1
|
Viana LPS, Naves GM, Medeiros IG, Guimarães AS, Sousa ES, Santos JCC, Freire NML, de Aquino TM, Modolo LV, de Fátima Â, da Silva CM. Synergizing structure and function: Cinnamoyl hydroxamic acids as potent urease inhibitors. Bioorg Chem 2024; 146:107247. [PMID: 38493635 DOI: 10.1016/j.bioorg.2024.107247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/16/2024] [Accepted: 02/27/2024] [Indexed: 03/19/2024]
Abstract
The current investigation encompasses the structural planning, synthesis, and evaluation of the urease inhibitory activity of a series of molecular hybrids of hydroxamic acids and Michael acceptors, delineated from the structure of cinnamic acids. The synthesized compounds exhibited potent urease inhibitory effects, with IC50 values ranging from 3.8 to 12.8 µM. Kinetic experiments unveiled that the majority of the synthesized hybrids display characteristics of mixed inhibitors. Generally, derivatives containing electron-withdrawing groups on the aromatic ring demonstrate heightened activity, indicating that the increased electrophilicity of the beta carbon in the Michael Acceptor moiety positively influences the antiureolytic properties of this compounds class. Biophysical and theoretical investigations further corroborated the findings obtained from kinetic assays. These studies suggest that the hydroxamic acid core interacts with the urease active site, while the Michael acceptor moiety binds to one or more allosteric sites adjacent to the active site.
Collapse
Affiliation(s)
- Luciana P S Viana
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Giovanna M Naves
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Isabela G Medeiros
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ari S Guimarães
- Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Maceió, AL, Brazil
| | - Emilly S Sousa
- Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Maceió, AL, Brazil
| | - Josué C C Santos
- Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Maceió, AL, Brazil
| | - Nathália M L Freire
- Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Maceió, AL, Brazil
| | - Thiago M de Aquino
- Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Maceió, AL, Brazil
| | - Luzia V Modolo
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ângelo de Fátima
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Cleiton M da Silva
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
2
|
Mutahir S, Khan MA, Almehizia AA, Abouzied AS, Khalifa NE, Naglah AM, Deng H, Refat MS, Khojali WMA, Huwaimel B. Design, Synthesis, Characterization and Computational Studies of Mannich Bases Oxadiazole Derivatives as New Class of Jack Bean Urease Inhibitors. Chem Biodivers 2023; 20:e202300241. [PMID: 37344354 DOI: 10.1002/cbdv.202300241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 06/23/2023]
Abstract
Mannich bases consisting of 1,3,4-oxadiazole-2-thione (3 a-3 l) bearing various substituents were synthesized and found potent jack bean urease inhibitors. The prepared compounds showed significantly good inhibitory activities with IC50 values from 9.45±0.05 to 267.42±0.23 μM. The compound 3 k containing 4-chlorophenyl (-R) and 4-hydroxyphenyl (-R') was most active with IC50 9.45±0.05 μM followed by 3 e (IC50 22.52±0.15 μM) in which -R was phenyl and -R' was isopropyl group. However, when both -R and -R' were either 4-chlorophenyl groups (3 l) or only -R' was 4-nitrophenyl (3 i), both compounds were found inactive. The detailed binding affinities of the produced compounds with protein were explored through molecular docking and data-supported in-vitro enzyme inhibition profiles. Drug likeness was confirmed by in silico ADME investigations and molecular orbital analysis (HOMO-LUMO) and electrostatic potential maps were got from DFT calculations. ESP maps exposed that there are two potential binding sites with the most positive and most negative parts.
Collapse
Affiliation(s)
- Sadaf Mutahir
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276000, China
| | - Muhammad Asim Khan
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276000, China
| | - Abdulrahman Abdulaziz Almehizia
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Amr Salah Abouzied
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, 81442, Saudi Arabia
- Department of Pharmaceutical Chemistry, National Organization for Drug Control and Research (NODCAR), Giza, 12553, Egypt
| | - Nasrin Eldirdiri Khalifa
- Department of pharmaceutics, College of Pharmacy, University of Hail, Hail, 81442, Saudi Arabia
- Department of pharmaceutics, Faculty of Pharmacy, University of Khartoum, Khartoum, 11115, Sudan
| | - Ahmed Mohamed Naglah
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Haishan Deng
- School of Pharmacy, Nanjing University of Traditional Chinese Medicine, Nanjing, 210094, China
| | - Moamen Salaheldeen Refat
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Weam Mohamed Ali Khojali
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, 81442, Saudi Arabia
- Department of pharmaceutical chemistry, faculty of pharmacy, Omdurman Islamic University, Omdurman, 14415, Sudan
| | - Bader Huwaimel
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, 81442, Saudi Arabia
- Medical and Diagnostic Research Center, University of Hail, Hail, 81442, Saudi Arabia
| |
Collapse
|
3
|
Islam M, Khan A, Khan M, Halim SA, Ullah S, Hussain J, Al-Harrasi A, Shafiq Z, Tasleem M, El-Gokha A. Synthesis and biological evaluation of 2-nitrocinnamaldehyde derived thiosemicarbazones as urease inhibitors. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
4
|
Jiang J, Liang P, Li A, Xue Q, Yu H, You Z. Synthesis, Crystal Structures and Urease Inhibition of Zinc(II) and Copper(II) Complexes Derived from 2-Amino-N′-(1-(Pyridin-2-yl) Ethylidene)Benzohydrazide. J STRUCT CHEM+ 2023. [DOI: 10.1134/s0022476623030034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
5
|
Amini M, Abdel-Jalil R, Moghadam ES, Al-Sadi AM, Talebi M, Amanlou M, Shongwe M. Piperazine-based Semicarbazone Derivatives as Potent Urease Inhibitors:
Design, Synthesis, and Bioactivity Screening. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180819666220405234009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
An enzyme called urease assists highly pathogenic bacteria in colonizing and
maintaining themselves. Accordingly, inhibiting urease enzymes has been shown to be a promising strategy
for preventing ureolytic bacterial infections.
Objective:
This study aimed to synthesize and evaluate the bioactivity of a series of semicarbazone derivatives.
Methods:
A series of piperazine-based semicarbazone derivatives 5a-o were synthesized and isolated, and
their structures were elucidated by 1H-NMR and 13C-NMR spectroscopic techniques besides MS and
elemental analysis. The urease inhibition activity of these compounds was evaluated using the standard
urease enzyme inhibition kit. An MTT assay was performed on two different cell lines (NIH-3T3 and
MCF-7) to investigate the cytotoxicity profile.
Results:
All semicarbazone 5a-o exhibited higher urease inhibition activity (3.95–6.62 μM) than the reference
standards thiourea and hydroxyurea (IC50: 22 and 100 μM, respectively). Derivatives 5m and 5o
exhibited the best activity with the IC50 values of 3.95 and 4.05 μM, respectively. Investigating the cytotoxicity
profile of the target compound showed that all compounds 5a-o have IC50 values higher than 50
μM for both tested cell lines.
Conclusion:
The results showed that semicarbazone derivatives could be highly effective as urease inhibitors.
Collapse
Affiliation(s)
- Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical
Sciences, Tehran 1417614411, Iran
- Drug Design and Development Research Center, The Institute of Pharmaceutical
Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Raid Abdel-Jalil
- Department of Chemistry, College of Science, Sultan Qaboos University, Al-Khod 123, Muscat, Sultanate of Oman
| | - Ebrahim Saeedian Moghadam
- Department of Chemistry, College of Science, Sultan Qaboos University, Al-Khod 123, Muscat, Sultanate of Oman
| | - Abdullah Mohammed Al-Sadi
- Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khod 123,
Muscat, Sultanate of Oman
| | - Meysam Talebi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical
Sciences, Tehran 1417614411, Iran
| | - Massoud Amanlou
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical
Sciences, Tehran 1417614411, Iran
- Drug Design and Development Research Center, The Institute of Pharmaceutical
Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Musa Shongwe
- Department of Chemistry, College of Science, Sultan Qaboos University, Al-Khod 123, Muscat, Sultanate of Oman
| |
Collapse
|
6
|
Song WQ, Liu ML, Yuan LC, Li SY, Wang YN, Xiao ZP, Zhu HL. Synthesis, evaluation and mechanism exploration of 2-(N-(3-nitrophenyl)-N-phenylsulfonyl)aminoacetohydroxamic acids as novel urease inhibitors. Bioorg Med Chem Lett 2022; 78:129043. [DOI: 10.1016/j.bmcl.2022.129043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 11/09/2022]
|
7
|
Li SY, Zhang Y, Wang YN, Yuan LC, Kong CC, Xiao ZP, Zhu HL. Identification of (N-aryl-N-arylsulfonyl)aminoacetohydroxamic acids as novel urease inhibitors and the mechanism exploration. Bioorg Chem 2022; 130:106275. [DOI: 10.1016/j.bioorg.2022.106275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/06/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
|
8
|
Wu Y, Zhao S, Liu C, Hu L. Development of urease inhibitors by fragment-based dynamic combinatorial chemistry. ChemMedChem 2022; 17:e202200307. [PMID: 35975876 DOI: 10.1002/cmdc.202200307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/12/2022] [Indexed: 11/07/2022]
Abstract
In this study, fragment-based dynamic combinatorial chemistry (DCC) was explored for the development of novel urease inhibitors. Based on a rationally designed fragment, two iteratively evolved dynamic combinatorial libraries (DCLs) were generated and screened in the presence of urease template. The best ligand identified revealed not only strong urease inhibition but also low cytotoxicity. Additionally, possible inhibitory mechanism was elucidated in the binding kinetic study and docking simulation.
Collapse
Affiliation(s)
- Yao Wu
- Jiangsu University School of Pharmacy, College of Pharmacy, CHINA
| | - Shuang Zhao
- Jiangsu University School of Pharmacy, College of Pharmacy, CHINA
| | - Changming Liu
- Jiangsu University School of Pharmacy, College of Pharmacy, CHINA
| | - Lei Hu
- Jiangsu University School of Pharmacy, College of pharmacy, 301 Xuefu Rd., Zhenjiang, China, 212013, Zhenjiang, CHINA
| |
Collapse
|
9
|
Saeedian Moghadam E, Al-Sadi AM, Talebi M, Amanlou M, Amini M, Abdel-Jalil R. Novel benzimidazole derivatives; synthesis, bioactivity and molecular docking study as potent urease inhibitors. Daru 2022; 30:29-37. [PMID: 35040104 PMCID: PMC9114190 DOI: 10.1007/s40199-021-00427-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/09/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Benzimidazole derivatives are widely used to design and synthesize novel bioactive compounds. There are several approved benzimidazole-based drugs on the market. OBJECTIVES In this study, we aimed to design and synthesize a series of novel benzimidazole derivatives 8a-n that are urease inhibitors. METHODS All 8a-n were synthesized in a multistep. To determine the urease inhibitory effect of 8a-n, the urease inhibition kit was used. The cytotoxicity assay of 8a-n was determined using MTT method. Molecular modelling was determined using autodock software. RESULTS All 8a-n were synthesized in high yield, and their structures were determined using 1H-NMR, 13C-NMR, MS, and elemental analyses. In compared to thiourea and hydroxyurea as standards (IC50: 22 and 100 µM, respectively), all 8a-n had stronger urease inhibition activity (IC50: 3.36-10.81 µM). With an IC50 value of 3.36 µM, 8e had the best enzyme inhibitory activity. On two evaluated cell lines, the MTT cytotoxicity experiment revealed that all 8a-n have IC50 values greater than 50 µM. Finally, a docking investigation revealed a plausible way of interaction between the 8e and 8d and the enzyme's active site's key residues. CONCLUSION The synthesized benzimidazole derivatives exhibit high activity, suggesting that further research on this family of compounds would be beneficial to finding a potent urease inhibitor.
Collapse
Affiliation(s)
- Ebrahim Saeedian Moghadam
- Department of Chemistry, College of Science, Sultan Qaboos University, P.O. Box 36, P.C. 123, Muscat, Sultanate of Oman
| | - Abdullah Mohammed Al-Sadi
- Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Meysam Talebi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, 1417614411, Tehran, Iran
| | - Massoud Amanlou
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, 1417614411, Tehran, Iran
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, 1417614411, Tehran, Iran
| | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, 1417614411, Tehran, Iran.
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, 1417614411, Tehran, Iran.
| | - Raid Abdel-Jalil
- Department of Chemistry, College of Science, Sultan Qaboos University, P.O. Box 36, P.C. 123, Muscat, Sultanate of Oman.
| |
Collapse
|
10
|
Saeedian Moghadam E, Mohammed Al-Sadi A, Ghafarzadegan R, Talebi M, Amanlou M, Amini M, Abdel-Jalil R. Benzimidazole derivatives act as dual urease inhibitor and anti-helicobacter pylori agent; synthesis, bioactivity, and molecular docking study. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2061357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | - Abdullah Mohammed Al-Sadi
- Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Reza Ghafarzadegan
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Meysam Talebi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Massoud Amanlou
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS, Tehran University of Medical Sciences, Tehran, Iran)
| | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS, Tehran University of Medical Sciences, Tehran, Iran)
| | - Raid Abdel-Jalil
- Department of Chemistry, College of Science, Sultan Qaboos University, Muscat, Sultanate of Oman
| |
Collapse
|
11
|
Çapan İ. Methimazole Analogs as Urease Inhibitors: Synthesis,
In Silico
and
In Vitro
Evaluation. ChemistrySelect 2022. [DOI: 10.1002/slct.202104076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- İrfan Çapan
- Technical Sciences Vocational College Department of Material and Material Processing Technologies Gazi University 06560 Ankara Turkey
- Faculty of Pharmacy Department of Pharmaceutical Chemistry Gazi University 06560 Ankara Turkey
| |
Collapse
|
12
|
Saeedian Moghadam E, Al-Sadi AM, Talebi M, Amanlou M, Amini M, Abdel-Jalil R. 2-Aryl Benzimidazole Derivatives Act as Potent Urease Inhibitors; Synthesis, Bioactivity and Molecular Docking Study. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.2014534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Abdullah Mohammed Al-Sadi
- Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Meysam Talebi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (T IP S), Tehran University of Medical Sciences, Tehran, Iran
| | - Massoud Amanlou
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (T IP S), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (T IP S), Tehran University of Medical Sciences, Tehran, Iran
| | - Raid Abdel-Jalil
- Department of Chemistry, College of Science, Sultan Qaboos University, Muscat, Sultanate of Oman
| |
Collapse
|
13
|
Song WQ, Liu ML, Li SY, Xiao ZP. Recent Efforts in the Discovery of Urease Inhibitor Identifications. Curr Top Med Chem 2021; 22:95-107. [PMID: 34844543 DOI: 10.2174/1568026621666211129095441] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 11/22/2022]
Abstract
Urease is an attractive drug target for designing anti-infective agents against pathogens such as Helicobacter pylori, Proteus mirabilis, and Ureaplasma urealyticum. In the past century, hundreds of medicinal chemists focused their efforts on explorations of urease inhibitors. Despite the FDA's approval of acetohydroxamic acid as a urease inhibitor for the treatment of struvite nephrolithiasis and the widespread use of N-(n-butyl)thiophosphoric triamide as a soil urease inhibitor as nitrogen fertilizer synergists in agriculture, urease inhibitors with high potency and safety are urgently needed. Exploration of novel urease inhibitors has therefore become a hot research topic recently. Herein, inhibitors identified worldwide from 2016 to 2021 have been reviewed. They structurally belong to more than 20 classes of compounds such as urea/thioure analogues, hydroxamic acids, sulfonamides, metal complexes, and triazoles. Some inhibitors showed excellent potency with IC50 values lower than 10 nM, having 10000-fold higher potency than the positive control thiourea.
Collapse
Affiliation(s)
- Wan-Qin Song
- Hunan Provincial Key Laboratory of Research, Resource Mining and High-valued Utilization on Edible & Medicinal Plant, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, National Demonstration Center for Experimental Chemistry Education, Jishou University, Jishou 416000. China
| | - Mei-Ling Liu
- Hunan Provincial Key Laboratory of Research, Resource Mining and High-valued Utilization on Edible & Medicinal Plant, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, National Demonstration Center for Experimental Chemistry Education, Jishou University, Jishou 416000. China
| | - Su-Ya Li
- Hunan Provincial Key Laboratory of Research, Resource Mining and High-valued Utilization on Edible & Medicinal Plant, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, National Demonstration Center for Experimental Chemistry Education, Jishou University, Jishou 416000. China
| | - Zhu-Ping Xiao
- Hunan Provincial Key Laboratory of Research, Resource Mining and High-valued Utilization on Edible & Medicinal Plant, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, National Demonstration Center for Experimental Chemistry Education, Jishou University, Jishou 416000. China
| |
Collapse
|
14
|
Saeedian Moghadam E, Al-Sadi AM, Talebi M, Amanlou M, Amini M, Abdel-Jalil R. Design, synthesis, and bioactivity investigation of novel benzimidazole derivatives as potent urease inhibitors. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.2001661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Abdullah Mohammed Al-Sadi
- Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Meysam Talebi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Massoud Amanlou
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Raid Abdel-Jalil
- Department of Chemistry, College of Science, Sultan Qaboos University, Muscat, Sultanate of Oman
| |
Collapse
|