1
|
Beringue A, Queffelec J, Le Lann C, Sulmon C. Sublethal pesticide exposure in non-target terrestrial ecosystems: From known effects on individuals to potential consequences on trophic interactions and network functioning. ENVIRONMENTAL RESEARCH 2024; 260:119620. [PMID: 39032619 DOI: 10.1016/j.envres.2024.119620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Over the last decades, the intensification of agriculture has resulted in an increasing use of pesticides, which has led to widespread contamination of non-target ecosystems in agricultural landscapes. Plants and arthropods inhabiting these systems are therefore chronically exposed to, at least, low levels of pesticides through direct pesticide drift, but also through the contamination of their nutrient sources (e.g. soil water or host/prey tissues). Pesticides (herbicides, acaricides/insecticides and fungicides) are chemical substances used to control pests, such as weeds, phytophagous arthropods and pathogenic microorganisms. These molecules are designed to disturb specific physiological mechanisms and induce mortality in targeted organisms. However, under sublethal exposure, pesticides also affect biological processes including metabolism, development, reproduction or inter-specific interactions even in organisms that do not possess the molecular target of the pesticide. Despite the broad current knowledge on sublethal effects of pesticides on organisms, their adverse effects on trophic interactions are less investigated, especially within terrestrial trophic networks. In this review, we provide an overview of the effects, both target and non-target, of sublethal exposures to pesticides on traits involved in trophic interactions between plants, phytophagous insects and their natural enemies. We also discuss how these effects may impact ecosystem functioning by analyzing studies investigating the responses of Plant-Phytophage-Natural enemy trophic networks to pesticides. Finally, we highlight the current challenges and research prospects in the understanding of the effects of pesticides on trophic interactions and networks in non-target terrestrial ecosystems.
Collapse
Affiliation(s)
- Axel Beringue
- Univ Rennes, CNRS, ECOBIO [(Ecosystèmes, Biodiversité, évolution)], UMR, 6553, Rennes, France
| | | | - Cécile Le Lann
- Univ Rennes, CNRS, ECOBIO [(Ecosystèmes, Biodiversité, évolution)], UMR, 6553, Rennes, France
| | - Cécile Sulmon
- Univ Rennes, CNRS, ECOBIO [(Ecosystèmes, Biodiversité, évolution)], UMR, 6553, Rennes, France.
| |
Collapse
|
2
|
Agrawal AA, Hastings AP, Duplais C. Potent Nitrogen-containing Milkweed Toxins are Differentially Regulated by Soil Nitrogen and Herbivore-induced Defense. J Chem Ecol 2024:10.1007/s10886-024-01546-2. [PMID: 39467962 DOI: 10.1007/s10886-024-01546-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 10/30/2024]
Abstract
Theories have been widely proposed and tested for impacts of soil nitrogen (N) on phytochemical defenses. Among the hundreds of distinct cardenolide toxins produced by milkweeds (Asclepias spp.), few contain N, yet these appear to be the most toxic against specialist herbivores. Because N- and non-N-cardenolides coexist in milkweed leaves and likely have distinct biosynthesis, they present an opportunity to address hypotheses about drivers of toxin expression. We tested effects of soil N and herbivore-damage on cardenolide profiles of two milkweed species differing in life-history strategies (Asclepias syriaca and A. curassavica), and the toxicity of their leaves. In particular leaf extracts were tested against the target enzymes (Na+/K+-ATPase extracted from neural tissue) from both monarch butterflies (Danaus plexippus) as well as less cardenolide-resistant queen butterflies, D. gilippus. Increasing soil N enhanced biomass of Asclepias syriaca but had weak effects on cardenolides, including causing a significant reduction in the N-cardenolide labriformin; feeding by monarch caterpillars strongly induced N-cardenolides (labriformin), its precursors, and total cardenolides. Conversely, soil N had little impact on A. curassavica biomass, but was the primary driver of increasing N-cardenolides (voruscharin, uscharin and their precursors); caterpillar induction was weak. Butterfly enzyme assays revealed damage-induced cardenolides substantially increased toxicity of both milkweeds to both butterflies, swamping out effects of soil N on cardenolide concentration and composition. Although these two milkweed species differentially responded to soil N with allocation to growth and specific cardenolides, leaf toxicity to butterfly Na+/K+-ATPases was primarily driven by herbivore-induced defense. Thus, both biotic and abiotic factors shape the composition of phytochemical defense expression, and their relative importance may be dictated by plant life-history differences.
Collapse
Affiliation(s)
- Anurag A Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA.
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA.
| | - Amy P Hastings
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Christophe Duplais
- Department of Entomology, Cornell AgriTech, Cornell University, Geneva, NY, 14456, USA
| |
Collapse
|
3
|
Vogels JJ, Van de Waal DB, WallisDeVries MF, Van den Burg AB, Nijssen M, Bobbink R, Berg MP, Olde Venterink H, Siepel H. Towards a mechanistic understanding of the impacts of nitrogen deposition on producer-consumer interactions. Biol Rev Camb Philos Soc 2023; 98:1712-1731. [PMID: 37265074 DOI: 10.1111/brv.12972] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 06/03/2023]
Abstract
Nitrogen (N) deposition has increased substantially since the second half of the 20th century due to human activities. This increase of reactive N into the biosphere has major implications for ecosystem functioning, including primary production, soil and water chemistry and producer community structure and diversity. Increased N deposition is also linked to the decline of insects observed over recent decades. However, we currently lack a mechanistic understanding of the effects of high N deposition on individual fitness, species richness and community structure of both invertebrate and vertebrate consumers. Here, we review the effects of N deposition on producer-consumer interactions, focusing on five existing ecological frameworks: C:N:P ecological stoichiometry, trace element ecological stoichiometry, nutritional geometry, essential micronutrients and allelochemicals. We link reported N deposition-mediated changes in producer quality to life-history strategies and traits of consumers, to gain a mechanistic understanding of the direction of response in consumers. We conclude that high N deposition influences producer quality via eutrophication and acidification pathways. This makes oligotrophic poorly buffered ecosystems most vulnerable to significant changes in producer quality. Changes in producer quality between the reviewed frameworks are often interlinked, complicating predictions of the effects of high N deposition on producer quality. The degree and direction of fitness responses of consumers to changes in producer quality varies among species but can be explained by differences in life-history traits and strategies, particularly those affecting species nutrient intake regulation, mobility, relative growth rate, host-plant specialisation, ontogeny and physiology. To increase our understanding of the effects of N deposition on these complex mechanisms, the inclusion of life-history traits of consumer species in future study designs is pivotal. Based on the reviewed literature, we formulate five hypotheses on the mechanisms underlying the effects of high N deposition on consumers, by linking effects of nutritional ecological frameworks to life-history strategies. Importantly, we expect that N-deposition-mediated changes in producer quality will result in a net decrease in consumer community as well as functional diversity. Moreover, we anticipate an increased risk of outbreak events of a small subset of generalist species, with concomitant declines in a multitude of specialist species. Overall, linking ecological frameworks with consumer life-history strategies provides a mechanistic understanding of the impacts of high N deposition on producer-consumer interactions, which can inform management towards more effective mitigation strategies.
Collapse
Affiliation(s)
- Joost J Vogels
- Bargerveen Foundation, Toernooiveld 1, 6525 ED, Nijmegen, The Netherlands
- Department of Animal Ecology and Physiology, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Dedmer B Van de Waal
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Sciencepark 904, 1098 XH, Amsterdam, The Netherlands
| | - Michiel F WallisDeVries
- De Vlinderstichting / Dutch Butterfly Conservation, P.O. Box 6700 AM, Wageningen, The Netherlands
| | | | - Marijn Nijssen
- Bargerveen Foundation, Toernooiveld 1, 6525 ED, Nijmegen, The Netherlands
- Department of Animal Ecology and Physiology, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Roland Bobbink
- B-WARE Research Centre, Radboud University Nijmegen, Toernooiveld 1, 6525 ED, Nijmegen, The Netherlands
| | - Matty P Berg
- A-LIFE, Section Ecology & Evolution, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
- GELIFES, Community and Conservation Ecology Group, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Harry Olde Venterink
- Department of Biology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Henk Siepel
- Department of Animal Ecology and Physiology, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
4
|
Jeong SJ, Nam BE, Jeong HJ, Jang JY, Joo Y, Kim JG. Age-dependent resistance of a perennial herb, Aristolochia contorta against specialist and generalist leaf-chewing herbivores. FRONTIERS IN PLANT SCIENCE 2023; 14:1145363. [PMID: 37324666 PMCID: PMC10265686 DOI: 10.3389/fpls.2023.1145363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/04/2023] [Indexed: 06/17/2023]
Abstract
Plants need to balance investments in growth and defense throughout their life to increase their fitness. To optimize fitness, levels of defense against herbivores in perennial plants may vary according to plant age and season. However, secondary plant metabolites often have a detrimental effect on generalist herbivores, while many specialists have developed resistance to them. Therefore, varying levels of defensive secondary metabolites depending on plant age and season may have different effects on the performance of specialist and generalist herbivores colonizing the same host plants. In this study, we analyzed concentrations of defensive secondary metabolites (aristolochic acids) and the nutritional value (C/N ratios) of 1st-, 2nd- and 3rd-year Aristolochia contorta in July (the middle of growing season) and September (the end of growing season). We further assessed their effects on the performances of the specialist herbivore Sericinus montela (Lepidoptera: Papilionidae) and the generalist herbivore Spodoptera exigua (Lepidoptera: Noctuidae). Leaves of 1st-year A. contorta contained significantly higher concentrations of aristolochic acids than those of older plants, with concentrations tending to decrease over the first-year season. Therefore, when first year leaves were fed in July, all larvae of S. exigua died and S. montela showed the lowest growth rate compared to older leaves fed in July. However, the nutritional quality of A. contorta leaves was lower in September than July irrespective of plant age, which was reflected in lower larval performance of both herbivores in September. These results suggest that A. contorta invests in the chemical defenses of leaves especially at a young age, while the low nutritional value of leaves seems to limit the performance of leaf-chewing herbivores at the end of the season, regardless of plant age.
Collapse
Affiliation(s)
- Se Jong Jeong
- Department of Biology Education, Seoul National University, Seoul, Republic of Korea
| | - Bo Eun Nam
- Department of Biology Education, Seoul National University, Seoul, Republic of Korea
- Research Institute of Basic Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyeon Jin Jeong
- Department of Biology Education, Seoul National University, Seoul, Republic of Korea
- The Korea National Arboretum, Pocheon, Republic of Korea
| | - Jae Yeon Jang
- Department of Biology Education, Seoul National University, Seoul, Republic of Korea
| | - Youngsung Joo
- Research Institute of Basic Sciences, Seoul National University, Seoul, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jae Geun Kim
- Department of Biology Education, Seoul National University, Seoul, Republic of Korea
- Center for Education Research, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Blubaugh CK. An omnivore vigour hypothesis? Nutrient availability strengthens herbivore suppression by omnivores across 48 field sites. J Anim Ecol 2023; 92:751-759. [PMID: 36695631 DOI: 10.1111/1365-2656.13890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023]
Abstract
Nutrients regulate herbivore growth from the 'bottom-up' via improved plant vigour and food quality. Nitrogen also affects 'top-down' control of herbivores by moderating attraction of predators and the rates at which they consume herbivorous prey. Tri-trophic consequences of nitrogen availability are more challenging to predict among omnivorous natural enemies who feed on both plants and herbivores, limiting our ability to predict net outcomes of nutrient availability in food webs. In a two-year field survey of insects on zucchini host plants at 48 sites, I predicted that both herbivores and foliar-feeding omnivores would increase with nutrient availability, while predators would not. My results revealed positive relationships between omnivores and foliar nitrogen concentrations, while predators had neutral responses to foliar N. Surprisingly, herbivores declined with increasing foliar N across the field sites. Greenhouse experiments re-enforced these patterns, as herbivore growth inversely correlated with soil N concentrations in communities that included foliar-feeding omnivores. Conversely, herbivore growth was uncorrelated with soil N on plants with predators, nor on predator-free plants. These results suggest that omnivores mount strong and consistent responses to nitrogen in plant tissues in a variety of ecological contexts. In environments where omnivorous arthropods can thrive, their recruitment to nitrogen-rich plants may increase predation and thereby counterbalance and stabilize 'bottom-up' increases in herbivore performance supported by enhanced foliar nutrition.
Collapse
Affiliation(s)
- C K Blubaugh
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
6
|
Wootton KL, Curtsdotter A, Roslin T, Bommarco R, Jonsson T. Towards a modular theory of trophic interactions. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kate L. Wootton
- Department of Ecology Swedish University of Agricultural Sciences Uppsala Sweden
- Biofrontiers Institute University of Colorado Boulder CO USA
| | - Alva Curtsdotter
- Insect Ecology Lab, Zoology The University of New England Armidale NSW Australia
| | - Tomas Roslin
- Department of Ecology Swedish University of Agricultural Sciences Uppsala Sweden
| | - Riccardo Bommarco
- Department of Ecology Swedish University of Agricultural Sciences Uppsala Sweden
| | - Tomas Jonsson
- Department of Ecology Swedish University of Agricultural Sciences Uppsala Sweden
- Ecological Modelling Group University of Skövde Skövde Sweden
| |
Collapse
|
7
|
Becker C, Han P, de Campos MR, Béarez P, Thomine E, Le Bot J, Adamowicz S, Brun R, Fernandez X, Desneux N, Michel T, Lavoir AV. Feeding guild determines strength of top-down forces in multitrophic system experiencing bottom-up constraints. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148544. [PMID: 34182448 DOI: 10.1016/j.scitotenv.2021.148544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Nitrogen (N) and water are crucial in crop production but increasingly scarce environmental resources. Reducing their inputs can affect the whole plant-arthropod community including biocontrol agents. In a multitrophic system, we studied the interaction of the bottom-up effects of moderately reduced N concentration and/or water supply as well as the top-down effects of pests of different feeding guilds on plant nutritional quality (N and carbon concentration), direct defense (alkaloids and phenolics), and indirect defense (plant volatile organic compounds); on herbivore performance and host quality (N and carbon) to parasitoids and the latter's performance. Studied organisms were tomato plants, the sap feeders Macrosiphum euphorbiae and Bemisia tabaci, the leaf chewers Tuta absoluta and Spodoptera littoralis, and the parasitic wasps Aphelinus abdominalis and Necremnus tutae. Resource limitation affected plant quality, triggering bottom-up effects on herbivore and parasitoid performance, except for T. absoluta and N. tutae. Feeding guild had a major influence: bottom-up effects were stronger on sap feeders; N effects were stronger on sap feeders while water effects were stronger with leaf chewers (S. littoralis). Top-down effects of leaf chewer herbivory partly attenuated bottom-up effects and partly suppressed plant defenses. Bottom-up effects weakened when cascading up trophic levels. In summary, the interaction between plants, pests, and beneficial insects was modulated by abiotic factors, affecting insect performance. Simultaneous abiotic and biotic impact shaped plant biochemistry depending on the feeding guild: the biotic top-down effect of leaf chewer herbivory attenuated the bottom-up effects of plant nutrition and hence dominated the plant biochemical profile whereas in sap feeder infested leaves, it corresponded to the abiotic impact. This study highlights the plant's finely tuned regulatory system facilitating response prioritization. It offers perspectives on how smart manipulation of plant nutrient solutions might save resources while maintaining efficient biocontrol in crop production.
Collapse
Affiliation(s)
- Christine Becker
- Université Côte d'Azur, INRAE, CNRS, UMR ISA, 06000 Nice, France.
| | - Peng Han
- Université Côte d'Azur, INRAE, CNRS, UMR ISA, 06000 Nice, France
| | | | - Philippe Béarez
- Université Côte d'Azur, INRAE, CNRS, UMR ISA, 06000 Nice, France
| | - Eva Thomine
- Université Côte d'Azur, INRAE, CNRS, UMR ISA, 06000 Nice, France
| | | | | | - Richard Brun
- Université Côte d'Azur, INRAE, CNRS, UMR ISA, 06000 Nice, France
| | - Xavier Fernandez
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR, 7272 Nice, France
| | - Nicolas Desneux
- Université Côte d'Azur, INRAE, CNRS, UMR ISA, 06000 Nice, France
| | - Thomas Michel
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR, 7272 Nice, France
| | | |
Collapse
|
8
|
Fadlelmawla M, Abdelbagi A, Ishag AE, Hammad A, Hur JH. Effects of Nitrogenous Fertilization and some Insecticides on the Natural Enemies of Transgenic Bt Cotton Pests. ENTOMOBRASILIS 2021; 14:e948. [DOI: 10.12741/ebrasilis.v14.e948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Field assessment of integrated management of BT cotton pests was carried out in two consecutive seasons; 2016/2017 and 2017/2018 in the experimental research farm of the Kassala University, Sudan. Four insecticides (imidacloprid, abamectin, profenofos, and lufenuron) from different chemical groups and with a different mode of action and three levels (43.81 kgha-1, 87.62 kgha-1, and 131.43 kgha-1) of soil-applied nitrogen were tested in the IPM package. Insecticides were applied at the recommended doses. A total of 7 weekly counts of prevailing natural enemies [Chrysoperla carnea (Stephens) and Aenasius bambawalei Hayat] were carried out for 4 weeks before spraying and 3 weeks post spraying starting the 3rd week from spraying. Results indicated that nitrogen level exerted no significant effects on the populations of prevailing natural enemies; C. carnea and A. bambawalei. Based on average post spray counts and percentage reduction over the control, all insecticide treatments significantly reduced the population of the natural enemies. Imidacloprid and profenofos exerted the highest reduction of C. carnea population followed by abamectin and lufenuron (56.03, 48.25, 07.78 and 06.61% respectively) in the first season, while profenofos, imidacloprid, lufenuron, and abamectin induced the highest reductions (55.94, 45.05, 17.57 and 17.33% respectively) in the second season. On the other hand, reductions in A. bambawalei population (abundant in season 1 only) followed the order; imidacloprid, lufenuron, abmectin, and profenofos (03.95, 02.63, 202.63, and 01.32%, respectively). Interactions between nitrogen fertilization and insecticide were not significant as measured by the population of prevailing natural enemies.
Collapse
|
9
|
Martinez DA, Loening UE, Graham MC, Gathorne-Hardy A. When the Medicine Feeds the Problem; Do Nitrogen Fertilisers and Pesticides Enhance the Nutritional Quality of Crops for Their Pests and Pathogens? FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.701310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The challenge of maximising agricultural productivity encourages growers to apply high volumes of nitrogen (N) fertilisers and pesticides in order to promote and protect yields. Despite these inputs, pests and pathogens (P&Ps) continue to cause economic losses and challenge food security at local, national, and global scales. P&Ps are a particular problem in industrial agricultural environments, where large-scale monocultures facilitate rapid growth of crop-adapted P&P populations. P&P population growth is strongly dependent upon acquisition of N-resources (e.g., amino acids) from crop tissues, and concentrations of these compounds depend on the metabolic state of the crop which, in turn, is influenced by its growth stage, by environmental conditions, and by agrochemical inputs. In this study we demonstrate that routine applications of pesticides and/or N-fertilisers may inadvertently reinforce the problem of P&P damage in agriculture by enhancing the nutritional quality of crops for these organisms. N-fertilisation has diverse influences on crops' susceptibility to P&P damage; N-fertilisers enhance the nutritional quality and “attractiveness” of crops for P&Ps, and they can also alter crops' expression of the defensive traits (both morphological and chemical) that serve to protect them against these organisms. Exposure of crops to pesticides (including commonly used insecticide, fungicide, and herbicide products) can result in significant metabolic disruption and, consequently, in accumulation of nutritionally valuable amino acids within crop tissues. Importantly, these metabolic changes may not cause visible signs of stress or toxicity in the crop, and may represent an “invisible” mechanism underlying persistent P&P pressure in the field. Given the intensity of their use worldwide, their far-reaching and destructive consequences for wildlife and overall ecosystem health, and the continued prevalence of P&P-associated crop damage in agriculture, we recommend that the impacts of these cornerstone agricultural inputs on the nutritional relationship between crops and their P&Ps are closely examined in order to inform appropriate management for a more secure and sustainable food system.
Collapse
|
10
|
DeLaMater DS, Couture JJ, Puzey JR, Dalgleish HJ. Range-wide variations in common milkweed traits and their effect on monarch larvae. AMERICAN JOURNAL OF BOTANY 2021; 108:388-401. [PMID: 33792047 DOI: 10.1002/ajb2.1630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/08/2020] [Indexed: 06/12/2023]
Abstract
PREMISE Leaf economic spectrum (LES) theory has historically been employed to inform vegetation models of ecosystem processes, but largely neglects intraspecific variation and biotic interactions. We attempt to integrate across environment-plant trait-herbivore interactions within a species at a range-wide scale. METHODS We measured traits in 53 populations spanning the range of common milkweed (Asclepias syriaca) and used a common garden to determine the role of environment in driving patterns of intraspecific variation. We used a feeding trial to determine the role of plant traits in monarch (Danaus plexippus) larval development. RESULTS Trait-trait relationships largely followed interspecific patterns in LES theory and persisted in a common garden when individual traits change. Common milkweed showed intraspecific variation and biogeographic clines in traits. Clines did not persist in a common garden. Larvae ate more and grew larger when fed plants with more nitrogen. A longitudinal environmental gradient in precipitation corresponded to a resource gradient in plant nitrogen, which produces a gradient in larval performance. CONCLUSIONS Biogeographic patterns in common milkweed traits can sometimes be predicted from LES, are largely driven by environmental conditions, and have consequences for monarch larval performance. Changes to nutrient dynamics of landscapes with common milkweed could potentially influence monarch population dynamics. We show how biogeographic trends in intraspecific variation can influence key ecological interactions, especially in common species with large distributions.
Collapse
Affiliation(s)
- David S DeLaMater
- Department of Biology, William & Mary, 540 Landrum Drive, Williamsburg, VA, 23185, USA
| | - John J Couture
- Departments of Entomology and Forestry and Natural Resources, Purdue University, 170 S. University Street, West Lafayette, IN, 47907, USA
| | - Joshua R Puzey
- Department of Biology, William & Mary, 540 Landrum Drive, Williamsburg, VA, 23185, USA
| | - Harmony J Dalgleish
- Department of Biology, William & Mary, 540 Landrum Drive, Williamsburg, VA, 23185, USA
| |
Collapse
|
11
|
Pekas A, Wäckers FL. Bottom-up Effects on Tri-trophic Interactions: Plant Fertilization Enhances the Fitness of a Primary Parasitoid Mediated by Its Herbivore Host. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:2619-2626. [PMID: 32986817 DOI: 10.1093/jee/toaa204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Plants play a pivotal role in interactions involving herbivores and their natural enemies. Variation in plant primary and secondary metabolites not only affects herbivores but, directly and indirectly, also their natural enemies. Here, we used a commercial NPK fertilizer to test the impact of three fertilizer, namely 50, 100, and 200 ppm nitrogen, and one control (i.e., water) treatments, on the weight of the nymphs of the whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Subsequently, the whitefly parasitoid Eretmocerus mundus Mercet (Hymenoptera: Aphelinidae) was reared on the different groups of whitefly nymphs and upon parasitoid emergence, the number of oocytes was determined as a measure of reproductive capacity. Trials were done on tomato and tobacco plants. The level of nitrogen concentration in tobacco leaves was directly correlated with the fertilizer applications, thus confirming the effect of our fertilizer treatments. Both in tomato and tobacco plants, healthy as well as parasitized whitefly nymphs, were heaviest in the 200 ppm nitrogen treatment. The highest number of oocytes per female parasitoid was recorded in the 200 ppm nitrogen treatment in tomato (31% more oocytes as compared with the control) and in the 100 and 200 ppm nitrogen treatments in tobacco (200% more oocytes). We suggest that the increase in oocytes was the result of the enhanced size (food quantity) and/or nutritional quality of the whitefly host. The practical implications of these results for the mass rearing of whitefly parasitoids and for biological pest control are discussed.
Collapse
Affiliation(s)
| | - Felix L Wäckers
- Biobest Group N.V., R&D Department, Ilse Velden, Westerlo, Belgium
| |
Collapse
|
12
|
Song Y, Liu J, Chen F. Azotobacter chroococcum inoculation can improve plant growth and resistance of maize to armyworm, Mythimna separata even under reduced nitrogen fertilizer application. PEST MANAGEMENT SCIENCE 2020; 76:4131-4140. [PMID: 32706174 DOI: 10.1002/ps.5969] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/21/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Nitrogen (N) is essential to crop yield improvement and it can change crops' ability to defend against herbivores. To maximize economic yield, a higher amount of N-fertilizer is often applied than the minimum required. Azotobacter is a good alternative to reduce N fertilizer application. In this study, we studied the yield and secondary defensive chemicals of maize, as well as the response of the key maize insect pest, Mythimna separata, as fed on maize plants inoculated with Azotobacter chroococcum and cultivated at different N fertilizer rates (i.e. the control rate of nitrogen fertilizer (CR), 80%CR and 60%CR) from 2018 to 2019. RESULTS A. chroococcum inoculation just positively increased yield production of maize at 80%CR. Moreover, reduced N-fertilizer application and A. chroococcum inoculation had opposite impacts on the foliar contents of jasmonic acid (JA), isoleucine conjugate of JA (JA-Ile) and DIMBOA in maize, and they both negatively decreased the pupation rate and fecundity, and positively increased the eclosion rate and approximate digestibility (AD) of M. separata (P < 0.05). Furthermore, reduced N-fertilizer application negatively prolonged larval life-span, and decreased pupal weight, relative growth rate (RGR), efficiency of conversion of ingested food (ECI) and efficiency of conversion of digested food (ECD) of M. separata even A. chroococcum inoculation had positive effects on these indexes of M. separata (P < 0.05). CONCLUSION These results help in understanding of the effects of low-level N-fertilizer and A. chroococcum inoculation on maize production and maize resistance to insects. This will be conducive to the integrated control of agricultural pests. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yingying Song
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jiawen Liu
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Fajun Chen
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
13
|
Le Gall M, Word ML, Thompson N, Beye A, Cease AJ. Nitrogen fertilizer decreases survival and reproduction of female locusts by increasing plant protein to carbohydrate ratio. J Anim Ecol 2020; 89:2214-2221. [PMID: 32743808 DOI: 10.1111/1365-2656.13288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/19/2020] [Indexed: 12/01/2022]
Abstract
Nitrogen limitation theory predicts that terrestrial plants should benefit from nitrogen inputs and that herbivores should benefit from subsequent higher plant protein contents. While this pattern has generally been supported, some herbivorous insects have shown preference and higher performance on low protein (p), high carbohydrate (c) diets as juveniles. However, little is known about the effects on reproduction in adults. Using nitrogen fertilizer, we demonstrate that high plant p:c has negative effects on Senegalese locust (Orthoptera: Oedaeleus senegalensis) reproduction and survival in an agroecological setting. For this, we measured p:c in millet plants Pennisetum glaucum that received two levels of fertilizer (high and moderate) and a control, then we caged locusts on these plants for 2 weeks. In the laboratory, we gave locusts the choice between untreated millet leaves and leaves that received one of the two fertilization treatment. We found that fertilization increased p:c ratio in a concentration-dependent fashion. We counted the number of locusts alive over the course of 2 weeks and showed that fewer females survived on fertilized plants than on control plants. Females that ate plants from the high fertilization treatment laid lighter eggs. Finally, we showed that female locusts prefer unfertilized plants to plants with a high p:c. We hypothesize that this pattern will apply broadly to species that have extensive carbohydrate needs, such as long-distance migrators. Because many ecological studies focus primarily on nitrogen or protein, and fail to consider carbohydrates, this study has important implications for how ecologists consider nutrient limitation of primary consumers in ecosystems globally.
Collapse
Affiliation(s)
- Marion Le Gall
- School of Sustainability, Arizona State University, Tempe, AZ, USA
| | - Mira L Word
- Earth Wonder Consulting, Columbia Falls, MT, USA
| | - Natalia Thompson
- School of Liberal Arts and Sciences, Arizona State University, Tempe, AZ, USA
| | - Alioune Beye
- School of Liberal Arts and Sciences, Arizona State University, Tempe, AZ, USA
| | - Arianne J Cease
- School of Sustainability, Arizona State University, Tempe, AZ, USA.,Direction de la Protection des Végétaux, Nganda, Senegal.,School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
14
|
Struckman S, Couture JJ, LaMar MD, Dalgleish HJ. The demographic effects of functional traits: an integral projection model approach reveals population-level consequences of reproduction-defence trade-offs. Ecol Lett 2019; 22:1396-1406. [PMID: 31209991 DOI: 10.1111/ele.13325] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/14/2019] [Accepted: 05/11/2019] [Indexed: 11/29/2022]
Abstract
Quantitatively linking individual variation in functional traits to demography is a necessary step to advance our understanding of trait-based ecological processes. We constructed a population model for Asclepias syriaca to identify how functional traits affect vital rates and population growth and whether trade-offs in chemical defence and demography alter population growth. Plants with higher foliar cardenolides had lower fibre, cellulose and lignin levels, as well as decreased sexual and clonal reproduction. Average cardenolide concentrations had the strongest effect on population growth. In both the sexual and clonal pathway, the trade-off between reproduction and defence affected population growth. We found that both increasing the mean of the distribution of individual plant values for cardenolides and herbivory decreased population growth. However, increasing the variance in both defence and herbivory increased population growth. Functional traits can impact population growth and quantifying individual-level variation in traits should be included in assessments of population-level processes.
Collapse
Affiliation(s)
- Soren Struckman
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - John J Couture
- Department of Entomology and Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, 47907, USA
| | - M Drew LaMar
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Harmony J Dalgleish
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| |
Collapse
|
15
|
Food decisions of an omnivorous thrips are independent from the indirect effects of jasmonate-inducible plant defences on prey quality. Sci Rep 2019; 9:1727. [PMID: 30741999 PMCID: PMC6370905 DOI: 10.1038/s41598-018-38463-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/28/2018] [Indexed: 11/25/2022] Open
Abstract
Plant defensive substances can affect the quality of herbivores as prey for predators either directly or indirectly. Directly when the prey has become toxic since it ingested toxic plant material and indirectly when these defences have affected the size and/or nutritional value (both quality parameters) of prey or their abundance. To disentangle direct and indirect effects of JA-defences on prey quality for predators, we used larvae of the omnivorous thrips Frankliniella occidentalis because these are not directly affected by the jasmonate-(JA)-regulated defences of tomato. We offered these thrips larvae the eggs of spider mites (Tetranychus urticae or T. evansi) that had been feeding from either normal tomato plants, JA-impaired plants, or plants treated with JA to artificially boost defences and assessed their performance. Thrips development and survival was reduced on the diet of T. evansi eggs relative to the diet of T. urticae eggs yet these effects were independent from the absence/presence of JA-defences. This indicates that the detrimental effects of tomato JA-defences on herbivores not necessarily also affects their quality as prey.
Collapse
|
16
|
Wilson JK, Ruiz L, Davidowitz G. Dietary Protein and Carbohydrates Affect Immune Function and Performance in a Specialist Herbivore Insect (Manduca sexta). Physiol Biochem Zool 2019; 92:58-70. [DOI: 10.1086/701196] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Jiang S, Dai Y, Lu Y, Fan S, Liu Y, Bodlah MA, Parajulee MN, Chen F. Molecular Evidence for the Fitness of Cotton Aphid, Aphis gossypii in Response to Elevated CO 2 From the Perspective of Feeding Behavior Analysis. Front Physiol 2018; 9:1444. [PMID: 30483140 PMCID: PMC6240613 DOI: 10.3389/fphys.2018.01444] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/24/2018] [Indexed: 11/30/2022] Open
Abstract
Rising atmospheric carbon dioxide (CO2) concentration is likely to influence insect-plant interactions. Aphid, as a typical phloem-feeding herbivorous insect, has shown consistently more positive responses in fitness to elevated CO2 concentrations than those seen in leaf-chewing insects. But, little is known about the mechanism of this performance. In this study, the foliar soluble constituents of cotton and the life history of the cotton aphid Aphis gossypii and its mean relative growth rate (MRGR) and feeding behavior were measured, as well as the relative transcript levels of target genes related appetite, salivary proteins, molting hormone (MH), and juvenile hormone, to investigate the fitness of A. gossypii in response to elevated CO2 (800 ppm vs. 400 ppm). The results indicated that elevated CO2 significantly stimulated the increase in concentrations of soluble proteins in the leaf and sucrose in seedlings. Significant increases in adult longevity, lifespan, fecundity, and MRGR of A. gossypii were found under elevated CO2 in contrast to ambient CO2. Furthermore, the feeding behavior of A. gossypii was significantly affected by elevated CO2, including significant shortening of the time of stylet penetration to phloem position and significant decrease in the mean frequency of xylem phase. It is presumed that the fitness of A. gossypii can be enhanced, resulting from the increases in nutrient sources and potential increase in the duration of phloem ingestion under elevated CO2 in contrast to ambient CO2. In addition, the qPCR results also demonstrated that the genes related to appetite and salivary proteins were significantly upregulated, whereas, the genes related to MH were significantly downregulated under elevated CO2 in contrast to ambient CO2, this is in accordance with the performance of A. gossypii in response to elevated CO2. In conclusion, rise in atmospheric CO2 concentration can enhance the fitness of A. gossypii by increasing their ingestion of higher quantity and higher quality of host plant tissues and by simultaneously upregulating the transcript expression of the genes related to appetite and salivary proteins, and then this may increase the control risk of A. gossypii under conditions of climate change in the future.
Collapse
Affiliation(s)
- Shoulin Jiang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Personnel Department, Qingdao Agricultural University, Qingdao, China
| | - Yang Dai
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yongqing Lu
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Shuqin Fan
- Qidong Agricultural Commission, Qidong, China
| | - Yanmin Liu
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Adnan Bodlah
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Megha N. Parajulee
- Texas A&M University AgriLife Research and Extension Center, Lubbock, TX, United States
| | - Fajun Chen
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
18
|
Hosseini A, Hosseini M, Michaud JP, Modarres Awal M, Ghadamyari M. Nitrogen Fertilization Increases the Nutritional Quality of Aphis gossypii (Hemiptera: Aphididae) as Prey for Hippodamia variegata (Coleoptera: Coccinellidae) and Alters Predator Foraging Behavior. JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:2059-2068. [PMID: 30011019 DOI: 10.1093/jee/toy205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Indexed: 06/08/2023]
Abstract
Nitrogen (N) fertilization is a common agricultural practice, which, by increasing the quality of plants, also enhances their nutritional suitability for insect herbivores, creating the possibility of a cascade of N across trophic levels, from plant to herbivore to predator. We manipulated the quality of cucumber plants by fertilizing them with three different N rates (110, 160, and 210 ppm), which represented low, medium, and high N levels, respectively. Colonies of Aphis gossypii Glover (Hemiptera: Aphididae) were then reared on these plants and used as prey for adult Hippodamia variegata (Goeze) (Coleoptera: Coccinellidae) in experiments that characterized the predator's foraging behavior and functional response to different aphid densities. The nutritional content of plants and aphids was also measured. As N fertilization increased, so did the nutrient content (total energy) of aphids and this resulted in declining rates of aphid consumption by beetles at higher aphid densities. Females in the 110 N treatment, and males in all treatments, responded to aphids with a type II functional response (decelerating consumption at higher densities), but females in the 160 and 210 ppm N treatments exhibited a type III response (consuming a declining proportion of available aphids at high densities). Beetles fed aphids from the 110 N treatment consumed more prey in both assays than did those fed aphids from the 210 N treatment. Beetle searching time, handling time, and duration of digestive pauses all increased at high levels of N fertilization, especially for females. The results indicate that heavy N fertilization can increase prey nutritional quality to the point where it alters predator foraging and feeding behavior, resulting in slower rates of prey consumption and longer prey handling times.
Collapse
Affiliation(s)
- Afsane Hosseini
- Department of Plant Protection, College of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mojtaba Hosseini
- Department of Plant Protection, College of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - J P Michaud
- Department of Entomology, Kansas State University, Agricultural Research Center-Hays, Hays, KS
| | - Mehdi Modarres Awal
- Department of Plant Protection, College of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Ghadamyari
- Department of Plant Protection, Faculty of Agriculture Science, University of Guilan, Rasht, Iran
| |
Collapse
|
19
|
Dong YC, Han P, Niu CY, Zappalà L, Amiens-Desneux E, Bearez P, Lavoir AV, Biondi A, Desneux N. Nitrogen and water inputs to tomato plant do not trigger bottom-up effects on a leafminer parasitoid through host and non-host exposures. PEST MANAGEMENT SCIENCE 2018; 74:516-522. [PMID: 28967203 DOI: 10.1002/ps.4750] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 08/03/2017] [Accepted: 09/26/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Bottom-up and top-down forces are major components of biological control against pests in an agro-ecosystem. Understanding the multi-trophic interactions between plants and secondary consumers would help optimize pest control strategies. We manipulated nitrogen and/or water inputs to tomato plants (Solanum lycopersicum) to test whether these manipulations could trigger bottom-up effects on the parasitoid Necremnus tutae via host (Tuta absoluta) and/or non-host (Bemisia tabaci) exposures, and compared the control efficacy of N. tutae on T. absoluta in the presence and absence of B. tabaci. RESULTS The results showed no cascading effects of plant nitrogen and/or water inputs on N. tutae via either host or non-host exposure. The bottom-up force was mitigated by chewing or sap-feeding insect consumers at the second energy level. By contrast, the top-down force on T. absoluta from parasitoids was enhanced by an additionally provided non-host, which could produce alternative food sources extending N. tutae longevity and enhancing the fitness of its offspring. CONCLUSION Our results provided evidence for the combination of bottom-up and top-down approaches in tomato integrated pest management programs. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yong-Cheng Dong
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- INRA (French National Institute for Agricultural Research), Université Côte d'Azur, CNRS, UMR 1355-7254, Institut Sophia Agrobiotech, Sophia Antipolis, France
| | - Peng Han
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- INRA (French National Institute for Agricultural Research), Université Côte d'Azur, CNRS, UMR 1355-7254, Institut Sophia Agrobiotech, Sophia Antipolis, France
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Chang-Ying Niu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lucia Zappalà
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
| | - Edwige Amiens-Desneux
- INRA (French National Institute for Agricultural Research), Université Côte d'Azur, CNRS, UMR 1355-7254, Institut Sophia Agrobiotech, Sophia Antipolis, France
| | - Philippe Bearez
- INRA (French National Institute for Agricultural Research), Université Côte d'Azur, CNRS, UMR 1355-7254, Institut Sophia Agrobiotech, Sophia Antipolis, France
| | - Anne-Violette Lavoir
- INRA (French National Institute for Agricultural Research), Université Côte d'Azur, CNRS, UMR 1355-7254, Institut Sophia Agrobiotech, Sophia Antipolis, France
| | - Antonio Biondi
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
| | - Nicolas Desneux
- INRA (French National Institute for Agricultural Research), Université Côte d'Azur, CNRS, UMR 1355-7254, Institut Sophia Agrobiotech, Sophia Antipolis, France
| |
Collapse
|
20
|
Jiang S, Lu Y, Dai Y, Qian L, Muhammad AB, Li T, Wan G, Parajulee MN, Chen F. Impacts of elevated CO 2 on exogenous Bacillus thuringiensis toxins and transgene expression in transgenic rice under different levels of nitrogen. Sci Rep 2017; 7:14716. [PMID: 29116162 PMCID: PMC5676734 DOI: 10.1038/s41598-017-15321-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 10/25/2017] [Indexed: 02/08/2023] Open
Abstract
Recent studies have highlighted great challenges of transgene silencing for transgenic plants facing climate change. In order to understand the impacts of elevated CO2 on exogenous Bacillus thuringiensis (Bt) toxins and transgene expression in transgenic rice under different levels of N-fertilizer supply, we investigated the biomass, exogenous Bt toxins, Bt-transgene expression and methylation status in Bt rice exposed to two levels of CO2 concentrations and nitrogen (N) supply (1/8, 1/4, 1/2, 1 and 2 N). It is elucidated that the increased levels of global atmospheric CO2 concentration will trigger up-regulation of Bt toxin expression in transgenic rice, especially with appropriate increase of N fertilizer supply, while, to some extent, the exogenous Bt-transgene expression is reduced at sub-N levels (1/4 and 1/2N), even though the total protein of plant tissues is reduced and the plant growth is restricted. The unpredictable and stochastic occurrence of transgene silencing and epigenetic alternations remains unresolved for most transgenic plants. It is expected that N fertilization supply may promote the expression of transgenic Bt toxin in transgenic Bt rice, particularly under elevated CO2.
Collapse
Affiliation(s)
- Shoulin Jiang
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yongqing Lu
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yang Dai
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lei Qian
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, China
| | | | - Teng Li
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guijun Wan
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Megha N Parajulee
- Texas A&M University AgriLife Research and Extension Center, Lubbock, TX, USA
| | - Fajun Chen
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
21
|
Rubert-Nason KF, Couture JJ, Gryzmala EA, Townsend PA, Lindroth RL. Vernal freeze damage and genetic variation alter tree growth, chemistry, and insect interactions. PLANT, CELL & ENVIRONMENT 2017; 40:2743-2753. [PMID: 28755489 DOI: 10.1111/pce.13042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/16/2017] [Accepted: 07/20/2017] [Indexed: 06/07/2023]
Abstract
Anticipated consequences of climate change in temperate regions include early spring warmup punctuated by intermittent hard freezes. Warm weather accelerates leaf flush in perennial woody species, potentially exposing vulnerable young tissues to damaging frosts. We employed a 2 × 6 randomized factorial design to examine how the interplay of vernal (springtime) freeze damage and genetic variation in a hardwood species (Populus tremuloides) influences tree growth, phytochemistry, and interactions with an insect herbivore (Chaitophorus stevensis). Acute effects of freezing included defoliation and mortality. Surviving trees exhibited reduced growth and altered biomass distribution. Reflushed leaves on these trees had lower mass per area, lower lignin concentrations, and higher nitrogen concentrations, altered chemical defence profiles, and supported faster aphid population growth. Many effects varied among plant genotypes and were related with herbivore performance. This study suggests that a single damaging vernal freeze event can alter tree-insect interactions through effects on plant growth and chemistry. Differential responses of various genotypes to freeze damage suggest that more frequent vernal freeze events could also influence natural selection, favouring trees with greater freeze hardiness, and more resistance or tolerance to herbivores following damage.
Collapse
Affiliation(s)
| | - John J Couture
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Elizabeth A Gryzmala
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Philip A Townsend
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Richard L Lindroth
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
22
|
Bogaert F, Chesnais Q, Catterou M, Rambaud C, Doury G, Ameline A. How the use of nitrogen fertiliser may switch plant suitability for aphids: the case of Miscanthus, a promising biomass crop, and the aphid pest Rhopalosiphum maidis. PEST MANAGEMENT SCIENCE 2017; 73:1648-1654. [PMID: 27990748 DOI: 10.1002/ps.4505] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 12/07/2016] [Accepted: 12/12/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND The use of nitrogen fertiliser in agrosystems can alter plant nitrogen and consequently improve nutrient availability for herbivores, potentially leading to better performance for herbivores and higher pest pressure in the field. We compared, in laboratory conditions, the effects of nitrogen fertilisation on a promising biomass crop, Miscanthus × giganteus, and its parents M. sinensis and M. sacchariflorus. The plant-mediated effects were compared on the second trophic level, the green corn leaf aphid Rhopalosiphum maidis. RESULTS Results showed that the biomass and leaf C:N ratio of M. sinensis plants treated with nitrogen fertiliser were significantly greater than those of non-treated plants. As regards M. × giganteus and M. sacchariflorus, the only reported change was a significantly smaller leaf C:N ratio for treated M. sacchariflorus compared with non-treated plants. Surprisingly, nitrogen fertilisation had opposite effects on plant-herbivore interactions. Following nitrogen treatments, M. sinensis was less suitable in terms of intrinsic rate of increase for R. maidis, the feeding behaviour of which was negatively affected, while M. sacchariflorus and M. × giganteus exhibited greater suitability in terms of aphid weight. CONCLUSION Nitrogen fertilisation had contrasting effects on the three species of Miscanthus plants. These effects cascaded up to the second trophic level, R. maidis aphid pests, either through a modification of their weight or demographic parameters. The implications of these results were discussed in the context of agricultural sustainability and intensive production practices. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Florent Bogaert
- Ecologie et Dynamique des Systèmes Anthropisés FRE 3498, CNRS-UPJV, Amiens, France
| | - Quentin Chesnais
- Ecologie et Dynamique des Systèmes Anthropisés FRE 3498, CNRS-UPJV, Amiens, France
| | - Manuella Catterou
- Ecologie et Dynamique des Systèmes Anthropisés FRE 3498, CNRS-UPJV, Amiens, France
| | - Caroline Rambaud
- UMR INRA 1281, Stress Abiotiques et Différenciation des Végétaux Cultivés, Université Lille Nord de France, Lille, Villeneuve d'Ascq, France
| | - Géraldine Doury
- Ecologie et Dynamique des Systèmes Anthropisés FRE 3498, CNRS-UPJV, Amiens, France
| | - Arnaud Ameline
- Ecologie et Dynamique des Systèmes Anthropisés FRE 3498, CNRS-UPJV, Amiens, France
| |
Collapse
|
23
|
Chesnais Q, Couty A, Catterou M, Ameline A. Cascading effects of N input on tritrophic (plant-aphid-parasitoid) interactions. Ecol Evol 2016; 6:7882-7891. [PMID: 30128136 PMCID: PMC6093168 DOI: 10.1002/ece3.2404] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/25/2016] [Accepted: 08/04/2016] [Indexed: 11/09/2022] Open
Abstract
Because N is frequently the most limiting mineral macronutrient for plants in terrestrial ecosystems, modulating N input may have ecological consequences through trophic levels. Thus, in agro-ecosystems, the success of natural enemies may depend not only from their herbivorous hosts but also from the host plant whose qualities may be modulated by N input. We manipulated foliar N concentrations by providing to Camelina sativa plants three different nitrogen rates (control, optimal, and excessive). We examined how the altered host-plant nutritional quality influenced the performances of two aphid species, the generalist green peach aphid, Myzus persicae, and the specialist cabbage aphid, Brevicoryne brassicae, and their common parasitoid Diaeretiella rapae. Both N inputs led to increased N concentrations in the plants but induced contrasted concentrations within aphid bodies depending on the species. Compared to the control, plant biomass increased when receiving the optimal N treatment but decreased under the excessive treatment. Performances of M. persicae improved under the optimal treatment compared to the control and excessive treatments whereas B. brassicae parameters declined following the excessive N treatment. In no-choice trials, emergence rates of D. rapae developing in M. persicae were higher on both optimum and excessive N treatments, whereas they remained stable whatever the treatment when developing in B. brassicae. Size of emerging D. rapae females was positively affected by the treatment only when it developed in M. persicae on the excessive N treatment. This work showed that contrary to an optimal N treatment, when N was delivered in excess, plant suitability was reduced and consequently affected negatively aphid parameters. Surprisingly, these negative effects resulted in no or positive consequences on parasitoid parameters, suggesting a buffered effect at the third trophic level. Host N content, host suitability, and dietary specialization appear to be major factors explaining the functioning of our studied system.
Collapse
Affiliation(s)
- Quentin Chesnais
- FRE CNRS 3498 EDYSAN (Écologie et Dynamique des Systèmes Anthropisés)Université de Picardie Jules VerneAmiens CedexFrance
| | - Aude Couty
- FRE CNRS 3498 EDYSAN (Écologie et Dynamique des Systèmes Anthropisés)Université de Picardie Jules VerneAmiens CedexFrance
| | - Manuella Catterou
- FRE CNRS 3498 EDYSAN (Écologie et Dynamique des Systèmes Anthropisés)Université de Picardie Jules VerneAmiens CedexFrance
| | - Arnaud Ameline
- FRE CNRS 3498 EDYSAN (Écologie et Dynamique des Systèmes Anthropisés)Université de Picardie Jules VerneAmiens CedexFrance
| |
Collapse
|
24
|
Mace KC, Mills NJ. Nitrogen-Mediated Interaction: A Walnut-Aphid-Parasitoid System. ENVIRONMENTAL ENTOMOLOGY 2016; 45:891-896. [PMID: 27271943 DOI: 10.1093/ee/nvw052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/11/2016] [Indexed: 06/06/2023]
Abstract
The effects of plant quality on natural enemies are often overlooked in planning and executing biological control programs for insect pests in agriculture. Plant quality, however, could help to explain some of the observed variation in effectiveness of biological control, as it can indirectly influence natural enemy populations. In this study, we used the walnut aphid Chromaphis juglandicola (Kaltenbach) to address the effect of increased nitrogen availability to the host plant on parasitism by the specialist parasitoid Trioxys pallidus (Haliday). In laboratory experiments with walnut seedlings, a higher chlorophyll content index of the foliage in response to added nitrogen was correlated with a decrease in the number of mummies produced by female parasitoids over a 24-h period but an increase in the proportion and the size of female offspring. In field sampling of walnut orchards, there was no relationship between the percent parasitism of walnut aphids by T. pallidus and the chlorophyll content index of the trees. Nitrogen fertilizer and plant quality can clearly affect biological control and should be given greater consideration in integrated pest management.
Collapse
Affiliation(s)
- Kevi C Mace
- Department of Environmental Science, Policy and Management, University of California, Berkeley, Mulford Hall, Berkeley, 94720-3114 (; ),
| | - Nicholas J Mills
- Department of Environmental Science, Policy and Management, University of California, Berkeley, Mulford Hall, Berkeley, 94720-3114 (; )
| |
Collapse
|
25
|
Prado SG, Jandricic SE, Frank SD. Ecological Interactions Affecting the Efficacy of Aphidius colemani in Greenhouse Crops. INSECTS 2015; 6:538-75. [PMID: 26463203 PMCID: PMC4553498 DOI: 10.3390/insects6020538] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/29/2015] [Accepted: 06/01/2015] [Indexed: 12/11/2022]
Abstract
Aphidius colemani Viereck (Hymenoptera: Braconidae) is a solitary endoparasitoid used for biological control of many economically important pest aphids. Given its widespread use, a vast array of literature on this natural enemy exists. Though often highly effective for aphid suppression, the literature reveals that A. colemani efficacy within greenhouse production systems can be reduced by many stressors, both biotic (plants, aphid hosts, other natural enemies) and abiotic (climate and lighting). For example, effects from 3rd and 4th trophic levels (fungal-based control products, hyperparasitoids) can suddenly decimate A. colemani populations. But, the most chronic negative effects (reduced parasitoid foraging efficiency, fitness) seem to be from stressors at the first trophic level. Negative effects from the 1st trophic level are difficult to mediate since growers are usually constrained to particular plant varieties due to market demands. Major research gaps identified by our review include determining how plants, aphid hosts, and A. colemani interact to affect the net aphid population, and how production conditions such as temperature, humidity and lighting affect both the population growth rate of A. colemani and its target pest. Decades of research have made A. colemani an essential part of biological control programs in greenhouse crops. Future gains in A. colemani efficacy and aphid biological control will require an interdisciplinary, systems approach that considers plant production and climate effects at all trophic levels.
Collapse
Affiliation(s)
- Sara G Prado
- David Clark Labs, Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695, USA.
| | - Sarah E Jandricic
- Ontario Ministry of Agriculture, Food and Rural Affairs, 4890 Victoria Avenue North, Vineland, ON L0R 2E0, Canada.
| | - Steven D Frank
- Gardner Hall, Department of Entomology, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
26
|
Rożen A, Sobczyk Ł, Weiner J. The effect of pre-analytical treatment on the results of stoichiometric measurements in invertebrates. APPLIED ENTOMOLOGY AND ZOOLOGY 2015; 50:393-403. [PMID: 26300558 PMCID: PMC4536268 DOI: 10.1007/s13355-015-0346-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 04/16/2015] [Indexed: 06/04/2023]
Abstract
Growing interest in the application of stoichiometric approaches to community ecology has resulted in an increasing number of studies examining invertebrate body composition. Our experiments demonstrate various sources of possible error related to the use of pre-analytical procedures. We examined the effects of different preservatives (ethanol and formaldehyde) used in pitfall traps, time of preservation (2 weeks or 3 days) and drying method (vacuum drying at 50 °C and freeze-drying) on the determination of body composition in invertebrates representing taxa often used in such studies: earthworms and five species of insects (adults or larvae). The contents of C, N, S, P, Fe, Zn, Cu, Mn, Ca, Mg and K in each animal were measured. The use of solvents (ethanol or formaldehyde) in pitfall traps and for preservation significantly affects the body composition and stoichiometry of earthworms, even during short exposure times. Insects (both adults and larvae) were affected only during a 2-week exposure; 3 days of exposure did not significantly change their chemical composition. Vacuum-oven drying of animals at 50 °C does not affect their body composition relative to freeze-drying.
Collapse
Affiliation(s)
- Anna Rożen
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland
| | - Łukasz Sobczyk
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland
| | - January Weiner
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
27
|
van Velzen E, Etienne RS. The importance of ecological costs for the evolution of plant defense against herbivory. J Theor Biol 2015; 372:89-99. [PMID: 25747775 DOI: 10.1016/j.jtbi.2015.02.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 02/11/2015] [Accepted: 02/24/2015] [Indexed: 11/17/2022]
Abstract
Plant defense against herbivory comes at a cost, which can be either direct (reducing resources available for growth and reproduction) or indirect (through reducing ecological performance, for example intraspecific competitiveness). While direct costs have been well studied in theoretical models, ecological costs have received almost no attention. In this study we compare models with a direct trade-off (reduced growth rate) to models with an ecological trade-off (reduced competitive ability), using a combination of adaptive dynamics and simulations. In addition, we study the dependence of the level of defense that can evolve on the type of defense (directly by reducing consumption, or indirectly by inducing herbivore mortality (toxicity)), and on the type of herbivore against which the plant is defending itself (generalists or specialists). We find three major results: First, for both direct and ecological costs, defense only evolves if the benefit to the plant is direct (through reducing consumption). Second, the type of cost has a major effect on the evolutionary dynamics: direct costs always lead to a single optimal strategy against herbivores, but ecological costs can lead to branching and the coexistence of non-defending and defending plants; however, coexistence is only possible when defending against generalist herbivores. Finally, we find that fast-growing plants invest less than slow-growing plants when defending against generalist herbivores, as predicted by the Resource Availability Hypothesis, but invest more than slow-growing plants when defending against specialists. Our results clearly show that assumptions about ecological interactions are crucial for understanding the evolution of defense against herbivores.
Collapse
Affiliation(s)
- Ellen van Velzen
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, PO Box 11103, 9700 CC Groningen, The Netherlands.
| | - Rampal S Etienne
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, PO Box 11103, 9700 CC Groningen, The Netherlands.
| |
Collapse
|
28
|
Ford Denison R, McGuire AM. What should agriculture copy from natural ecosystems? GLOBAL FOOD SECURITY-AGRICULTURE POLICY ECONOMICS AND ENVIRONMENT 2015. [DOI: 10.1016/j.gfs.2014.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Guo H, Sun Y, Li Y, Liu X, Wang P, Zhu-Salzman K, Ge F. Elevated CO2 alters the feeding behaviour of the pea aphid by modifying the physical and chemical resistance of Medicago truncatula. PLANT, CELL & ENVIRONMENT 2014; 37:2158-68. [PMID: 24697655 DOI: 10.1111/pce.12306] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 02/11/2014] [Accepted: 02/12/2014] [Indexed: 05/08/2023]
Abstract
Elevated CO(2) compromises the resistance of leguminous plants against chewing insects, but little is known about whether elevated CO(2) modifies the resistance against phloem-sucking insects or whether it has contrasting effects on the resistance of legumes that differ in biological nitrogen fixation. We tested the hypothesis that the physical and chemical resistance against aphids would be increased in Jemalong (a wild type of Medicago truncatula) but would be decreased in dnf1 (a mutant without biological nitrogen fixation) by elevated CO(2). The non-glandular and glandular trichome density of Jemalong plants increased under elevated CO(2), resulting in prolonged aphid probing. In contrast, dnf1 plants tended to decrease foliar trichome density under elevated CO(2), resulting in less surface and epidermal resistance to aphids. Elevated CO(2) enhanced the ineffective salicylic acid-dependent defence pathway but decreased the effective jasmonic acid/ethylene-dependent defence pathway in aphid-infested Jemalong plants. Therefore, aphid probing time decreased and the duration of phloem sap ingestion increased on Jemalong under elevated CO(2), which, in turn, increased aphid growth rate. Overall, our results suggest that elevated CO(2) decreases the chemical resistance of wild-type M. truncatula against aphids, and that the host's biological nitrogen fixation ability is central to this effect.
Collapse
Affiliation(s)
- Huijuan Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Graduate University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Aqueel MA, Collins CM, Raza ABM, Ahmad S, Tariq M, Leather SR. Effect of plant nutrition on aphid size, prey consumption, and life history characteristics of green lacewing. INSECT SCIENCE 2014; 21:74-82. [PMID: 23956127 DOI: 10.1111/1744-7917.12019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/08/2013] [Indexed: 05/22/2023]
Abstract
Plant quality can directly and indirectly affect the third trophic level. The predation by all the instars of green lacewing, Chrysoperla carnea (S.) (Neuroptera: Chrysopidae) on the cereal aphids, Rhopalosiphum padi (L.), and Sitobion avenae (F.) at varying nitrogen fertilizer levels was calculated under laboratory conditions. Wheat plants were grown on four nitrogen fertilizer levels and aphids were fed on these plants and subsequently offered as food to the C. carnea. Aphid densities of 10, 30, and 90 were offered to first, second, and third instar larvae of green lacewing. Increased nitrogen application improved nitrogen contents of the plants and also the body weight of cereal aphids feeding on them. Aphid consumption by green lacewings was reduced with the increase in nitrogen content in the host plants of aphids. Predation of both aphid species by first, second, and third instars larvae of C. carnea was highest on aphids reared on plants with the lowest rate of fertilization, suggesting a compensatory consumption to overcome reduced biomass (lower aphid size). Total biomass devoured by C. carnea on all nitrogen fertilizer treatments was not statistically different. Additionally, the heavier host prey influenced by the plant nutrition had an effect on the life history characteristics of green lacewings. The larval duration, pupal weight, pupal duration, fecundity, and male and female longevity were significantly affected by the level of nitrogen fertilization to the aphid's host plants, except for pupal duration when fed on S. avenae. This study showed that quantity of prey supplied to the larvae affects the prey consumption and thereafter the life history characteristics of green lacewings.
Collapse
Affiliation(s)
- Muhammad A Aqueel
- Division of Ecology & Evolution, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, United Kingdom; Department of Entomology, University College of Agriculture, University of Sargodha
| | | | | | | | | | | |
Collapse
|
31
|
Guo H, Sun Y, Li Y, Tong B, Harris M, Zhu-Salzman K, Ge F. Pea aphid promotes amino acid metabolism both in Medicago truncatula and bacteriocytes to favor aphid population growth under elevated CO2. GLOBAL CHANGE BIOLOGY 2013; 19:3210-23. [PMID: 23686968 DOI: 10.1111/gcb.12260] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 05/09/2013] [Indexed: 05/23/2023]
Abstract
Rising atmospheric CO(2) levels can dilute the nitrogen (N) resource in plant tissue, which is disadvantageous to many herbivorous insects. Aphids appear to be an exception that warrants further study. The effects of elevated CO(2) (750 ppm vs. 390 ppm) were evaluated on N assimilation and transamination by two Medicago truncatula genotypes, a N-fixing-deficient mutant (dnf1) and its wild-type control (Jemalong), with and without pea aphid (Acyrthosiphon pisum) infestation. Elevated CO(2) increased population abundance and feeding efficiency of aphids fed on Jemalong, but reduced those on dnf1. Without aphid infestation, elevated CO(2) increased photosynthetic rate, chlorophyll content, nodule number, biomass, and pod number for Jemalong, but only increased pod number and chlorophyll content for dnf1. Furthermore, aphid infested Jemalong plants had enhanced activities of N assimilation-related enzymes (glutamine synthetase, Glutamate synthase) and transamination-related enzymes (glutamate oxalate transaminase, glutamine phenylpyruvate transaminase), which presumably increased amino acid concentration in leaves and phloem sap under elevated CO(2). In contrast, aphid infested dnf1 plants had decreased activities of N assimilation-related enzymes and transmination-related enzymes and amino acid concentrations under elevated CO(2). Furthermore, elevated CO(2) up-regulated expression of genes relevant to amino acid metabolism in bacteriocytes of aphids associated with Jemalong, but down-regulated those associated with dnf1. Our results suggest that pea aphids actively elicit host responses that promote amino acid metabolism in both the host plant and in its bacteriocytes to favor the population growth of the aphid under elevated CO(2).
Collapse
Affiliation(s)
- Huijuan Guo
- State Key Laboratory of Integrated Management of Pest and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Graduate School, Chinese Academy of Sciences, Beijing, 100039, China
| | | | | | | | | | | | | |
Collapse
|
32
|
Murray TJ, Ellsworth DS, Tissue DT, Riegler M. Interactive direct and plant-mediated effects of elevated atmospheric [CO2 ] and temperature on a eucalypt-feeding insect herbivore. GLOBAL CHANGE BIOLOGY 2013; 19:1407-16. [PMID: 23504696 DOI: 10.1111/gcb.12142] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 12/26/2012] [Indexed: 05/13/2023]
Abstract
Understanding the direct and indirect effects of elevated [CO2 ] and temperature on insect herbivores and how these factors interact are essential to predict ecosystem-level responses to climate change scenarios. In three concurrent glasshouse experiments, we measured both the individual and interactive effects of elevated [CO2 ] and temperature on foliar quality. We also assessed the interactions between their direct and plant-mediated effects on the development of an insect herbivore of eucalypts. Eucalyptus tereticornis saplings were grown at ambient or elevated [CO2 ] (400 and 650 μmol mol(-1) respectively) and ambient or elevated ( + 4 °C) temperature for 10 months. Doratifera quadriguttata (Lepidoptera: Limacodidae) larvae were feeding directly on these trees, on their excised leaves in a separate glasshouse, or on excised field-grown leaves within the temperature and [CO2 ] controlled glasshouse. To allow insect gender to be determined and to ensure that any sex-specific developmental differences could be distinguished from treatment effects, insect development time and consumption were measured from egg hatch to pupation. No direct [CO2 ] effects on insects were observed. Elevated temperature accelerated larval development, but did not affect leaf consumption. Elevated [CO2 ] and temperature independently reduced foliar quality, slowing larval development and increasing consumption. Simultaneously increasing both [CO2 ] and temperature reduced these shifts in foliar quality, and negative effects on larval performance were subsequently ameliorated. Negative nutritional effects of elevated [CO2 ] and temperature were also independently outweighed by the direct positive effect of elevated temperature on larvae. Rising [CO2 ] and temperature are thus predicted to have interactive effects on foliar quality that affect eucalypt-feeding insects. However, the ecological consequences of these interactions will depend on the magnitude of concurrent temperature rise and its direct effects on insect physiology and feeding behaviour.
Collapse
Affiliation(s)
- T J Murray
- Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, Australia
| | | | | | | |
Collapse
|
33
|
Kolb GS, Palmborg C, Hambäck PA. Ecological stoichiometry and density responses of plant-arthropod communities on cormorant nesting islands. PLoS One 2013; 8:e61772. [PMID: 23626727 PMCID: PMC3634001 DOI: 10.1371/journal.pone.0061772] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 03/13/2013] [Indexed: 12/02/2022] Open
Abstract
Seabirds deposit large amounts of nutrient rich guano on their nesting islands. The increased nutrient availability strongly affects plants and consumers. Consumer response differs among taxonomic groups, but mechanisms causing these differences are poorly understood. Ecological stoichiometry might provide tools to understand these mechanisms. ES suggests that nutrient rich taxa are more likely to be nutrient limited than nutrient poorer taxa and are more favored under nutrient enrichment. Here, we quantified differences in the elemental composition of soil, plants, and consumers between islands with and without nesting cormorant colonies and tested predictions made based on ES by relating the elemental composition and the eventual mismatch between consumer and resource stoichiometry to observed density differences among the island categories. We found that nesting cormorants radically changed the soil nutrient content and thereby indirectly plant nutrient content and resource quality to herbivores. In contrast, consumers showed only small differences in their elemental composition among the island categories. While we cannot evaluate the cause of the apparent homeostasis of invertebrates without additional data, we can conclude that from the perspective of the next trophic level, there is no difference in diet quality (in terms of N and P content) between island categories. Thus, bottom-up effects seemed mainly be mediated via changes in resource quantity not quality. Despite a large potential trophic mismatch we were unable to observe any relation between the invertebrate stoichiometry and their density response to nesting cormorant colonies. We conclude that in our system stoichiometry is not a useful predictor of arthropod responses to variation in resource nutrient content. Furthermore, we found no strong evidence that resource quality was a prime determinant of invertebrate densities. Other factors like resource quantity, habitat structure and species interactions might be more important or masked stoichiometric effects.
Collapse
Affiliation(s)
- Gundula S Kolb
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden.
| | | | | |
Collapse
|
34
|
Diehl E, Sereda E, Wolters V, Birkhofer K. Effects of predator specialization, host plant and climate on biological control of aphids by natural enemies: a meta-analysis. J Appl Ecol 2013. [DOI: 10.1111/1365-2664.12032] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Eva Diehl
- Department of Animal Ecology; Justus Liebig University; Heinrich-Buff-Ring 26-32; 35392; Giessen; Germany
| | - Elvira Sereda
- Department of Animal Ecology; Justus Liebig University; Heinrich-Buff-Ring 26-32; 35392; Giessen; Germany
| | - Volkmar Wolters
- Department of Animal Ecology; Justus Liebig University; Heinrich-Buff-Ring 26-32; 35392; Giessen; Germany
| | - Klaus Birkhofer
- Department of Biology; Lund University; Biodiversity and Conservation Science; Sölvegatan 37; 22362; Lund; Sweden
| |
Collapse
|
35
|
Guo H, Sun Y, Ren Q, Zhu-Salzman K, Kang L, Wang C, Li C, Ge F. Elevated CO2 reduces the resistance and tolerance of tomato plants to Helicoverpa armigera by suppressing the JA signaling pathway. PLoS One 2012; 7:e41426. [PMID: 22829948 PMCID: PMC3400665 DOI: 10.1371/journal.pone.0041426] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 06/21/2012] [Indexed: 11/18/2022] Open
Abstract
Both resistance and tolerance, which are two strategies that plants use to limit biotic stress, are affected by the abiotic environment including atmospheric CO(2) levels. We tested the hypothesis that elevated CO(2) would reduce resistance (i.e., the ability to prevent damage) but enhance tolerance (i.e., the ability to regrow and compensate for damage after the damage has occurred) of tomato plants to the cotton bollworm, Helicoverpa armigera. The results showed that elevated CO(2) reduced resistance by decreasing the jasmonic acid (JA) level and activities of lipoxygenase, proteinase inhibitors, and polyphenol oxidase in wild-type (WT) plants infested with H. armigera. Consequently, the activities of total protease, trypsin-like enzymes, and weak and active alkaline trypsin-like enzymes increased in the midgut of H. armigera when fed on WT plants grown under elevated CO(2). Unexpectedly, the tolerance of the WT to H. armigera (in terms of photosynthetic rate, activity of sucrose phosphate synthases, flower number, and plant biomass and height) was also reduced by elevated CO(2). Under ambient CO(2), the expression of resistance and tolerance to H. armigera was much greater in wild type than in spr2 (a JA-deficient genotype) plants, but elevated CO(2) reduced these differences of the resistance and tolerance between WT and spr2 plants. The results suggest that the JA signaling pathway contributes to both plant resistance and tolerance to herbivorous insects and that by suppressing the JA signaling pathway, elevated CO(2) will simultaneously reduce the resistance and tolerance of tomato plants.
Collapse
Affiliation(s)
- Huijuan Guo
- State Key Laboratory of Integrated Management of Pest and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
- Graduate School, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yucheng Sun
- State Key Laboratory of Integrated Management of Pest and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Qin Ren
- Jining Normal College, Inner Mongolia Autonomous Region, Jining, People's Republic of China
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Chenzhu Wang
- State Key Laboratory of Integrated Management of Pest and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Feng Ge
- State Key Laboratory of Integrated Management of Pest and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
- * E-mail:
| |
Collapse
|
36
|
Agrawal AA, Petschenka G, Bingham RA, Weber MG, Rasmann S. Toxic cardenolides: chemical ecology and coevolution of specialized plant-herbivore interactions. THE NEW PHYTOLOGIST 2012; 194:28-45. [PMID: 22292897 DOI: 10.1111/j.1469-8137.2011.04049.x] [Citation(s) in RCA: 227] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Cardenolides are remarkable steroidal toxins that have become model systems, critical in the development of theories for chemical ecology and coevolution. Because cardenolides inhibit the ubiquitous and essential animal enzyme Na⁺/K⁺-ATPase, most insects that feed on cardenolide-containing plants are highly specialized. With a huge diversity of chemical forms, these secondary metabolites are sporadically distributed across 12 botanical families, but dominate the Apocynaceae where they are found in > 30 genera. Studies over the past decade have demonstrated patterns in the distribution of cardenolides among plant organs, including all tissue types, and across broad geographic gradients within and across species. Cardenolide production has a genetic basis and is subject to natural selection by herbivores. In addition, there is strong evidence for phenotypic plasticity, with the biotic and abiotic environment predictably impacting cardenolide production. Mounting evidence indicates a high degree of specificity in herbivore-induced cardenolides in Asclepias. While herbivores of cardenolide-containing plants often sequester the toxins, are aposematic, and possess several physiological adaptations (including target site insensitivity), there is strong evidence that these specialists are nonetheless negatively impacted by cardenolides. While reviewing both the mechanisms and evolutionary ecology of cardenolide-mediated interactions, we advance novel hypotheses and suggest directions for future work.
Collapse
Affiliation(s)
- Anurag A Agrawal
- Department of Ecology and Evolutionary Biology, and Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Georg Petschenka
- Biozentrum Grindel, Molekulare Evolutionsbiologie, Martin-Luther-King Platz 3, 20146 Hamburg, Germany
| | - Robin A Bingham
- Department of Natural and Environmental Sciences, Western State College of Colorado, Gunnison, CO 81231, USA
| | - Marjorie G Weber
- Department of Ecology and Evolutionary Biology, and Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Sergio Rasmann
- Department of Ecology and Evolution, Bâtiment Biophore, University of Lausanne, CH - 1015 Lausanne, Switzerland
| |
Collapse
|