Sacramento CM, Casati MZ, Casarin RCV, Sallum EA, Silvério KG. GASTROINTESTINAL CHOLECYSTOKININ SIGNALING PATHWAY DRUGS MODULATE OSTEOGENIC/CEMENTOGENIC DIFFERENTIATION OF HUMAN PERIODONTAL LIGAMENT STEM CELLS.
J Dent 2025:105657. [PMID:
40032153 DOI:
10.1016/j.jdent.2025.105657]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/20/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025] Open
Abstract
OBJECTIVES
Understanding the complexities of periodontal regeneration, particularly the unpredictable osteogenic/cementogenic differentiation of low-potential PDLSCs (LOP-PDLSCs), remains challenging. Identifying new therapeutic targets is crucial for enhancing regeneration. This study investigates the modulation of the Cholecystokinin (CCK) pathway, a key signaling cascade with roles in the gastrointestinal system, as a potential osteogenic/cementogenic pathway in PDLSCs.
METHODS
Gastrointestinal CCK-related drugs, Lorglumide and Sincalide, were tested for their effects on mineralization in PDLSCs. Lorglumide blocked the CCK pathway in high-potential PDLSCs (HOP-PDLSCs), while Sincalide enhanced mineralization in low-potential PDLSCs (LOP-PDLSCs). Cellular viability was tested under different drug concentrations, followed by a mineralization assay (AR-S) using non-toxic doses. RT-qPCR for osteogenic-related genes (IGF1, OCN, RUNX2) and CCK pathway-related genes (CCK, CCKAR, CCKBR, COX2, FOS, JNK3, RGS2) assessed gene modulation. Alkaline phosphatase (ALP) activity, Ca²⁺ quantification, and IP3 receptor phosphorylation were also evaluated.
RESULTS
Lorglumide reduced mineralization, ALP activity, and RUNX2, OCN, and IGF1 transcripts in HOP-PDLSCs (p<0.05). It decreased CCK and CCKAR expression, modulated COX2, FOS, JNK3, and RGS2 genes, reduced IP3 receptor phosphorylation, and lowered calcium levels (p<0.05). Conversely, Sincalide enhanced mineralization in LOP-PDLSCs, increasing ALP activity and OCN and IGF1 expression (p<0.05). It upregulated COX2, FOS, JNK3, and RGS2 genes, phosphorylated IP3 receptors in LOP1, and increased calcium levels in all LOP-PDLSCs (p<0.05).
CONCLUSIONS
Sincalide and Lorglumide modulate PDLSCs' osteogenesis/cementogenesis, revealing the complex interplay of gastrointestinal drugs in periodontal tissue regeneration and offering insights for innovative therapies.
CLINICAL SIGNIFICANCE
This study demonstrates the potential of gastrointestinal drugs targeting the CCK signaling pathway as innovative modulators for periodontal regeneration. By regulating osteogenic/cementogenic differentiation in hPDLSCs, these findings may pave the way for the development of novel biomaterials and therapies, promising improved outcomes in periodontal tissue regeneration for clinical applications.
Collapse