1
|
Ma M. Current scenario of pyrazole hybrids with anti-breast cancer therapeutic applications. Arch Pharm (Weinheim) 2024; 357:e2400344. [PMID: 38943440 DOI: 10.1002/ardp.202400344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 07/01/2024]
Abstract
Breast cancer stands as the leading cause of cancer-related deaths among women globally, but current therapy is restricted to the serious adverse effects and multidrug resistance, necessitating the exploration of novel, safe, and efficient anti-breast cancer chemotherapeutic agents. Pyrazoles exhibit excellent potential for utilization as effective anti-breast cancer agents due to their ability to act on various biological targets. Particularly, pyrazole hybrids demonstrated the advantage of targeting multiple pathways, and some of them, which are exemplified by larotrectinib (pyrazolo[1,5-a]pyrimidine hybrid), can be applied for breast cancer therapy. Thus, pyrazole hybrids hold great promise as useful therapeutic interventions for breast cancer. The aim of this review is to summarize the current scenario of pyrazole hybrids with in vitro and/or in vivo anti-breast cancer potential, along with the modes of action and structure-activity relationships, covering articles published from 2020 to the present, to streamline the development of rational, effective and safe anti-breast cancer candidates.
Collapse
Affiliation(s)
- Mengyu Ma
- Department of Pharmaceutical Engineering, School of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian, Henan, People's Republic of China
| |
Collapse
|
2
|
Ullah H, Majid S, Abro A, Rahman TU, Khan AM, Ahmed M, Asif M, Yousafzai A, Ullh R, Pushparaj PN, Rasool M. Synthesis and molecular docking analysis of MBH adducts' derived amides as potential β-lactamase inhibitors. Bioinformation 2024; 20:449-459. [PMID: 39132243 PMCID: PMC11309101 DOI: 10.6026/973206300200449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 08/13/2024] Open
Abstract
Humans suffer from various diseases that require more specific drugs to target them. Among the different potent agents, β-lactamases serve as good antibacterial agents; however, β-lactamases are resistant to such antibiotics. The present study was designed to prepare efficient β-lactamase inhibitor amides (12-15) from inexpensive, easily accessible, and bioactive precursors; Morita Baylis Hillman (MBH) adducts (5-8). The adducts (5-8) were primarily prepared by treating their respective aldehydes with the corresponding acrylate in the presence of an organic Lewis base at ambient temperature. The compounds were characterized using mass spectrometry, FTIR and NMR spectroscopy. Furthermore, in silico studies (using AutoDock Tools and AutoDock Vina programs) on the adduct and corresponding amide product revealed that all MBH adducts (5-8) and their product amides (12-15) are significant inhibitors of β-lactamase. Additionally, among the MBH adducts, adduct 7 showed the highest binding affinity with β-lactamase, whereas amide 15 was identified as a highly potent antibacterial based on its docking score (-8.6). In addition, the absorption, distribution, metabolism, and excretion (ADME) test of the synthesized compounds demonstrated that all compounds showed drug-likeness properties.
Collapse
Affiliation(s)
- Hamid Ullah
- Department of Chemistry, Balochistan University of Information Technology, Engineering and Management Sciences, Takatu Campus, Quetta 87300, Pakistan
| | - Sadia Majid
- Department of Chemistry, Mohi-Ud-Din Islamic University Nerian Sharif, AJ & K, Pakistan
| | - Asma Abro
- Department of Biotechnology, BUITEMS, Takatu Campus, Quetta, Pakistan
| | - Taj Ur Rahman
- Department of Chemistry, Mohi-Ud-Din Islamic University Nerian Sharif, AJ & K, Pakistan
| | - Abdul Majeed Khan
- General Studies Department, Jubail Industrial College, Jubail Industrial City 31961, Saudi Arabia
| | - Mehboob Ahmed
- Department of Biotechnology, BUITEMS, Takatu Campus, Quetta, Pakistan
| | - Muhammad Asif
- Department of Biotechnology & ORIC, BUITEMS, Takatu Campus, Quetta, Pakistan
| | - Asma Yousafzai
- Department of Biotechnology, BUITEMS, Takatu Campus, Quetta, Pakistan
| | - Riffat Ullh
- H. E. J. Research institute of chemistry, ICCBS, University of Karachi, Pakistan
| | - Peter Natesan Pushparaj
- Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mahmood Rasool
- Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
3
|
Preston D, Evans JD. A Lantern-Shaped Pd(II) Cage Constructed from Four Different Low-Symmetry Ligands with Positional and Orientational Control: An Ancillary Pairings Approach. Angew Chem Int Ed Engl 2023; 62:e202314378. [PMID: 37816684 DOI: 10.1002/anie.202314378] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/12/2023]
Abstract
One of the key challenges of metallo-supramolecular chemistry is to maintain the ease of self-assembly but, at the same time, create structures of increasingly high levels of complexity. In palladium(II) quadruply stranded lantern-shaped cages, this has been achieved through either 1) the formation of heteroleptic (multi-ligand) assemblies, or 2) homoleptic assemblies from low-symmetry ligands. Heteroleptic cages formed from low-symmetry ligands, a hybid of these two approaches, would add an additional rich level of complexity but no examples of these have been reported. Here we use a system of ancillary complementary ligand pairings at the termini of cage ligands to target heteroleptic assemblies: these complementary pairs can only interact (through coordination to a single Pd(II) metal ion) between ligands in a cis position on the cage. Complementarity between each pair (and orthogonality to other pairs) is controlled by denticity (tridentate to monodentate or bidentate to bidentate) and/or hydrogen-bonding capability (AA to DD or AD to DA). This allows positional and orientational control over ligands with different ancillary sites. By using this approach, we have successfully used low-symmetry ligands to synthesise complex heteroleptic cages, including an example with four different low-symmetry ligands.
Collapse
Affiliation(s)
- Dan Preston
- Research School of Chemistry, Australian National University, Canberra, ACT 2600, Australia
| | - Jack D Evans
- Centre for Advanced Nanomaterials and Department of Chemistry, The University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
4
|
Zhang S, Ye Y, Zhang Q, Luo Y, Wang ZC, Wu YZ, Zhang XP, Yi C. Current development of pyrazole-azole hybrids with anticancer potential. Future Med Chem 2023; 15:1527-1548. [PMID: 37610862 DOI: 10.4155/fmc-2023-0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023] Open
Abstract
Chemotherapy is a critical treatment modality for cancer patients, but multidrug resistance remains one of the major challenges in cancer therapy, creating an urgent need for the development of novel potent chemical entities. Azoles, particularly pyrazole, could interact with different biological targets and exhibit diverse biological properties including anticancer activity. Many clinically used anticancer agents own an azole moiety, demonstrating that azoles are privileged and pivotal templates in the discovery of novel anticancer chemotherapeutics. The present article is an attempt to highlight the recent advances in pyrazole-azole hybrids with anticancer potential and discuss the structure-activity relationships, covering articles published from 2018 to present, to facilitate the rational design of more effective anticancer candidates.
Collapse
Affiliation(s)
- Shu Zhang
- Hubei Key Laboratory of Pollution Damage Assessment & Environmental Health Risk Prevention & Control, Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan, Hubei, 430000, PR China
| | - Yun Ye
- Technical Review Center for Administrative Licensing, Hubei Provincial Administration for Market Regulation, Wuhan, Hubei, 430000, PR China
| | - Qiang Zhang
- Hubei Key Laboratory of Pollution Damage Assessment & Environmental Health Risk Prevention & Control, Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan, Hubei, 430000, PR China
| | - Yang Luo
- Hubei Key Laboratory of Pollution Damage Assessment & Environmental Health Risk Prevention & Control, Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan, Hubei, 430000, PR China
| | - Zi-Chen Wang
- Hubei Key Laboratory of Pollution Damage Assessment & Environmental Health Risk Prevention & Control, Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan, Hubei, 430000, PR China
| | - Yi-Zhe Wu
- Hubei Key Laboratory of Pollution Damage Assessment & Environmental Health Risk Prevention & Control, Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan, Hubei, 430000, PR China
| | - Xiang-Pu Zhang
- Hubei Key Laboratory of Pollution Damage Assessment & Environmental Health Risk Prevention & Control, Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan, Hubei, 430000, PR China
| | - Chuan Yi
- Hubei Key Laboratory of Pollution Damage Assessment & Environmental Health Risk Prevention & Control, Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan, Hubei, 430000, PR China
| |
Collapse
|
5
|
Pan M, Solozobova V, Kuznik NC, Jung N, Gräßle S, Gourain V, Heneka YM, Cramer von Clausbruch CA, Fuhr O, Munuganti RSN, Maddalo D, Blattner C, Neeb A, Sharp A, Cato L, Weiss C, Jeselsohn RM, Orian-Rousseau V, Bräse S, Cato ACB. Identification of an Imidazopyridine-based Compound as an Oral Selective Estrogen Receptor Degrader for Breast Cancer Therapy. CANCER RESEARCH COMMUNICATIONS 2023; 3:1378-1396. [PMID: 37520743 PMCID: PMC10373600 DOI: 10.1158/2767-9764.crc-23-0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/09/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023]
Abstract
The pro-oncogenic activities of estrogen receptor alpha (ERα) drive breast cancer pathogenesis. Endocrine therapies that impair the production of estrogen or the action of the ERα are therefore used to prevent primary disease metastasis. Although recent successes with ERα degraders have been reported, there is still the need to develop further ERα antagonists with additional properties for breast cancer therapy. We have previously described a benzothiazole compound A4B17 that inhibits the proliferation of androgen receptor-positive prostate cancer cells by disrupting the interaction of the cochaperone BAG1 with the AR. A4B17 was also found to inhibit the proliferation of estrogen receptor-positive (ER+) breast cancer cells. Using a scaffold hopping approach, we report here a group of small molecules with imidazopyridine scaffolds that are more potent and efficacious than A4B17. The prototype molecule X15695 efficiently degraded ERα and attenuated estrogen-mediated target gene expression as well as transactivation by the AR. X15695 also disrupted key cellular protein-protein interactions such as BAG1-mortalin (GRP75) interaction as well as wild-type p53-mortalin or mutant p53-BAG2 interactions. These activities together reactivated p53 and resulted in cell-cycle block and the induction of apoptosis. When administered orally to in vivo tumor xenograft models, X15695 potently inhibited the growth of breast tumor cells but less efficiently the growth of prostate tumor cells. We therefore identify X15695 as an oral selective ER degrader and propose further development of this compound for therapy of ER+ breast cancers. Significance An imidazopyridine that selectively degrades ERα and is orally bioavailable has been identified for the development of ER+ breast cancer therapeutics. This compound also activates wild-type p53 and disrupts the gain-of-function tumorigenic activity of mutant p53, resulting in cell-cycle arrest and the induction of apoptosis.
Collapse
Affiliation(s)
- Mengwu Pan
- Institute of Biological and Chemical Systems – Biological Information Processing, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Valeria Solozobova
- Institute of Biological and Chemical Systems – Biological Information Processing, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Nane C. Kuznik
- Institute of Biological and Chemical Systems – Biological Information Processing, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Nicole Jung
- Institute of Biological and Chemical Systems – Functional Molecular Systems, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Simone Gräßle
- Institute of Biological and Chemical Systems – Functional Molecular Systems, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Victor Gourain
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Yvonne M. Heneka
- Institute of Biological and Chemical Systems – Functional Molecular Systems, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Christina A. Cramer von Clausbruch
- Institute of Biological and Chemical Systems – Biological Information Processing, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Olaf Fuhr
- Institute of Nanotechnology and Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | | | - Danilo Maddalo
- Institute of Biological and Chemical Systems – Biological Information Processing, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Christine Blattner
- Institute of Biological and Chemical Systems – Biological Information Processing, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Antje Neeb
- Institute of Cancer Research, London, United Kingdom
| | - Adam Sharp
- Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Laura Cato
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Carsten Weiss
- Institute of Biological and Chemical Systems – Biological Information Processing, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Rinath M. Jeselsohn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Veronique Orian-Rousseau
- Institute of Biological and Chemical Systems – Functional Molecular Systems, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Stefan Bräse
- Institute of Biological and Chemical Systems – Functional Molecular Systems, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Andrew C. B. Cato
- Institute of Biological and Chemical Systems – Biological Information Processing, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
6
|
Elmorsy MR, Abdel-Latif E, Gaffer HE, Mahmoud SE, Fadda AA. Anticancer evaluation and molecular docking of new pyridopyrazolo-triazine and pyridopyrazolo-triazole derivatives. Sci Rep 2023; 13:2782. [PMID: 36797448 PMCID: PMC9935538 DOI: 10.1038/s41598-023-29908-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
3-Amino-4,6-dimethylpyrazolopyridine was applied as a precursor for the synthesis of some new pyridopyrazolo-triazine and pyridopyrazolo-triazole derivatives through diazotization, followed by coupling with many 2-cyanoacetamide compounds, ethyl 3-(phenylamino)-3-thioxopropanoate, 3-oxo-N-phenylbutanethioamide, and α-bromo-ketone reagents [namely; 2-bromo-1-(4-fluorophenyl)ethan-1-one, 5-bromo-2-(bromoacetyl)thiophene, 3-(2-bromoacetyl)-2H-chromen-2-one and/or 3-chloroacetylacetone]. The prepared compounds were identified by spectroscopic analyses as IR, 1H NMR, and mass data. The anticancer activity of these pyrazolopyridine analogues was investigated in colon, hepatocellular, breast, and cervix carcinoma cell lines. The pyridopyrazolo-triazine compound 5a substituted with a carboxylate group gave a distinguished value of IC50 = 3.89 µM against the MCF-7 cell line compared to doxorubicin as a reference drug. Also, the pyridopyrazolo-triazine compound 6a substituted with the carbothioamide function gave good activity toward HCT-116 and MCF-7 cell lines with IC50 values of 12.58 and 11.71 µM, respectively. The discovered pyrazolopyridine derivatives were studied theoretically by molecular docking, and this study exhibited suitable binding between the active sides of pyrazolopyridine ligands and proteins (PDB ID: 5IVE). The pyridopyrazolo-triazine compound 6a showed the highest free binding energy (- 7.8182 kcal/mol) when docked inside the active site of selected proteins.
Collapse
Affiliation(s)
- Mohamed R. Elmorsy
- grid.10251.370000000103426662Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516 Egypt
| | - Ehab Abdel-Latif
- grid.10251.370000000103426662Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516 Egypt
| | - Hatem E. Gaffer
- grid.419725.c0000 0001 2151 8157Dyeing, Printing and Auxiliaries Department, National Research Centre, Cairo, 12622 Egypt
| | - Samar E. Mahmoud
- grid.10251.370000000103426662Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516 Egypt
| | - Ahmed A. Fadda
- grid.10251.370000000103426662Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516 Egypt
| |
Collapse
|
7
|
Khatun S, Singh A, Bader GN, Sofi FA. Imidazopyridine, a promising scaffold with potential medicinal applications and structural activity relationship (SAR): recent advances. J Biomol Struct Dyn 2022; 40:14279-14302. [PMID: 34779710 DOI: 10.1080/07391102.2021.1997818] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Imidazopyridine scaffold has gained tremendous importance over the past few decades. Imidazopyridines have been expeditiously used for the rationale design and development of novel synthetic analogs for various therapeutic disorders. A wide variety of imidazopyridine derivatives have been developed as potential anti-cancer, anti-diabetic, anti-tubercular, anti-microbial, anti-viral, anti-inflammatory, central nervous system (CNS) agents besides other chemotherapeutic agents. Imidazopyridine heterocyclic system acts as a key pharmacophore motif for the identification and optimization of lead structures to increase medicinal chemistry toolbox. The present review highlights the medicinal significances of imidazopyridines for their rationale development as lead molecules with improved therapeutic efficacies. This review further emphasis on the structure-activity relationships (SARs) of the various designed imidazopyridines to establish a relationship between the key structural features versus the biological activities.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Samima Khatun
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Punjab, India
| | - Abhinav Singh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Punjab, India
| | - Ghulam N Bader
- Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Srinagar, J & K, India
| | - Firdoos Ahmad Sofi
- Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Srinagar, J & K, India
| |
Collapse
|
8
|
Synthesis, biological evaluation and molecular docking of new triphenylamine-linked pyridine, thiazole and pyrazole analogues as anticancer agents. BMC Chem 2022; 16:88. [DOI: 10.1186/s13065-022-00879-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractA new series of pyridine, thiazole, and pyrazole analogues were synthesized. The pyridone analogues 4a-e were synthesized by treating N-aryl-2-cyano-3-(4-(diphenylamino)phenyl)acrylamides 3a-e with malononitrile. Many 4-arylidene-thiazolidin-5-one analogues 6a-d were obtained by Knoevenagel reactions of 4-(diphenylamino)benzaldehyde (1) with their corresponding thiazolidin-5-one derivatives 5a-d. The structural elucidation of the products was proven by the collections of spectroscopic methods such as IR, 1H NMR, 13C NMR, and MS data. Their anti-cancer activity was examined against two cell lines, MDA-MB-231 (mammary carcinomas) and A-549 (lung cancer). Compared with cisplatin as a reference standard drug, 6-amino-4-(4-(diphenylamino)phenyl)-2-oxo-1-(p-tolyl)-1,2-dihydropyridine-3,5-dicarbonitrile (4b) and 6-amino-4-(4-(diphenylamino)phenyl)-1-(4-nitrophenyl)-2-oxo-1,2-dihydropyridine-3,5-dicarbonitrile (4e) exhibited better efficiency against the A-549 cell line, with IC50 = 0.00803 and 0.0095 μM, respectively. Also, these compounds 4b and 4e showed the most potency among the examined compounds against MDA-MB-231 with IC50 = 0.0103 and 0.0147 μM, respectively. The newly synthesized compounds were docked inside the active sites of the selected proteins and were found to demonstrate proper binding. 2-Cyano-2-(4,4-(diphenylamino)benzylidene)-5-oxo-3-phenylthiazolidin-2-ylidene)-N-(p-tolyl)acetamide (6c) offered the highest binding affinity (− 8.1868 kcal/mol) when docked into (PDB ID:2ITO), in addition to 2-cyano-N-(4-(diethylamino)phenyl)-2-(4-(4-(diphenylamino)benzylidene)-5-oxo-3-phenylthiazolidin-2-ylidene)acetamide (6a) gave the highest energy score (− 9.3507 kcal/mol) with (PDB ID:2A4L).
Collapse
|
9
|
Abbas HS, Abo Zeina EA, Radwan HA, Shati AA, Alfaifi MY, Elbehairi SEI. Efficient Synthesis and Biological Evaluation of some new series of pyridine derivatives: Promising and Potent New Class of Anticancer Agents. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hebat‐Allah S. Abbas
- Chemistry Department, Faculty of Science King Khalid University Abha Saudi Arabia
- Photochemistry Department National Research Centre Dokki Cairo Egypt
| | - Esraa A. Abo Zeina
- Chemistry Department, Faculty of Science King Khalid University Abha Saudi Arabia
| | - Hayam A. Radwan
- Chemistry Department, Faculty of Women of Arts, Sciences and Educatin Ain Shams University Cairo, Egypt Abidah Saudi Arabia
| | - Ali A. Shati
- Biology Department, Faculty of Science King Khalid University Abha Saudi Arabia
| | - Mohammad Y. Alfaifi
- Biology Department, Faculty of Science King Khalid University Abha Saudi Arabia
| | - Serag Eldin I. Elbehairi
- Biology Department, Faculty of Science King Khalid University Abha Saudi Arabia
- Cell Culture Lab, Egyptian Organization for Biological Products and Vaccines (VACSERA Holding Company), 51 Wezaret El‐Zeraa St., Agouza Giza Egypt
| |
Collapse
|
10
|
De S, Kumar S K A, Shah SK, Kazi S, Sarkar N, Banerjee S, Dey S. Pyridine: the scaffolds with significant clinical diversity. RSC Adv 2022; 12:15385-15406. [PMID: 35693235 PMCID: PMC9121228 DOI: 10.1039/d2ra01571d] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/27/2022] [Indexed: 12/20/2022] Open
Abstract
The nitrogen-bearing heterocycle pyridine in its several analogous forms occupies an important position as a precious source of clinically useful agents in the field of medicinal chemistry research. This privileged scaffold has been consistently incorporated in a diverse range of drug candidates approved by the FDA (Food and Drug Administration). This moiety has attracted increasing attention from several disease states owing to its ease of parallelization and testing potential pertaining to the chemical space. In the next few years, a larger share of novel pyridine-based drug candidates is expected. This review unifies the current advances in novel pyridine-based molecular frameworks and their unique clinical relevance as reported over the last two decades. It highlights an inclination to the use of pyridine-based molecules in drug crafting and the subsequent emergence of several potent and eligible candidates against a range of diversified diseases. The nitrogen-bearing heterocycle pyridine in its several analogous forms occupies an important position as a precious source of clinically useful agents in the field of medicinal chemistry research.![]()
Collapse
Affiliation(s)
- Sourav De
- Department of Pharmaceutical Technology, School of Medical Science, Adamas University, Kolkata-700126, West Bengal, India
| | - Ashok Kumar S K
- Department of Chemistry, School of Advanced Sciences, VIT, Vellore-632014, India
| | - Suraj Kumar Shah
- Department of Pharmaceutical Technology, School of Medical Science, Adamas University, Kolkata-700126, West Bengal, India
| | - Sabnaz Kazi
- Department of Pharmaceutical Technology, School of Medical Science, Adamas University, Kolkata-700126, West Bengal, India
| | - Nandan Sarkar
- Department of Pharmaceutical Technology, School of Medical Science, Adamas University, Kolkata-700126, West Bengal, India
| | - Subhasis Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Asansol-713301, West Bengal, India
| | - Sanjay Dey
- Department of Pharmaceutical Technology, School of Medical Science, Adamas University, Kolkata-700126, West Bengal, India
| |
Collapse
|
11
|
Kurteva V. Recent Progress in Metal-Free Direct Synthesis of Imidazo[1,2- a]pyridines. ACS OMEGA 2021; 6:35173-35185. [PMID: 34984250 PMCID: PMC8717391 DOI: 10.1021/acsomega.1c03476] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
This Mini-Review highlights the most effective protocols for metal-free direct synthesis of imidazo[1,2-a]pyridines, crucial target products and key intermediates, developed in the past decade. The emphases is given on the ecological impact of the methods and on the mechanistic aspects as well. The procedures efficiently applied in the preparation of important drugs and promising drug candidates are also underlined.
Collapse
Affiliation(s)
- Vanya Kurteva
- Institute of Organic Chemistry
with Centre of Phytochemistry, Bulgarian
Academy of Sciences, Acad. G. Bonchev str., bl. 9, 1113 Sofia, Bulgaria
| |
Collapse
|
12
|
Otaibi AA, Sherwani S, Al-Zahrani SA, Alshammari EM, Khan WA, Alsukaibi AKD, Khan SN, Khan MWA. Biologically Active α-Amino Amide Analogs and γδ T Cells-A Unique Anticancer Approach for Leukemia. Front Oncol 2021; 11:706586. [PMID: 34322393 PMCID: PMC8311656 DOI: 10.3389/fonc.2021.706586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/16/2021] [Indexed: 12/29/2022] Open
Abstract
Advanced stage cancers are aggressive and difficult to treat with mono-therapeutics, substantially decreasing patient survival rates. Hence, there is an urgent need to develop unique therapeutic approaches to treat cancer with superior potency and efficacy. This study investigates a new approach to develop a potent combinational therapy to treat advanced stage leukemia. Biologically active α-amino amide analogs (RS)-N-(2-(cyclohexylamino)-2-oxo-1-phenylethyl)-N-phenylpropiolamide (α-AAA-A) and (RS)-N-(2-(cyclohexylamino)-2-oxo-1-phenylethyl)-N-phenylbut2-enamide (α-AAA-B) were synthesized using linear Ugi multicomponent reaction. Cytotoxicities and IC50 values of α-AAA-A and α-AAA-B against leukemia cancer cell lines (HL-60 and K562) were analyzed though MTT assay. Cytotoxic assay analyzed percent killing of leukemia cell lines due to the effect of γδ T cells alone or in combination with α-AAA-A or α-AAA-B. Synthesized biologically active molecule α-AAA-A exhibited increased cytotoxicity of HL-60 (54%) and K562 (44%) compared with α-AAA-B (44% and 36% respectively). Similarly, α-AAA-A showed low IC50 values for HL-60 (1.61 ± 0.11 μM) and K562 (3.01 ± 0.14 μM) compared to α-AAA-B (3.12 ± 0.15 μM and 6.21 ± 0.17 μM respectively). Additive effect of amide analogs and γδ T cells showed significantly high leukemia cancer cell killing as compared to γδ T cells alone. A unique combinational therapy with γδ T cells and biologically active anti-cancer molecules (α-AAA-A/B), concomitantly may be a promising cancer therapy.
Collapse
Affiliation(s)
- Ahmed Al Otaibi
- Department of Chemistry, College of Sciences, University of Ha’il, Ha’il, Saudi Arabia
| | - Subuhi Sherwani
- Department of Biology, College of Sciences, University of Ha’il, Ha’il, Saudi Arabia
| | | | | | - Wahid Ali Khan
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | | | - Shahper Nazeer Khan
- Interdisciplinary Nanotechnology Centre, Aligarh Muslim University, Aligarh, India
| | - Mohd Wajid Ali Khan
- Department of Chemistry, College of Sciences, University of Ha’il, Ha’il, Saudi Arabia
- Molecular Diagnostic and Personalised Therapeutics Unit, University of Ha’il, Ha’il, Saudi Arabia
| |
Collapse
|
13
|
Khan E. Pyridine Derivatives as Biologically Active Precursors; Organics and Selected Coordination Complexes. ChemistrySelect 2021. [DOI: 10.1002/slct.202100332] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ezzat Khan
- Department of Chemistry University of Malakand, Chakdara 18800, Lower Dir Khyber Pakhtunkhwa Pakistan
- Department of Chemistry, College of Science University of Bahrain Sakhir 32038 Bahrain
| |
Collapse
|