1
|
Ayimbila F, Phopin K, Ruankham W, Pingaew R, Prachayasittikul S, Prachayasittikul V, Tantimongcolwat T. Biophysical insight into the interaction mechanism of 4-bromo-N-(thiazol-2-yl)benzenesulfonamide and human serum albumin using multi-spectroscopic and computational studies. Eur J Pharm Sci 2025; 204:106961. [PMID: 39528098 DOI: 10.1016/j.ejps.2024.106961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/23/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
4-Bromo-N-(thiazol-2-yl)benzenesulfonamide (1) is enriched with bioactive components and is highlighted for its pharmacological properties. However, its pharmacokinetic characteristics are yet to be reported. The interaction of compound 1 with carrier proteins in the bloodstream is an important factor that affects its potential therapeutic efficacy. This study aimed to elucidate the pharmacokinetic mechanisms of compound 1 in relation to human serum albumin (HSA) using multi-spectroscopic and computational techniques. Its predicted drug-like properties revealed no mutagenicity, although potential hepatotoxicity and interactions with certain cytochrome P450 enzymes were observed. Spectroscopic analyses extensively provided the interaction between HSA and 1 through a static fluorescence quenching mechanism with spontaneous hydrophobic interactions and hydrogen bonding. The binding constant of the HSA‒1 complex was relatively moderate to strong at a level of 106 M-1. Various spectroscopic techniques including ultraviolet-visible, Fourier transform infrared, and circular dichroism spectroscopies indicated that its binding induced alteration in the α-helix content of HSA. Competitive binding and molecular docking studies designated the preferential binding of 1 to sub-structural domain IIA binding site I of HSA. Molecular dynamic simulations further illustrated the formation of a stable complex between 1 and HSA, accompanied by conformational changes in the protein. Importantly, esterase capacity of the HSA‒1 complex increased compared to the free HSA. Therefore, elucidation of the HSA‒1 binding mechanism provides valuable insights into the pharmacokinetics, suggesting potential benefits for the further development of 1 as a therapeutic agent.
Collapse
Affiliation(s)
- Francis Ayimbila
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700 Thailand
| | - Kamonrat Phopin
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700 Thailand; Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700 Thailand
| | - Waralee Ruankham
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700 Thailand
| | - Ratchanok Pingaew
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok 10110 Thailand
| | - Supaluk Prachayasittikul
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700 Thailand
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700 Thailand
| | - Tanawut Tantimongcolwat
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700 Thailand.
| |
Collapse
|
2
|
Weng JH, Xu XH, Guan ZP, Dong ZB. Copper-Catalyzed One-Pot Synthesis of N, N-4-Triphenylthiazol-2-amines. J Org Chem 2024; 89:16390-16400. [PMID: 39466267 DOI: 10.1021/acs.joc.4c01417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Herein, we reported an efficient copper-catalyzed strategy for the synthesis of N,N-4-triphenylthiazol-2-amines from bromoacetophenone, phenylthiourea and iodobenzene. This method features good functional group tolerance, easy availability of starting materials and simplicity of operation, which provides an alternative method for the synthesis of 2-aminothiazoles.
Collapse
Affiliation(s)
- Jia-Hao Weng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Xiao-Hu Xu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Zhi-Peng Guan
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
- Hubei Three Gorges Laboratory, Yichang 443000, China
| | - Zhi-Bing Dong
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
- Hubei Three Gorges Laboratory, Yichang 443000, China
| |
Collapse
|
3
|
Musa M, Bello M, Agwamba EC. Synthesis, Molecular Docking, and Anticancer Screening of Ester-Based Thiazole Derivatives. Chem Biodivers 2024; 21:e202401159. [PMID: 39292150 DOI: 10.1002/cbdv.202401159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/29/2024] [Indexed: 09/19/2024]
Abstract
This study investigates the potential of five compounds as novel anticancer agents. We examined their efficacy, mechanisms of action, and impact on various cancer cell lines, through a comprehensive set of experiments. Notably, compound 3e demonstrated superior activity compared to the positive control cisplatin, with a GI50 value of 6.3±0.7 μM against the breast cancer cell line (MCF-7). Compound 3b also displayed remarkable growth inhibition, yielding GI50 values of 8.7±0.2 μM (MCF-7) and 8.9±0.5 μM against the colon cancer cell line (HCT-116). Cell count experiments further confirmed the potent inhibitory effects of compounds 3e, 3b, and 3c on MCF-7 and HCT-116 cell growth. Compound 3e demonstrated a reduction of 55-60 % at GI50 and complete inhibition (100 %) at 2x GI50. Compound 3b exhibited 50-55 % reduction (GI50) and 90-95 % inhibition (2x GI50) in HCT-116 cells. Compound 3c displayed 75-80 % inhibition (2x GI50) and 35-40 % inhibition (GI50) in HCT-116 cells. In-depth mechanistic investigations unveiled valuable insights into the mode of action of compound 3e. The cell-cycle assay demonstrated G2/M phase arrest, DNA damage, and caspase-mediated apoptosis in both MCF-7 and HCT-116 cells. Caspase activation indicated a significant increase in apoptosis following exposure to compound 3e. Furthermore, compound 3e induced reactive oxygen species (ROS) production, influencing HCT-116 and MCF-7 cells differently. Elevated ROS production in HCT-116 cells and distinct effects in MCF-7 cells contribute to a deeper understanding of the cytotoxic mechanisms of compound 3e. Overall, these findings highlight the potential of the investigated compounds, particularly compound 3e, as effective inducers of apoptosis in cancer cells. Mechanistic insights into cell cycle arrest, caspase-mediated apoptosis, and ROS modulation provide a comprehensive understanding of their cytotoxic effects. This study offers significant contribution to the development of promising anticancer agents and their therapeutic applications.
Collapse
Affiliation(s)
- Mustapha Musa
- GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Triumph Road, Nottingham, NG7 2TU, UK
- Department of Chemistry, Shehu Shagari College of Education, Sokoto, Sokoto State, Nigeria
| | - Muhammadu Bello
- Department of Chemistry, Shehu Shagari College of Education, Sokoto, Sokoto State, Nigeria
| | - Ernest C Agwamba
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Chemistry, Covenant University, Ota, Nigeria
| |
Collapse
|
4
|
Meriç N, Kar E, Kar F. 4-Methylthiazole triggers apoptosis and mitochondrial disruption in HL-60 cells. Mol Biol Rep 2024; 51:997. [PMID: 39297923 DOI: 10.1007/s11033-024-09939-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/12/2024] [Indexed: 09/21/2024]
Abstract
BACKGROUND Thiazole derivatives are gaining prominence in cancer research due to their potent anti-cancer effects and multifaceted biological activities. In leukemia research, these compounds are particularly studied for their ability to induce apoptosis, disrupt mitochondrial membrane potential (MMP), and modulate cell signaling pathways. METHODS AND RESULTS This study investigates the efficacy of 4-Methylthiazole in inducing apoptosis in HL-60 leukemia cells. Apoptosis was quantified via flow cytometry using FITC Annexin V and propidium iodide staining. Mitochondrial disruption was evaluated through alterations in mitochondrial membrane potential (MMP) as measured by the JC-1 assay. The compound significantly disrupted MMP, activated Caspase-3, and induced the release of Cytochrome C, all of which are critical markers of apoptosis (****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05). Additionally, treatment with 4-Methylthiazole markedly reduced CD45 and CD123 surface markers, indicating significant phenotypic alterations in leukemia cells (****p < 0.0001). High-dose treatment with 4-Methylthiazole significantly increased ROS levels, suggesting elevated oxidative stress and the presence of intracellular free radicals, contributing to its cytotoxic effects (*p < 0.05). A significant rise in TNF-α levels was observed post-treatment, indicating a pro-inflammatory response that may further inhibit leukemia cell viability. While IL-6 levels remained unchanged, a dose-dependent decrease in IL-10 levels was noted, suggesting a reduction in immunosuppressive conditions within the tumor microenvironment (*p < 0.05). CONCLUSIONS Overall, 4-Methylthiazole targets leukemia cells through multiple apoptotic mechanisms and modifies the immune landscape of the tumor microenvironment, enhancing its therapeutic potential. This study highlights the need for further clinical investigation to fully exploit the potential of thiazole derivatives in leukemia treatment.
Collapse
Affiliation(s)
- Neslihan Meriç
- Faculty of Engineering and Natural Sciences, Department of Molecular Biology and Genetics, Kütahya Health Sciences University, Kütahya, Turkey.
| | - Ezgi Kar
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Kütahya Health Sciences University, Kütahya, Turkey
| | - Fatih Kar
- Faculty of Medicine, Department of Biochemistry, Kütahya Health Sciences University, Kütahya, Turkey
| |
Collapse
|
5
|
Suresh T, Nachiappan DM, Karthikeyan G, Vijayakumar V, P Jasinski J, Sarveswari S. An Efficient Synthesis of Novel Aminothiazolylacetamido-Substituted 3,5-Bis(arylidene)-4-piperidone Derivatives and Their Cytotoxicity Studies. ACS OMEGA 2024; 9:29244-29251. [PMID: 39005779 PMCID: PMC11238287 DOI: 10.1021/acsomega.4c00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 07/16/2024]
Abstract
The expansion of 3,5-bis(arylidene)-4-piperidone derivatives with heterocyclic compounds such as 1,3-thiazole should take into account this correlation. The synthesized aminothiazolylacetamido-substituted 3,5-bis(arylidene)-4-piperidone derivatives 3a-j were found to have GI50 values in the range of 0.15-0.28 μM against HeLa and HCT116 cancer cell lines. In silico docking studies confirmed that the proteasome inhibition mechanism involves a nucleophilic attack from the N-terminal threonine residue of the β-subunits to the C=O group of compounds. A C=O group of amide was able to interact with the NH group of the alanine residue and the 5g NH group of amino thiazole, along with an OH group of the serine residue. These results strongly suggest that the synthesized compounds could be a potential candidate inhibitor of the 20S proteasome. These molecules have the potential to be developed as cytotoxic and anticancer agents, as revealed by this study.
Collapse
Affiliation(s)
- Thangaiyan Suresh
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore 632014, Tamil Nadu, India
| | | | - G Karthikeyan
- Amity Institute of Virology and Immunology, Amity University, Noida 201303, Uttar Pradesh, India
| | | | - Jerry P Jasinski
- Keene State College, 229 Main Street, Keene, New Hampshire 03435-200, United States
| | - Sundaramoorthy Sarveswari
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore 632014, Tamil Nadu, India
| |
Collapse
|
6
|
Allawi MM, Razzak Mahmood AA, Tahtamouni LH, Saleh AM, Kanaan SI, Saleh KM, AlSakhen MF, Himsawi N, Yasin SR. Anti-proliferation evaluation of new derivatives of indole-6-carboxylate ester as receptor tyrosine kinase inhibitors. Future Med Chem 2024; 16:1313-1331. [PMID: 39109434 PMCID: PMC11318749 DOI: 10.1080/17568919.2024.2347084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/10/2024] [Indexed: 08/10/2024] Open
Abstract
Aim: The main goal was to create two new groups of indole derivatives, hydrazine-1-carbothioamide (4a and 4b) and oxadiazole (5, and 6a-e) that target EGFR (4a, 4b, 5) or VEGFR-2 (6a-e). Materials & methods: The new derivatives were characterized using various spectroscopic techniques. Docking studies were used to investigate the binding patterns to EGFR/VEGFR-2, and the anti-proliferative properties were tested in vitro. Results: Compounds 4a (targeting EGFR) and 6c (targeting VEGFR-2) were the most effective cytotoxic agents, arresting cancer cells in the G2/M phase and inducing the extrinsic apoptosis pathway. Conclusion: The results of this study show that compounds 4a and 6c are promising cytotoxic compounds that inhibit the tyrosine kinase activity of EGFR and VEGFR-2, respectively.
Collapse
Affiliation(s)
- Mustafa M Allawi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Uruk university, Baghdad, Iraq
| | - Ammar A Razzak Mahmood
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Baghdad, Bab-Al-Mouadam, 10001, Baghdad, Iraq
| | - Lubna H Tahtamouni
- Department of Biology & Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
- Department of Biochemistry & Molecular Biology, College of Natural Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Abdulrahman M Saleh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11884, Egypt
- Aweash El-Hagar Family Medicine Center, Epidemiological Surveillance Unit, MOHP, Mansoura, 35711, Egypt
| | - Sana I Kanaan
- Department of Biology & Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Khaled M Saleh
- Department of Biology & Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Mai F AlSakhen
- Department of Biology & Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Nisreen Himsawi
- Department of Microbiology, Pathology & Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Salem R Yasin
- Department of Biology & Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| |
Collapse
|
7
|
Hellwig PS, Bartz RH, Santos RRSA, Guedes JS, Silva MS, Lenardão EJ, Perin G. Telescoping Synthesis of 4-Organyl-5-(organylselanyl)thiazol-2-amines Promoted by Ultrasound. Chempluschem 2024; 89:e202300690. [PMID: 38426670 DOI: 10.1002/cplu.202300690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/07/2024] [Indexed: 03/02/2024]
Abstract
In this work, we describe the synthesis of new 4-organyl-5-(organylselanyl)thiazol-2-amine hybrids through a one-pot two-step protocol. The transition metal-free method involves the use of ultrasound as an alternative energy source and Oxone® as oxidant. To obtain the products, a telescoping approach was used, in which 4-organylthiazol-2-amines were firstly prepared under ultrasonic irradiation, followed by the addition of diorganyl diselenides and Oxone®. Thus, 16 compounds were prepared, with yields ranging from 61 % to 98 %, using 2-bromoacetophenone derivatives and diorganyl diselenides as easily available starting materials.
Collapse
Affiliation(s)
- Paola S Hellwig
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos - CCQFA, Universidade Federal de Pelotas - UFPel, P. O. box 354, CEP: 96010-900, Pelotas, RS, Brazil
| | - Ricardo H Bartz
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos - CCQFA, Universidade Federal de Pelotas - UFPel, P. O. box 354, CEP: 96010-900, Pelotas, RS, Brazil
| | - Rafaela R S A Santos
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos - CCQFA, Universidade Federal de Pelotas - UFPel, P. O. box 354, CEP: 96010-900, Pelotas, RS, Brazil
| | - Jonatan S Guedes
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos - CCQFA, Universidade Federal de Pelotas - UFPel, P. O. box 354, CEP: 96010-900, Pelotas, RS, Brazil
| | - Márcio S Silva
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos - CCQFA, Universidade Federal de Pelotas - UFPel, P. O. box 354, CEP: 96010-900, Pelotas, RS, Brazil
| | - Eder J Lenardão
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos - CCQFA, Universidade Federal de Pelotas - UFPel, P. O. box 354, CEP: 96010-900, Pelotas, RS, Brazil
| | - Gelson Perin
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos - CCQFA, Universidade Federal de Pelotas - UFPel, P. O. box 354, CEP: 96010-900, Pelotas, RS, Brazil
| |
Collapse
|
8
|
Macías-Benítez P, Sierra-Padilla A, Guerra FM, Moreno-Dorado FJ. Microwave-Assisted One-Pot Telescoped Synthesis of 2-Amino-1,3-thiazoles, Selenazoles, Imidazo[1,2- a]pyridines, and Other Heterocycles from Alcohols. J Org Chem 2024; 89:4628-4646. [PMID: 38497561 DOI: 10.1021/acs.joc.3c02903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Primary and secondary alcohols have been converted into 2-amino-1,3-thiazoles under microwave irradiation, employing trichloroisocyanuric acid (TCCA) as a dual oxidant and chlorine source, TEMPO as a co-oxidant, and thiourea. Secondary alcohols underwent a single-stage, one-pot conversion process, while primary alcohols required a two-stage, one-pot procedure. Both transformations were completed within minutes (25-45 min). The versatility of this protocol extends to the synthesis of other heterocycles, including 1,3-selenazoles, 2-aminoimidazoles, imidazo[1,2-a]pyridines, quinoxalines, and hydrazino thiazoles by replacing thiourea with the appropriate surrogates.
Collapse
Affiliation(s)
- Pablo Macías-Benítez
- Departamento de Química Orgánica e Instituto de Biomoléculas, Facultad de Ciencias, Universidad de Cádiz, Polígono Río San Pedro s/n., 11510 Puerto Real, Cádiz, Spain
| | - Alfonso Sierra-Padilla
- Departamento de Química Orgánica e Instituto de Biomoléculas, Facultad de Ciencias, Universidad de Cádiz, Polígono Río San Pedro s/n., 11510 Puerto Real, Cádiz, Spain
| | - Francisco M Guerra
- Departamento de Química Orgánica e Instituto de Biomoléculas, Facultad de Ciencias, Universidad de Cádiz, Polígono Río San Pedro s/n., 11510 Puerto Real, Cádiz, Spain
| | - F Javier Moreno-Dorado
- Departamento de Química Orgánica e Instituto de Biomoléculas, Facultad de Ciencias, Universidad de Cádiz, Polígono Río San Pedro s/n., 11510 Puerto Real, Cádiz, Spain
| |
Collapse
|
9
|
Allawi MM, Mahmood AAR, Tahtamouni LH, AlSakhen MF, Kanaan SI, Saleh KM, Yasin SR. New Indole-6-Carboxylic Acid Derivatives as Multi-Target Antiproliferative Agents: Synthesis, in Silico Studies, and Cytotoxicity Evaluation. Chem Biodivers 2024; 21:e202301892. [PMID: 38145305 DOI: 10.1002/cbdv.202301892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 12/26/2023]
Abstract
Epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor (VEGFR) are commonly overexpressed in cancers making them appealing targets for cancer therapeutics. Two groups of indole-6-carboxylic acid derivatives, hydrazone derivatives targeting EGFR and oxadiazole derivatives targeting VEGFR-2, were synthesized and characterized using FT-IR, 1 H-NMR, 13 CNMR, and HR-MS techniques. Binding patterns to potential molecular targets were studied using molecular docking and compared to standard EGFR and VEGFR-2 inhibitors. The newly synthesized compounds were cytotoxic to the three cancer cell lines tested (HCT-116, HeLa, and HT-29 cell lines) as evaluated by the MTT assay. Compound 3 b (EGFR-targeting) and compound 6 e (VEGFR-2-targeting) possessed the highest antiproliferation activity, were cancer-selective, arrested cancer cells in the G2/M phase, induced the extrinsic apoptosis pathway, and had the highest EGFR/VEGFR-2 enzyme inhibitory activity, respectively. The structure-activity relationships of the new compounds showed that the presence of an aryl or heteroaryl fragment attached to a linker is required for the anti-tumor activity. In conclusion, the findings of the current study suggest that compounds 3 b and 6 e are promising cytotoxic agents that act by inhibiting EGFR and VEGFR-2 tyrosine kinases, respectively.
Collapse
Affiliation(s)
- Mustafa M Allawi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Uruk University, Baghdad, Iraq
| | - Ammar A Razzak Mahmood
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Baghdad, Bab-Almoudam, 10001, Baghdad, Iraq
| | - Lubna H Tahtamouni
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
- Department of Biology and Molecular Biology, College of Natural Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Mai F AlSakhen
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Sana I Kanaan
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Khaled M Saleh
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Salem R Yasin
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| |
Collapse
|
10
|
Mishra AK, Thajudeen KY, Singh M, Rasool G, Kumar A, Singh H, Sharma K, Mishra A. In-silico based Designing of benzo [d]thiazol-2-amine Derivatives as Analgesic and Anti-inflammatory Agents. Antiinflamm Antiallergy Agents Med Chem 2024; 23:230-260. [PMID: 39162282 DOI: 10.2174/0118715230296273240725065839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND Benzo[d]thiazoles represent a significant class of heterocyclic compounds renowned for their diverse pharmacological activities, including analgesic and antiinflammatory properties. This molecular scaffold holds substantial interest among medicinal chemists owing to its structural versatility and therapeutic potential. Incorporating the benzo[d]thiazole moiety into drug molecules has been extensively investigated as a strategy to craft novel therapeutics with heightened efficacy and minimized adverse effects. AIMS The aim of the present research work was to design, synthesize and characterize the new benzo[d]thiazol-2-amine derivatives as potent analgesic and anti-inflammatory agents. MATERIALS AND METHODS The synthesis of the presented benzo[d]thiazol-2-amine derivatives was performed by condensing-(4-chlorobenzylidene) benzo[d]thiazol-2-amine with a number of substituted phenols in the presence of potassium iodide and anhydrous potassium carbonate in dry acetone. IR spectroscopy, 1HNMR spectroscopy, 13CNMR spectroscopy and Mass spectroscopy methods were used to characterize the structural properties of all 13 newly synthesized derivatives. The molecular properties of these newly synthesized derivatives were estimated to study the attributes of drug-like candidates. Benzo[d]thiazol-2-amine derivatives were molecularly docked with selective enzymes COX-1 and COX-2. Analgesic and anti-inflammatory activities of synthesized compounds were evaluated by using albino rats. RESULTS Findings of the research suggested that compounds G3, G4, G6, G8 and G11 possess higher binding affinity than diclofenac sodium, when docking was performed with enzyme COX-1. Compounds G1, G3, G6, G8 and G10 showed lower binding affinity than Indomethacin when docking was performed with enzyme COX-2. In vitro evaluation of the COX-1 and COX-2 enzyme inhibitory activities was performed for synthesized compounds. DISCUSSION Compounds G10 and G11 exhibited significant COX-1 and COX-2 enzyme inhibitory action with an IC50 value of 5.0 and 10 μM, respectively. Using the hot plate method and the carrageenan-induced rat paw edema model, the synthesized compounds were screened for their biological activities, including analgesic and anti-inflammatory activities. Highest analgesic action was exhibited by derivative G11 and the compound G10 showed the highest anti-inflammatory response. Inhibition of COX may be considered as a mechanism of action of these compounds. CONCLUSION It was concluded that synthesized derivatives G10 and G11 exhibited significant analgesic and anti-inflammatory effect; therefore, the said compounds may be subjected to further clinical investigation for establishing these as future compounds for the treatment of pain and inflammation.
Collapse
Affiliation(s)
- Arun K Mishra
- Central Facility of Instrumentation, SOS School of Pharmacy, IFTM University, 244001, Moradabad, India
| | - Kamal Y Thajudeen
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Mhaveer Singh
- School of Pharmaceutical Sciences, IFTM University, Moradabad, 244102, India
| | - Gulam Rasool
- Drug Design Laboratory, School of Pharmaceutical Sciences, IFTM University, Moradabad, 244001, India
| | - Arvind Kumar
- Drug Design Laboratory, School of Pharmaceutical Sciences, IFTM University, Moradabad, 244001, India
| | - Harpreet Singh
- Drug Design Laboratory, School of Pharmaceutical Sciences, IFTM University, Moradabad, 244001, India
| | - Kalicharan Sharma
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences & Research University, 110017, New Delhi, India
| | - Amrita Mishra
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences & Research University, 110017, New Delhi, India
| |
Collapse
|
11
|
Huang X, You L, Nepovimova E, Psotka M, Malinak D, Valko M, Sivak L, Korabecny J, Heger Z, Adam V, Wu Q, Kuca K. Inhibitors of phosphoinositide 3-kinase (PI3K) and phosphoinositide 3-kinase-related protein kinase family (PIKK). J Enzyme Inhib Med Chem 2023; 38:2237209. [PMID: 37489050 PMCID: PMC10392309 DOI: 10.1080/14756366.2023.2237209] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/11/2023] [Indexed: 02/02/2024] Open
Abstract
Phosphoinositide 3-kinases (PI3K) and phosphoinositide 3-kinase-related protein kinases (PIKK) are two structurally related families of kinases that play vital roles in cell growth and DNA damage repair. Dysfunction of PIKK members and aberrant stimulation of the PI3K/AKT/mTOR signalling pathway are linked to a plethora of diseases including cancer. In recent decades, numerous inhibitors related to the PI3K/AKT/mTOR signalling have made great strides in cancer treatment, like copanlisib and sirolimus. Notably, most of the PIKK inhibitors (such as VX-970 and M3814) related to DNA damage response have also shown good efficacy in clinical trials. However, these drugs still require a suitable combination therapy to overcome drug resistance or improve antitumor activity. Based on the aforementioned facts, we summarised the efficacy of PIKK, PI3K, and AKT inhibitors in the therapy of human malignancies and the resistance mechanisms of targeted therapy, in order to provide deeper insights into cancer treatment.
Collapse
Affiliation(s)
- Xueqin Huang
- College of Life Science, Yangtze University, Jingzhou, China
| | - Li You
- College of Physical Education and Health, Chongqing College of International Business and Economics, Chongqing, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
| | - Miroslav Psotka
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - David Malinak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava, Slovakia
| | - Ladislav Sivak
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Jan Korabecny
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
12
|
Wylaź M, Kaczmarska A, Pajor D, Hryniewicki M, Gil D, Dulińska-Litewka J. Exploring the role of PI3K/AKT/mTOR inhibitors in hormone-related cancers: A focus on breast and prostate cancer. Biomed Pharmacother 2023; 168:115676. [PMID: 37832401 DOI: 10.1016/j.biopha.2023.115676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
Breast cancer (BC) and prostate cancer (PC) are at the top of the list when it comes to the most common types of cancers worldwide. The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway is important, in that it strongly influences the development and progression of these tumors. Previous studies have emphasized the key role of inhibitors of the PIK3/AKT/mTOR signaling pathway in the treatment of BC and PC, and it remains to be a crucial method of treatment. In this review, the inhibitors of these signaling pathways are compared, as well as their effectiveness in therapy and potential as therapeutic agents. The use of these inhibitors as polytherapy is evaluated, especially with the use of hormonal therapy, which has shown promising results.
Collapse
Affiliation(s)
- Mateusz Wylaź
- Student Scientific Group at Jagiellonian University Medical College, Faculty of Medicine, Medical Biochemistry, ul. Mikołaja Kopernika Street 7C, 31-034 Krakow, Poland
| | - Anna Kaczmarska
- Student Scientific Group at Jagiellonian University Medical College, Faculty of Medicine, Medical Biochemistry, ul. Mikołaja Kopernika Street 7C, 31-034 Krakow, Poland
| | - Dawid Pajor
- Student Scientific Group at Jagiellonian University Medical College, Faculty of Medicine, Medical Biochemistry, ul. Mikołaja Kopernika Street 7C, 31-034 Krakow, Poland
| | - Matthew Hryniewicki
- Student Scientific Group at Jagiellonian University Medical College, Faculty of Medicine, Medical Biochemistry, ul. Mikołaja Kopernika Street 7C, 31-034 Krakow, Poland
| | - Dorota Gil
- Chair of Medical Biochemistry, Jagiellonian University Medical College, ul. Mikołaja Kopernika Street 7C, 31-034 Krakow, Poland
| | - Joanna Dulińska-Litewka
- Chair of Medical Biochemistry, Jagiellonian University Medical College, ul. Mikołaja Kopernika Street 7C, 31-034 Krakow, Poland.
| |
Collapse
|
13
|
Das B, Gupta S, Mondal A, Kalita KJ, Mallick AI, Gupta P. Tuning the Organelle-Specific Imaging and Photodynamic Therapeutic Efficacy of Theranostic Mono- and Trinuclear Organometallic Iridium(III) Complexes. J Med Chem 2023; 66:15550-15563. [PMID: 37950696 DOI: 10.1021/acs.jmedchem.3c01875] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2023]
Abstract
The organelle-specific localization of mononuclear and trinuclear iridium(III) complexes and their photodynamic behavior within the cells are described herein, emphasizing their structure-activity relationship. Both the IrA2 and IrB2 complexes possess a pair of phenyl-benzothiazole derived from the -CHO moieties of mononuclear organometallic iridium(III) complexes IrA1 and IrB1, which chelates IrCp*Cl (Cp* = 1,2,3,4,5-pentamethylcyclopentadiene) to afford trinuclear complexes IrA3 and IrB3. Insights into the photophysical and electrochemical parameters of the complexes were obtained by a time-dependent density functional theory study. The synthesized complexes IrA2, IrA3, IrB2, and IrB3 were found to be nontoxic to human MCF7 breast carcinoma cells. However, the photoexcitation of complexes using LED light could effectively trigger intracellular reactive oxygen species (ROS) generation, leading to cell death. Furthermore, to check the organelle-specific localization of IrA2 and IrB2, we observed that both complexes could selectively localize in the endoplasmic reticulum. In contrast, trinuclear IrA3 and IrB3 accumulate in the nuclei. The photoexcitation of complexes using LED light could effectively trigger intracellular reactive oxygen species (ROS) generation, leading to cell death.
Collapse
Affiliation(s)
- Bishnu Das
- Department of Chemical Sciences, IISER Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Subhadeep Gupta
- Department of Biological Sciences, IISER Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Anushka Mondal
- Department of Biological Sciences, IISER Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Kalyan Jyoti Kalita
- Department of Chemical Sciences, IISER Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Amirul Islam Mallick
- Department of Biological Sciences, IISER Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Parna Gupta
- Department of Chemical Sciences, IISER Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| |
Collapse
|
14
|
Salem M, Abdullah AH, Ibrahim NS, Zaki MEA, Elwahy AHM, Abdelhamid IA. Novel Scaffolds Based on Bis-thiazole Connected to Quinoxaline or Thienothiophene through 2-Phenoxy- N-arylacetamide Groups as New Hybrid Molecules: Synthesis, Antibacterial Activity, and Molecular Docking Investigations. ACS OMEGA 2023; 8:44312-44327. [PMID: 38027350 PMCID: PMC10666262 DOI: 10.1021/acsomega.3c07125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
The resistance of microorganisms to antimicrobials has endangered the health of many people across the world. Overcoming the resistance problem will require the invention of molecules with a new mechanism of action so that no cross-resistance with existing therapies occurs. Because of their powerful antibacterial activity against a wide spectrum of Gram-positive and Gram-negative bacterial strains, heterocyclic compounds are appealing candidates for medicinal chemists. In this regard, as unique hybrid compounds, we synthesized a novel family of bis-thiazoles linked to quinoxaline or thienothiophene via the 2-phenoxy-N-arylacetamide moiety. The target compounds were synthesized by reacting the relevant bis(α-haloketones) with the corresponding thiosemicarbazones in EtOH at reflux with a few drops of TEA. Under comparable reaction conditions, the isomeric bis(thiazoles) were synthesized by reacting the appropriate bis(thiosemicarbazone) with the respective α-haloketones. The structures of the novel compounds were confirmed using elements and spectral data. All of the synthesized compounds were tested for antibacterial activity in vitro. With an inhibitory zone width of 12 mm, compound 12a had the same activity as the reference medication tobramycin against Staphylococcus aureus. Compound 12b showed 20 mg/mL as a minimum inhibitory concentration (MIC) against Bacillus subtilis. Some of the synthesized compounds were tested via molecular docking against two bacterial proteins (dihydrofolate reductase and tyrosyl-tRNA synthetase).
Collapse
Affiliation(s)
- Mostafa
E. Salem
- Department
of Chemistry, College of Science, Imam Mohammad
Ibn Saud Islamic University (IMSIU), P.O. Box 90950, Riyadh 11623, Saudi Arabia
- Department
of Chemistry, Faculty of Science, Cairo
University, Giza 12613, Egypt
| | - Abbas H. Abdullah
- Department
of Chemistry, Faculty of Science, Cairo
University, Giza 12613, Egypt
| | - Nada S. Ibrahim
- Department
of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Magdi E. A. Zaki
- Department
of Chemistry, College of Science, Imam Mohammad
Ibn Saud Islamic University (IMSIU), P.O. Box 90950, Riyadh 11623, Saudi Arabia
| | - Ahmed H. M. Elwahy
- Department
of Chemistry, Faculty of Science, Cairo
University, Giza 12613, Egypt
| | - Ismail A. Abdelhamid
- Department
of Chemistry, Faculty of Science, Cairo
University, Giza 12613, Egypt
| |
Collapse
|
15
|
Sharma A, Gola AK, Pandey SK. Straightforward access to α-thiocyanoketones and thiazoles from sulfoxonium ylides. Chem Commun (Camb) 2023; 59:10247-10250. [PMID: 37458384 DOI: 10.1039/d3cc02401f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Efficient, versatile, and metal-free strategies for synthesizing α-thiocyanoketones and thiazoles from β-ketosulfoxonium ylides and ammonium thiocyanate have been described. Due to its simplicity, benign reaction conditions, excellent chemoselectivity, and high yield, this method represents a unique approach for divergent synthesis. Finally, the potential value of the developed methods is demonstrated via large-scale reactions and synthesis of Fanetizole, an anti-inflammatory drug.
Collapse
Affiliation(s)
- Ajay Sharma
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India.
| | - Ajay Kant Gola
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India.
| | - Satyendra Kumar Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India.
| |
Collapse
|
16
|
Elrayess R, Elgawish MS, Nafie MS, Ghareb N, Yassen ASA. 2‐Phenylquinazolin‐4(3
H
)‐one scaffold as newly designed, synthesized VEGFR‐2 allosteric inhibitors with potent cytotoxicity through apoptosis. Arch Pharm (Weinheim) 2023:e2200654. [DOI: 10.1002/ardp.202200654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/04/2023] [Accepted: 03/14/2023] [Indexed: 04/03/2023]
Affiliation(s)
- Ranza Elrayess
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy Suez Canal University Ismailia Egypt
| | - Mohamed S. Elgawish
- Medicinal Chemistry Department, Faculty of Pharmacy Suez Canal University Ismailia Egypt
| | - Mohamed S. Nafie
- Chemistry Department (Biochemistry program), Faculty of Science Suez Canal University Ismailia Egypt
| | - Nagat Ghareb
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy Suez Canal University Ismailia Egypt
| | - Asmaa S. A. Yassen
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy Suez Canal University Ismailia Egypt
| |
Collapse
|
17
|
Pokhodylo N, Finiuk N, Klyuchivska O, Stoika R, Matiychuk V, Obushak M. Bioisosteric replacement of 1H-1,2,3-triazole with 1H-tetrazole ring enhances anti-leukemic activity of (5-benzylthiazol-2-yl)benzamides. Eur J Med Chem 2023; 250:115126. [PMID: 36809707 DOI: 10.1016/j.ejmech.2023.115126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/26/2023]
Abstract
Previously, we discovered that N-(5-benzyl-1,3-thiazol-2-yl)-4-(5-methyl-1H-1,2,3-triazol-1-yl)benzamide possessed a remarkable cytotoxic effect on 28 cancer cell lines with IC50 < 50 μM, including 9 cancer cell lines, where IC50 was in the range of 2.02-4.70 μM. In the present study, we designed a novel N-(5-benzylthiazol-2-yl)amide compound 3d that was synthesized using the original bioisosteric replacement of 1H-1,2,3-triazole ring by the 1H-tetrazole ring. A significantly enhanced anticancer activity in vitro with an excellent anti-leukemic potency towards chronic myeloid leukemia cells of the K-562 line was demonstrated. Two compounds - 3d and 3l - were highly cytotoxic at nanomolar concentrations towards various tumor cells of the following lines: K-562, NCI-H460, HCT-15, KM12, SW-620, LOX IMVI, M14, UACC-62, CAKI-1, and T47D. As a highlight, the compound N-(5-(4-fluorobenzyl)thiazol-2-yl)-4-(1H-tetrazol-1-yl)benzamide 3d inhibited the growth of leukemia K-562 cells and melanoma UACC-62 cells with IС50 of 56.4 and 56.9 nM (SRB test), respectively. The viability of leukemia K-562 and pseudo-normal HaCaT, NIH-3T3, and J774.2 cells was measured by the MTT assay. Together with SAR analysis, it allowed the selection of a lead compound 3d, which demonstrated the highest selectivity (SI = 101.0) towards treated leukemic cells. The compound 3d caused DNA damage (single-strand breaks detected by the alkaline comet assay) in the leukemic K-562 cells. The morphological study of the K-562 cells treated with compound 3d revealed changes consistent with apoptosis. Thus, the bioisosteric replacement in (5-benzylthiazol-2-yl)amide scaffold proved to be a perspective approach in the design of novel heterocyclic compounds with enhanced anticancer potential.
Collapse
Affiliation(s)
- Nazariy Pokhodylo
- Ivan Franko National University of Lviv, Kyryla and Mefodiya Str., 6, 79005, Lviv, Ukraine.
| | - Nataliya Finiuk
- Ivan Franko National University of Lviv, Kyryla and Mefodiya Str., 6, 79005, Lviv, Ukraine; Institute of Cell Biology of National Academy of Sciences of Ukraine, Drahomanov Str., 14/16, 79005, Lviv, Ukraine
| | - Olha Klyuchivska
- Institute of Cell Biology of National Academy of Sciences of Ukraine, Drahomanov Str., 14/16, 79005, Lviv, Ukraine
| | - Rostyslav Stoika
- Ivan Franko National University of Lviv, Kyryla and Mefodiya Str., 6, 79005, Lviv, Ukraine; Institute of Cell Biology of National Academy of Sciences of Ukraine, Drahomanov Str., 14/16, 79005, Lviv, Ukraine
| | - Vasyl Matiychuk
- Ivan Franko National University of Lviv, Kyryla and Mefodiya Str., 6, 79005, Lviv, Ukraine
| | - Mykola Obushak
- Ivan Franko National University of Lviv, Kyryla and Mefodiya Str., 6, 79005, Lviv, Ukraine
| |
Collapse
|
18
|
Salvador-Gil D, Herrera RP, Gimeno MC. Catalysis-free synthesis of thiazolidine-thiourea ligands for metal coordination (Au and Ag) and preliminary cytotoxic studies. Dalton Trans 2023. [PMID: 36880202 DOI: 10.1039/d3dt00079f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
The reaction of propargylamines with isothiocyanates results in the selective formation of iminothiazolidines, aminothiazolines or mixed thiazolidine-thiourea compounds under mild conditions. It has been observed that secondary propargylamines lead to the selective formation of cyclic 2-amino-2-thiazoline derivatives, while primary propargylamines form iminothiazoline species. In addition, these cyclic thiazoline derivatives can further react with an excess of isothiocyanate to give rise to thiazolidine-thiourea compounds. These species can also be achieved by reaction of propargylamines with isothiocynates in a molar ratio of 1 : 2. Coordination studies of these heterocyclic species towards silver and gold with different stoichiometries have been carried out and complexes of the type [ML(PPh3)]OTf, [ML2]OTf (M = Ag, Au) or [Au(C6F5)L] have been synthesised. Preliminary studies of the cytotoxic activity in lung cancer cells have also been performed in both ligands and complexes, showing that although the ligands do not exhibit anticancer activity, their coordination to metals, especially silver, greatly enhances the cytotoxic activity.
Collapse
Affiliation(s)
- Daniel Salvador-Gil
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain.
| | - Raquel P Herrera
- Departamento de Química Orgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - M Concepción Gimeno
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain.
| |
Collapse
|
19
|
Costa RK, Brancaglion GA, Pinheiro MP, Meira DA, da Silva BN, de V. Negrao CZ, de A. Gonçalves K, Rodrigues CT, Ambrósio AL, Guido RV, Pastre JC, Dias SM. Discovery of aminothiazole derivatives as a chemical scaffold for glutaminase inhibition. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
|
20
|
Hassell-Hart S, Speranzini E, Srikwanjai S, Hossack E, Roe SM, Fearon D, Akinbosede D, Hare S, Spencer J. Synthesis of a Thiazole Library via an Iridium-Catalyzed Sulfur Ylide Insertion Reaction. Org Lett 2022; 24:7924-7927. [PMID: 36265082 PMCID: PMC9641659 DOI: 10.1021/acs.orglett.2c02996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Indexed: 11/29/2022]
Abstract
A library of thiazoles and selenothiazoles were synthesized via Ir-catalyzed ylide insertion chemistry. This process is a functional group, particularly heterocycle-substituent tolerant. This was applied to the synthesis of fanetizole, an anti-inflammatory drug, and a thiazole-containing drug fragment that binds to the peptidyl-tRNA hydrolase (Pth) in Neisseria gonorrheae bacteria.
Collapse
Affiliation(s)
- Storm Hassell-Hart
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, U.K.
| | - Elisa Speranzini
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, U.K.
| | - Sirihathai Srikwanjai
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, U.K.
| | - Euan Hossack
- Department
of Biochemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QG, U.K.
| | - S. Mark Roe
- Department
of Biochemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QG, U.K.
| | - Daren Fearon
- Diamond
LightSource (DLS), Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K.
| | - Daniel Akinbosede
- Department
of Biochemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QG, U.K.
| | - Stephen Hare
- Department
of Biochemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QG, U.K.
| | - John Spencer
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, U.K.
| |
Collapse
|
21
|
Zhang ZH, Zeng BF, Song ZX, Yang YY, Zhang KY, Du X, Zhang LL, Cai D. Synthesis and biological evaluation of new thiazolyl-urea derivatives as potential dual C-RAF/FLT3 inhibitors. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02971-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
22
|
Yuan L, Liu J, Huang K, Wang S, Jin Y, Lin J. Cascade Reaction of Tertiary Enaminones, KSCN, and Anilines: Temperature-Controlled Synthesis of 2-Aminothiazoles and 2-Iminothiazoline. J Org Chem 2022; 87:9171-9183. [PMID: 35786913 DOI: 10.1021/acs.joc.2c00918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A one-pot cascade strategy for the synthesis of 2-aminothiazole derivatives by tertiary enaminones, KSCN, and anilines was developed. By changing the reaction temperature, the three-component reaction could be transformed in different ways to obtain moderate to good yields of polysubstituted 2-aminothiazoles and 2-iminothiazolines. This protocol provides an efficient and concise approach to accessing 2-aminothiazole derivatives with potential bioactivity from readily accessible building blocks and reagents.
Collapse
Affiliation(s)
- Liu Yuan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Jin Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Kun Huang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Siyu Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Yi Jin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Jun Lin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| |
Collapse
|
23
|
Ostapiuk YV, Barabash OV, Ostapiuk MY, Goreshnik E, Obushak MD, Schmidt A. Thiocyanatoarylation of Methyl Vinyl Ketone under Meerwein Conditions for the Synthesis of 2-Aminothiazole-Based Heterocyclic Systems. Org Lett 2022; 24:4575-4579. [PMID: 35735270 DOI: 10.1021/acs.orglett.2c01677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
4-Aryl-3-thiocyanatobutan-2-ones were prepared by Meerwein reactions from methyl vinyl ketone and aryldiazonium salts under copper(II) catalysis in 35-75% yields. α-Thiocyanato ketones regioselectively react with 1-methyl-3-aminopyrazole forming N-(3-pyrazolyl)-substituted 2-aminothiazoles in 80-91% yields. An ester group in position 3 of the pyrazole induced a regioselective ring-closure reaction followed by an intramolecular cyclization, which gave first representatives of a new heterocyclic system, pyrazolo[4,3-e]thiazolo[3,2-a]pyrimidine, in 74-93% yields. In addition, the preparations of 5-benzyl-4-methylthiazol-2-ones in 84-93% yields are described.
Collapse
Affiliation(s)
- Yurii V Ostapiuk
- Department of Organic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya Str. 6, 79005 Lviv, Ukraine
| | - Oksana V Barabash
- Department of Organic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya Str. 6, 79005 Lviv, Ukraine
| | - Mary Y Ostapiuk
- Department of Organic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya Str. 6, 79005 Lviv, Ukraine
| | - Evgeny Goreshnik
- Department of Inorganic Chemistry and Technology, Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Mykola D Obushak
- Department of Organic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya Str. 6, 79005 Lviv, Ukraine
| | - Andreas Schmidt
- Institute of Organic Chemistry, Clausthal University of Technology, Leibnizstrasse 6, D-38678 Clausthal-Zellerfeld, Germany
| |
Collapse
|
24
|
Pagacz-Kostrzewa M, Bumażnik D, Coussan S, Sałdyka M. Structure, Spectra and Photochemistry of 2-Amino-4-Methylthiazole: FTIR Matrix Isolation and Theoretical Studies. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123897. [PMID: 35745029 PMCID: PMC9227644 DOI: 10.3390/molecules27123897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/19/2022]
Abstract
The structure, tautomerization pathways, vibrational spectra, and photochemistry of 2-amino-4-methylthiazole (AMT) molecule were studied by matrix isolation FTIR spectroscopy and DFT calculations undertaken at the B3LYP/6-311++G(3df,3pd) level of theory. The most stable tautomer with the five-membered ring stabilized by two double C=C and C=N bonds, was detected in argon matrices after deposition. When the AMT/Ar matrices were exposed to 265 nm selective irradiation, three main photoproducts, N-(1-sulfanylprop-1-en-2-yl)carbodiimide (fp1), N-(1-thioxopropan-2-yl)carbodiimide (fp2) and N-(2-methylthiiran-2-yl)carbodiimide (fp3), were photoproduced by a cleavage of the CS–CN bond together with hydrogen atom migration. The minor photoreaction caused by the cleavage of the CS–CC bond and followed by hydrogen migration formed 2-methyl-1H-azirene-1-carbimidothioic acid (fp15). We have also found that cleavage of the CS–CN bond followed by disruption of the N–C bond produced cyanamide (fp11) and the C(CH3)=CH–S biradical that transformed into 2-methylthiirene (fp12) and further photoreactions produced 1-propyne-1-thiole (fp13) or methylthioketene (fp14). Cleavage of the CS–CC bond followed by disruption of the N–C bond produced propyne (fp22) and the S–C(NH2)=N biradical that transformed into 3-aminethiazirene (fp23); further photoreactions produced N-sulfanylcarbodiimide (fp25). As a result of these transformations, several molecular complexes were identified as photoproducts besides new molecules in the AMT photolysis process.
Collapse
Affiliation(s)
- Magdalena Pagacz-Kostrzewa
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wrocław, Poland; (M.P.-K.); (D.B.)
| | - Daria Bumażnik
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wrocław, Poland; (M.P.-K.); (D.B.)
| | - Stéphane Coussan
- Aix-Marseille University, CNRS, PIIM, 13013 Marseille, France
- Correspondence: (S.C.); (M.S.); Tel.: +33-41-3946-419 (S.C.)
| | - Magdalena Sałdyka
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wrocław, Poland; (M.P.-K.); (D.B.)
- Correspondence: (S.C.); (M.S.); Tel.: +33-41-3946-419 (S.C.)
| |
Collapse
|
25
|
Dorofeev IА, Zhilitskaya LV, Yarosh NО. First Bis-Organosilicon Derivatives of Aminothiazoles. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222050097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Severin AO, Pilyo SG, Potikha LM, Brovarets VS. Synthesis and Antitumor Activity of 5-Phenyl-1,3-thiazole-4-sulfonamide Derivatives. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222020062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
A method for the synthesis of 5-phenyl-1,3-thiazole-4-sulfonyl chloride was developed based on the cyclization of ethyl 2-{[1-(benzylsulfanyl)-2-oxo-2-phenylethyl]amino}-2-oxoacetate obtained from available reagents under the action of the Lawesson’s reagent and oxidative chlorination of the intermediate benzyl 5-phenyl-1,3thiazol-4-ylsulfide. The resulting sulfonyl chloride was converted into a series of 5-phenyl-1,3-thiazole-4-sulfonamide derivatives for which in vitro antitumor activity screening studies were performed on 60 cancer cell lines.
Collapse
|
27
|
Kumar KY, Kumar CBP, Prasad KNN, Jeon BH, Alsalme A, Prashanth MK. Microwave-assisted N-alkylation of amines with alcohols catalyzed by MnCl 2 : Anticancer, docking, and DFT studies. Arch Pharm (Weinheim) 2022; 355:e2100443. [PMID: 35137966 DOI: 10.1002/ardp.202100443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 11/09/2022]
Abstract
A new protocol for the N-alkylation of amines with alcohols for the synthesis of tertiary amines in the presence of MnCl2 as a catalyst, under microwave conditions, is described. The advantages of this protocol include stable reaction profiles, a wide substrate variety, excellent yields, low cost, high yields, and easy workup conditions. The anticancer efficacy of all the synthesized compounds was tested in vitro against various cancer cell lines, such as MCF-7, MDA-MB-231 (human breast), HT-29, HCT 116 (colon cancer), A549 (human lung carcinoma), and Vero cells. Among the screened compounds, 3e, 3h, and 3i demonstrated potent anticancer activity, with compound 3h surpassing the reference drug cisplatin against A549, MCF7, MDA-MB-231, and HCT116 cancer cells. The introduction of an electron-withdrawing group on the phenyl ring resulted in increased anticancer activity. The most potent compounds, 3e, 3h, and 3i, were tested against VEGFR-2, HER2, and EGFR in multikinase inhibition assays, with compounds 3h and 3i showing improved potency against the HER2 kinase. The compounds formed two H-bonds with amino acids, indicating that they had a high affinity for the target HER2 kinase (PDB ID: 3RCD), according to the docking analysis. The absorption, distribution, metabolism, excretion, and toxicity properties of the optimized analogs were also assessed in vitro, enabling the discovery of promising anticancer agents. Finally, the B3LYP level was used to measure density functional theory geometry optimization and the related quantum parameters for the active compounds.
Collapse
Affiliation(s)
- K Yogesh Kumar
- Department of Chemistry, Faculty of Engineering and Technology, Jain University, Ramanagara, India
| | - C B Pradeep Kumar
- Department of Chemistry, Malnad College of Engineering, Hassan, India
| | - K N N Prasad
- Department of Physics, BNM Institute of Technology, Bengaluru, India
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| | - Ali Alsalme
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - M K Prashanth
- Department of Chemistry, BNM Institute of Technology, Bengaluru, India
| |
Collapse
|
28
|
Fadda AA, Abd El Salam M, Tag Y, Selim YA. Role of Enaminonitriles in Heterocyclic Synthesis: Synthesis of Some New Aminothiazole Derivatives against Prostate Carcinoma. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2021.2023592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ahmed A. Fadda
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
| | | | - Yasmin Tag
- Oral Biology Department, Faculty of Oral and Dental medicine, Delta University for Science and Technology, Mansoura, Egypt
| | - Yasser A. Selim
- Faculty of Specific Education, Zagazig University, Zagazig, Egypt
| |
Collapse
|
29
|
Othman EM, Fayed EA, Husseiny EM, Abulkhair HS. Rationale design, synthesis, cytotoxicity evaluation, and in silico mechanistic studies of novel 1,2,3-triazoles with potential anticancer activity. NEW J CHEM 2022. [DOI: 10.1039/d2nj02061k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A new set of 1,2,3-triazoles was designed and synthesized to evaluate their potential to inhibit the growth of cancer cells.
Collapse
Affiliation(s)
- Esraa M. Othman
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City 11754, Cairo, Egypt
| | - Eman A. Fayed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City 11754, Cairo, Egypt
| | - Ebtehal M. Husseiny
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City 11754, Cairo, Egypt
| | - Hamada S. Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11884, Cairo, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University-Egypt, International Coastal Road, New Damietta 34518, Egypt
| |
Collapse
|
30
|
Bangade VM, Dadmal TL, Popatkar BB, Mali PR, Meshram HM. One Pot Catalyst‐free Synthesis of Substituted Di‐amino N‐tosyl Benzoyl Thiazoles byRegioselective C−N Bond Cleavage and Its Anticancer Activity. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Vikas M. Bangade
- Department of Chemistry The Institute of Science, Mumbai Dr.HomiBhabha State University Mumbai 15, Madame Cama Road Mumbai-32 400 032 India
- Medicinal Chemistry and Pharmacology Division CSIR-Indian Institute of Chemical Technology, Hyderabad Uppal Road, Tarnaka Hyderabad Telangana 500007 India
| | - Tulshiram L. Dadmal
- Department of Chemistry Government Vidarbha Institute of Science and Humanities Amravati Maharashtra 444604 India
| | - Bhushan B. Popatkar
- Department of Chemistry University of Mumbai Vidyanagari, Kalina, Santacruz (E) Mumbai Maharashtra 400 098 India
| | - Prakash R. Mali
- Medicinal Chemistry and Pharmacology Division CSIR-Indian Institute of Chemical Technology, Hyderabad Uppal Road, Tarnaka Hyderabad Telangana 500007 India
| | - Harshadas M. Meshram
- Medicinal Chemistry and Pharmacology Division CSIR-Indian Institute of Chemical Technology, Hyderabad Uppal Road, Tarnaka Hyderabad Telangana 500007 India
| |
Collapse
|
31
|
Tantawy AH, El-Behairy MF, Abd-Allah WH, Jiang H, Wang MQ, Marzouk AA. Design, Synthesis, Biological Evaluation, and Computational Studies of Novel Fluorinated Candidates as PI3K Inhibitors: Targeting Fluorophilic Binding Sites. J Med Chem 2021; 64:17468-17485. [PMID: 34791873 DOI: 10.1021/acs.jmedchem.1c01674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Highly fluorinated candidates containing anticancer pharmacophores like thiosemicarbazone (5a-e) and its cyclic analogues hydrazineylidenethiazolidine (6a-e), 2-aminothiadiazole (7a-e), and 2-hydrazineylidenethiazolidin-4-one (8a-e) were synthesized, and their cytotoxic activity was assayed against 60 tumor cell lines. Compounds 6c, 7b, and 8b displayed the most potent activity with lower toxic effects on MCF-10a. In vitro phosphatidylinositol 3-kinase (PI3K) enzyme inhibition was performed. Compound 6c displayed half-maximal inhibitory concentration (IC50, μM) values of 5.8, 2.3, and 7.9; compound 7b displayed IC50 values of 19.4, 30.7, and 73.7; and compound 8b displayed IC50 values of 77.5, 53.5, and 121.3 for PI3Kα, β, and δ, respectively. Moreover, cell cycle progression caused cell cycle arrest at the S phase for compounds 6c and 8b and at G1/S for compound 7b, while apoptosis was induced. In silico studies; molecular docking; physicochemical parameters; and absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis were performed. The results showed that compound 6c is the most potent one with a selectivity index (SI) of 39 and is considered as a latent lead for further optimization of anticancer agents.
Collapse
Affiliation(s)
- Ahmed H Tantawy
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.,Department of Chemistry, College of Science, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.,Department of Chemistry, College of Science, Benha University, Benha 13518, Egypt
| | - Mohammed Farrag El-Behairy
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Menoufiya 32897, Egypt
| | - Walaa Hamada Abd-Allah
- Pharmaceutical Chemistry Department, Collage of Pharmaceutical Science and Drug Manufacturing, Misr University for Science and Technology, P.O. 77, 6th of October City, Giza 12568, Egypt
| | - Hong Jiang
- Department of Chemistry, College of Science, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Man-Qun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Adel A Marzouk
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| |
Collapse
|
32
|
Dorofeev IА, Zhilitskaya LV, Yarosh NО. Synthesis of Salts and Ionic Liquids on the Basis of 2-Aminothiazolium Cations. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s1070363221120136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Naz S, Shah FA, Nadeem H, Sarwar S, Tan Z, Imran M, Ali T, Li JB, Li S. Amino Acid Conjugates of Aminothiazole and Aminopyridine as Potential Anticancer Agents: Synthesis, Molecular Docking and in vitro Evaluation. Drug Des Devel Ther 2021; 15:1459-1476. [PMID: 33833504 PMCID: PMC8021256 DOI: 10.2147/dddt.s297013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/27/2021] [Indexed: 12/15/2022] Open
Abstract
PURPOSE The development of resistance to available anticancer drugs is increasingly becoming a major challenge and new chemical entities could be unveiled to compensate this therapeutic failure. The current study demonstrated the synthesis of 2-aminothiazole [S3(a-d) and S5(a-d)] and 2-aminopyridine [S4(a-d) and S6(a-d)] derivatives that can target multiple cellular networks implicated in cancer development. METHODS Biological assays were performed to investigate the antioxidant and anticancer potential of synthesized compounds. Redox imbalance and oxidative stress are hallmarks of cancer, therefore, synthesized compounds were preliminarily screened for their antioxidant activity using DPPH assay, and further five derivatives S3b, S3c, S4c, S5b, and S6c, with significant antioxidant potential, were selected for investigation of in vitro anticancer potential. The cytotoxic activities were evaluated against the parent (A2780) and cisplatin-resistant (A2780CISR) ovarian cancer cell lines. Further, Molecular docking studies of active compounds were performed to determine binding affinities. RESULTS Results revealed that S3c, S5b, and S6c displayed promising inhibition in cisplatin-resistant cell lines in comparison to parent cells in terms of both resistance factor (RF) and IC50 values. Moreover, S3c proved to be most active compound in both parent and resistant cell lines with IC50 values 15.57 µM and 11.52 µM respectively. Our docking studies demonstrated that compounds S3c, S5b, and S6c exhibited significant binding affinity with multiple protein targets of the signaling cascade. CONCLUSION Anticancer activities of compounds S3c, S5b, and S6c in cisplatin-resistant cell lines suggested that these ligands may contribute as lead compounds for the development of new anticancer drugs.
Collapse
Affiliation(s)
- Shagufta Naz
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, 44000, Pakistan
- Shenzhen University Clinical Research Center for Neurological Diseases, Health Management Center, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, People's Republic of China
| | - Fawad Ali Shah
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, 44000, Pakistan
| | - Humaira Nadeem
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, 44000, Pakistan
| | - Sadia Sarwar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, 44000, Pakistan
| | - Zhen Tan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Muhammad Imran
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, 44000, Pakistan
| | - Tahir Ali
- Shenzhen University Clinical Research Center for Neurological Diseases, Health Management Center, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, People's Republic of China
| | - Jing Bo Li
- Shenzhen University Clinical Research Center for Neurological Diseases, Health Management Center, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, People's Republic of China
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, People’s Republic of China
| |
Collapse
|
34
|
Potikha L, Brovarets V, Zhirnov V. Biological Evaluation of 3-Aminoisoquinolin-1(2H)-one Derivatives as Potential Anticancer Agents Authors Lyudmyla Potikha. FRENCH-UKRAINIAN JOURNAL OF CHEMISTRY 2021. [DOI: 10.17721/fujcv9i2p52-63] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Anticancer activity of a series of 3-(hetaryl/aryl)amino substituted isoquinolin-1(2H)-ones has been studied within the international scientific program “NCI-60 Human Tumor Cell Lines Screen”. Screening was performed in vitro on 60 cell lines of lungs, kidneys, CNS, ovaries, prostate, and breast cancer, epithelial cancer, leukemia, and melanoma. The most effective compounds were those with thiazolyl or pyrazolyl substituent at 3-amino group and had no substituents at C(4) of the isoquinoline cycle. We identified a new lead compound, 3-(1,3-thiazol-2-ylamino)isoquinolin-1(2H)-one 12, which effectively prevents tumor cell growth (average lg GI50 = -5.18, lg TGI = -4.1, lg LC50 > -4.0) with good selectivity.
Collapse
|