are considered to predominantly possess an inherited or xenobiotic etiology. However, inheritance drives the ability to appropriately adapt to environmental stressors, and disease is the culmination of a maladaptive response. Thus “pure” genetic and “pure” xenobiotic liver diseases are modified by each other and other factors, identified or unknown. The purpose of this review is to highlight the knowledgebase of environmental exposure as a potential risk modifying agent for the development of liver disease by other causes. This exercise is not to argue that all liver diseases have an environmental component, but to challenge the assumption that the current state of our knowledge is sufficient in all cases to conclusively dismiss this as a possibility. This review also discusses key new tools and approaches that will likely be critical to address this question in the future. Taken together, identifying the key gaps in our understanding is critical for the field to move forward, or at the very least to “know what we don't know.”
Collapse
Affiliation(s)
- Juliane I. Beier
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center and University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Environmental and Occupational Health, University of Pittsburgh, PA 15213, USA
- Corresponding authors.
| | - Gavin E. Arteel
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center and University of Pittsburgh, Pittsburgh, PA 15213, USA
- Corresponding authors.
| |
Collapse
|
21
|
Jin J, Wahlang B, Thapa M, Head KZ, Hardesty JE, Srivastava S, Merchant ML, Rai SN, Prough RA, Cave MC. Proteomics and metabolic phenotyping define principal roles for the aryl hydrocarbon receptor in mouse liver. Acta Pharm Sin B 2021; 11:3806-3819. [PMID: 35024308 PMCID: PMC8727924 DOI: 10.1016/j.apsb.2021.10.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 12/20/2022] Open
Abstract
Dioxin-like molecules have been associated with endocrine disruption and liver disease. To better understand aryl hydrocarbon receptor (AHR) biology, metabolic phenotyping and liver proteomics were performed in mice following ligand-activation or whole-body genetic ablation of this receptor. Male wild type (WT) and Ahr–/– mice (Taconic) were fed a control diet and exposed to 3,3′,4,4′,5-pentachlorobiphenyl (PCB126) (61 nmol/kg by gavage) or vehicle for two weeks. PCB126 increased expression of canonical AHR targets (Cyp1a1 and Cyp1a2) in WT but not Ahr–/–. Knockouts had increased adiposity with decreased glucose tolerance; smaller livers with increased steatosis and perilipin-2; and paradoxically decreased blood lipids. PCB126 was associated with increased hepatic triglycerides in Ahr–/–. The liver proteome was impacted more so by Ahr–/– genotype than ligand-activation, but top gene ontology (GO) processes were similar. The PCB126-associated liver proteome was Ahr-dependent. Ahr principally regulated liver metabolism (e.g., lipids, xenobiotics, organic acids) and bioenergetics, but it also impacted liver endocrine response (e.g., the insulin receptor) and function, including the production of steroids, hepatokines, and pheromone binding proteins. These effects could have been indirectly mediated by interacting transcription factors or microRNAs. The biologic roles of the AHR and its ligands warrant more research in liver metabolic health and disease.
Collapse
Key Words
- AHR
- AHR, aryl hydrocarbon receptor
- ALT, alanine transaminase
- ANOVA, analysis of variance
- AST, aspartate transaminase
- AUC, area under the curve
- CAR, constitutive androstane receptor
- CD36, cluster of differentiation 36
- CYP, cytochrome P450
- EPF, enrichment by protein function
- Endocrine disruption
- Environmental liver disease
- FDR, false discovery rate
- FGF21, fibroblast growth factor 21
- GCR, glucocorticoid receptor
- GO, gene ontology
- H&E, hematoxylin-eosin
- HDL, high-density lipoprotein
- HFD, high fat diet
- IGF1, insulin-like growth factor 1
- IL-6, interleukin 6
- IPF, interaction by protein function
- LDL, low-density lipoprotein
- MCP-1, monocyte chemoattractant protein-1
- MUP, major urinary protein
- NAFLD, non-alcoholic fatty liver disease
- NFKBIA, nuclear factor kappa-inhibitor alpha
- Nonalcoholic fatty liver disease
- PAI-1, plasminogen activator inhibitor-1
- PCB, polychlorinated biphenyl
- PCB126
- PLIN2, perilipin-2
- PNPLA3, patatin-like phospholipase domain-containing protein 3
- PPARα, peroxisome proliferator-activated receptor alpha
- PXR, pregnane-xenobiotic receptor
- Perilipin-2
- Pheromones
- SGK1, serum/glucocorticoid regulated kinase
- TAFLD, toxicant-associated fatty liver disease
- TASH, toxicant-associated steatohepatitis
- TAT, tyrosine aminotransferase
- TMT, tandem mass tag
- VLDL, very low-density lipoprotein
- WT, wild type
- ZFP125, zinc finger protein 125
- miR, microRNA
- nHDLc, non-HDL cholesterol
Collapse
|
22
|
Klinge CM, Piell KM, Petri BJ, He L, Zhang X, Pan J, Rai SN, Andreeva K, Rouchka EC, Wahlang B, Beier JI, Cave MC. Combined exposure to polychlorinated biphenyls and high-fat diet modifies the global epitranscriptomic landscape in mouse liver. ENVIRONMENTAL EPIGENETICS 2021; 7:dvab008. [PMID: 34548932 PMCID: PMC8448424 DOI: 10.1093/eep/dvab008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/13/2021] [Accepted: 08/10/2021] [Indexed: 05/30/2023]
Abstract
Exposure to a single dose of polychlorinated biphenyls (PCBs) and a 12-week high-fat diet (HFD) results in nonalcoholic steatohepatitis (NASH) in mice by altering intracellular signaling and inhibiting epidermal growth factor receptor signaling. Post-transcriptional chemical modification (PTM) of RNA regulates biological processes, but the contribution of epitranscriptomics to PCB-induced steatosis remains unknown. This study tested the hypothesis that PCB and HFD exposure alters the global RNA epitranscriptome in male mouse liver. C57BL/6J male mice were fed a HFD for 12 weeks and exposed to a single dose of Aroclor 1260 (20 mg/kg), PCB 126 (20 µg/kg), both Aroclor 1260 and PCB 126 or vehicle control after 2 weeks on HFD. Chemical RNA modifications were identified at the nucleoside level by liquid chromatography-mass spectrometry. From 22 PTM global RNA modifications, we identified 10 significant changes in RNA modifications in liver with HFD and PCB 126 exposure. Only two modifications were significantly different from HFD control liver in all three PCB exposure groups: 2'-O-methyladenosine (Am) and N(6)-methyladenosine (m6A). Exposure to HFD + PCB 126 + Aroclor 1260 increased the abundance of N(6), O(2)-dimethyladenosine (m6Am), which is associated with the largest number of transcript changes. Increased m6Am and pseudouridine were associated with increased protein expression of the writers of these modifications: Phosphorylated CTD Interacting Factor 1 (PCIF1) and Pseudouridine Synthase 10 (PUS10), respectively, in HFD + PCB 126- + Aroclor 1260-exposed mouse liver. Increased N1-methyladenosine (m1A) and m6A were associated with increased transcript levels of the readers of these modifications: YTH N6-Methyladenosine RNA Binding Protein 2 (YTHDF2), YTH Domain Containing 2 (YTHDC2), and reader FMRP Translational Regulator 1 (FMR1) transcript and protein abundance. The results demonstrate that PCB exposure alters the global epitranscriptome in a mouse model of NASH; however, the mechanism for these changes requires further investigation.
Collapse
Affiliation(s)
- Carolyn M Klinge
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA
- University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), Louisville, KY 40292, USA
| | - Kellianne M Piell
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Belinda J Petri
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Liqing He
- Department of Chemistry, University of Louisville College of Arts and Sciences, Louisville, KY 40292, USA
| | - Xiang Zhang
- Department of Chemistry, University of Louisville College of Arts and Sciences, Louisville, KY 40292, USA
- University of Louisville Hepatobiology and Toxicology Center, Louisville, KY 40292, USA
- University of Louisville Alcohol Research Center, Louisville, KY 40292, USA
| | - Jianmin Pan
- University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), Louisville, KY 40292, USA
- Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Shesh N Rai
- University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), Louisville, KY 40292, USA
- University of Louisville Hepatobiology and Toxicology Center, Louisville, KY 40292, USA
- University of Louisville Alcohol Research Center, Louisville, KY 40292, USA
- Department of Bioinformatics and Biostatistics, University of Louisville School of Public Health and Information Sciences, Louisville, KY 40292, USA
- Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40292, USA
- The University of Louisville Superfund Research Center, Louisville, KY 40292, USA
| | - Kalina Andreeva
- Bioinformatics and Biomedical Computing Laboratory, Department of Computer Engineering and Computer Science, JB Speed School of Engineering, University of Louisville, Louisville, KY 40292, USA
| | - Eric C Rouchka
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Banrida Wahlang
- The University of Louisville Superfund Research Center, Louisville, KY 40292, USA
- Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Juliane I Beier
- Department of Medicine, Division of Gastroenterology, Hepatology & Nutrition, University of Pittsburgh, Louisville, KY 40292, USA
- Pittsburgh Liver Research Center (PLRC), Louisville, KY 40292, USA
- Department of Environmental and Occupational Health Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Matthew C Cave
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA
- University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), Louisville, KY 40292, USA
- University of Louisville Hepatobiology and Toxicology Center, Louisville, KY 40292, USA
- University of Louisville Alcohol Research Center, Louisville, KY 40292, USA
- The University of Louisville Superfund Research Center, Louisville, KY 40292, USA
- Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| |
Collapse
|
23
|
Kennedy CL, Spiegelhoff A, Wang K, Lavery T, Nunez A, Manuel R, Hillers-Ziemer L, Arendt LM, Stietz KPK. The Bladder Is a Novel Target of Developmental Polychlorinated Biphenyl Exposure Linked to Increased Inflammatory Cells in the Bladder of Young Mice. TOXICS 2021; 9:toxics9090214. [PMID: 34564365 PMCID: PMC8473463 DOI: 10.3390/toxics9090214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 01/28/2023]
Abstract
Bladder inflammation is associated with several lower urinary tract symptoms that greatly reduce quality of life, yet contributing factors are not completely understood. Environmental chemicals are plausible mediators of inflammatory reactions within the bladder. Here, we examine whether developmental exposure to polychlorinated biphenyls (PCBs) leads to changes in immune cells within the bladder of young mice. Female mice were exposed to an environmentally relevant mixture of PCBs through gestation and lactation, and bladders were collected from offspring at postnatal day (P) 28-31. We identify several dose- and sex-dependent PCB effects in the bladder. The lowest concentration of PCB (0.1 mg/kg/d) increased CD45+ hematolymphoid immune cells in both sexes. While PCBs had no effect on CD79b+ B cells or CD3+ T cells, PCBs (0.1 mg/kg/d) did increase F4/80+ macrophages particularly in female bladder. Collagen density was also examined to determine whether inflammatory events coincide with changes in the stromal extracellular matrix. PCBs (0.1 mg/kg/d) decreased collagen density in female bladder compared to control. PCBs also increased the number of cells undergoing cell division predominantly in male bladder. These results implicate perturbations to the immune system in relation to PCB effects on the bladder. Future study to define the underlying mechanisms could help understand how environmental factors can be risk factors for lower urinary tract symptoms.
Collapse
|
24
|
Yan L, Messner CJ, Zhang X, Suter-Dick L. Assessment of fibrotic pathways induced by environmental chemicals using 3D-human liver microtissue model. ENVIRONMENTAL RESEARCH 2021; 194:110679. [PMID: 33387535 DOI: 10.1016/j.envres.2020.110679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Exposure to environmental chemicals, particularly those with persistent and bioaccumulative properties have been linked to liver diseases. Induction of fibrotic pathways is considered as a pre-requirement of chemical induced liver fibrosis. Here, we applied 3D in vitro human liver microtissues (MTs) composed of HepaRG, THP-1 and hTERT-HSC that express relevant hepatic pathways (bile acid, sterol, and xenobiotic metabolism) and can recapitulate key events of liver fibrosis (e.g. extracellular matrix-deposition). The liver MTs were exposed to a known profibrotic chemical, thioacetamide (TAA) and three representative environmental chemicals (TCDD, benzo [a] pyrene (BaP) and PCB126). Both TAA and BaP triggered fibrotic pathway related events such as hepatocellular damage (cytotoxicity and decreased albumin release), hepatic stellate cell activation (transcriptional upregulation of α-SMA and Col1α1) and extracellular matrix remodelling. TCDD or PCB126 at measured concentrations did not elicit these responses in the 3D liver MTs system, though they caused cytotoxicity in HepaRG monoculture at high concentrations. Reduced human transcriptome (RHT) analysis captured molecular responses involved in liver fibrosis when MTs were treated with TAA and BaP. The results suggest that 3D, multicellular, human liver microtissues represent an alternative, human-relevant, in vitro liver model for assessing fibrotic pathways induced by environmental chemicals.
Collapse
Affiliation(s)
- Lu Yan
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Catherine Jane Messner
- School of Life Sciences, University of Applied Sciences Northwestern Switzerland, Muttenz, 4132, Switzerland; Department of Pharmaceutical Sciences, University of Basel, Basel, 4003, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), 4056, Switzerland
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China.
| | - Laura Suter-Dick
- School of Life Sciences, University of Applied Sciences Northwestern Switzerland, Muttenz, 4132, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), 4056, Switzerland
| |
Collapse
|
25
|
Hardesty JE, Wahlang B, Prough RA, Head KZ, Wilkey D, Merchant M, Shi H, Jin J, Cave MC. Effect of Epidermal Growth Factor Treatment and Polychlorinated Biphenyl Exposure in a Dietary-Exposure Mouse Model of Steatohepatitis. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:37010. [PMID: 33788613 PMCID: PMC8011667 DOI: 10.1289/ehp8222] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Polychlorinated biphenyls (PCBs) are signaling disrupting chemicals that exacerbate nonalcoholic steatohepatitis (NASH) in mice. They are epidermal growth factor receptor (EGFR) inhibitors that enhance hepatic inflammation and fibrosis in mice. OBJECTIVES This study tested the hypothesis that epidermal growth factor (EGF) administration can attenuate PCB-related NASH by increasing hepatic EGFR signaling in a mouse model. METHODS C57BL/6 male mice were fed a 42% milk fat diet and exposed to Aroclor 1260 (20 mg / kg ) or vehicle for 12 wk. EGF (0.2 μ g / g ) or vehicle were administered daily for 10 d starting at study week 10. Liver and metabolic phenotyping were performed. The EGF dose was selected based on results of an acute dose-finding study (30 min treatment of EGF at 0.2, 0.02, 0.002 μ g / g of via intraperitoneal injection). Hepatic phosphoproteomic analysis was performed using liver tissue from this acute study to understand EGFR's role in liver physiology. RESULTS Markers of EGFR signaling were higher in EGF-treated mice. EGF + PCB -exposed mice had lower hepatic free fatty acids, inflammation, and fibrosis relative to PCB-only exposed mice. EGF-treated mice had higher plasma lipids, with no improvement in hepatic steatosis, and an association with higher LXR target gene expression and de novo lipogenesis. EGF-treated mice showed more severe hyperglycemia associated with lower adiponectin levels and insulin sensitivity. EGF-treated mice had higher hepatic HNF 4 α , NRF2, and AhR target gene expression but lower constitutive androstane receptor and farnesoid X receptor target gene expression. The hepatic EGF-sensitive phosphoproteome demonstrated a role for EGFR signaling in liver homeostasis. DISCUSSION These results validated EGFR inhibition as a causal mode of action for PCB-related hepatic inflammation and fibrosis in a mouse model of NASH. However, observed adverse effects may limit the clinical translation of EGF therapy. More data are required to better understand EGFR's underinvestigated roles in liver and environmental health. https://doi.org/10.1289/EHP8222.
Collapse
Affiliation(s)
- Josiah E. Hardesty
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Banrida Wahlang
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, Kentucky, USA
- University of Louisville Superfund Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Russell A. Prough
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Kim Z. Head
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, Kentucky, USA
- The Animal Model and Biorepository Core of the Hepatobiology and Toxicology Center, University of Louisville, Louisville, Kentucky, USA
| | - Daniel Wilkey
- University of Louisville Superfund Research Center, University of Louisville, Louisville, Kentucky, USA
- Division of Nephrology and Hypertension, School of Medicine, University of Louisville, Louisville, Kentucky, USA
- The ’Omics Core of the Hepatobiology and Toxicology Center, University of Louisville, Louisville, Kentucky, USA
| | - Michael Merchant
- University of Louisville Superfund Research Center, University of Louisville, Louisville, Kentucky, USA
- Division of Nephrology and Hypertension, School of Medicine, University of Louisville, Louisville, Kentucky, USA
- The ’Omics Core of the Hepatobiology and Toxicology Center, University of Louisville, Louisville, Kentucky, USA
| | - Hongxue Shi
- Department of Pharmacology & Toxicology, School of Medicine, University of Louisville, Louisville, Kentucky, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Jian Jin
- Department of Pharmacology & Toxicology, School of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Matthew C. Cave
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, Kentucky, USA
- University of Louisville Superfund Research Center, University of Louisville, Louisville, Kentucky, USA
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, Kentucky, USA
- The Animal Model and Biorepository Core of the Hepatobiology and Toxicology Center, University of Louisville, Louisville, Kentucky, USA
- Department of Pharmacology & Toxicology, School of Medicine, University of Louisville, Louisville, Kentucky, USA
- The Robley Rex Veterans Affairs Medical Center, U.S. Department of Veterans Affairs, Louisville, Kentucky, USA
- The Liver Transplant Program, Jewish Hospital Trager Transplant Center, UofL Health, Louisville, Kentucky, USA
| |
Collapse
|