1
|
Kang J, Deng R, Wang K, Wang H, Han Y, Duan Z. Mechanistic Insights into the Therapeutic Efficacy of Qi Ling Gui Fu Prescription in Broiler Ascites Syndrome: A Network Pharmacology and Experimental Study. Vet Sci 2025; 12:78. [PMID: 40005838 PMCID: PMC11860255 DOI: 10.3390/vetsci12020078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/19/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
This study delves into the therapeutic potential of Qi Ling Gui Fu Prescription (QLGFP) in broiler ascites syndrome (AS) by investigating its impact on the phenotypic transformation of vascular smooth muscle. Utilizing network pharmacology, we identified 267 active ingredients and 120 core targets of QLGFP, revealing its multifaceted mechanism of action. Gene enrichment analysis highlighted the pivotal roles of Toll-like receptor, FoxO, and MAPK signaling pathways in QLGFP's therapeutic effects. Experimental validation in a broiler AS model demonstrated that QLGFP regulated the expression of key markers (SM-22α, OPN, and KLF4) associated with the phenotypic transformation of pulmonary artery vascular smooth muscle (PASMC). Clinical improvements were evident, with a significant reduction in ascites cardiac index (AHI). Furthermore, QLGFP suppressed the protein expression of MAPK1 (ERK1), p-MAPK1, MAPK9 (JNK2), p-MAPK9, MA3.PK14 (P38α), and p-MAPK14, along with downstream factors AP1 and ATF4. These findings suggest that QLGFP effectively prevents and treats AS in broilers by modulating the MAPKs-AP1/ATF4 pathway, thereby inhibiting the phenotypic transformation and proliferation of PASMCs. This study contributes a theoretical foundation for understanding the role of QLGFP in the prevention and treatment of AS in broilers.
Collapse
Affiliation(s)
- Jie Kang
- Science and Technology Center, Fenyang College of Shanxi Medical University, Lüliang 032200, China;
| | - Ruiqiang Deng
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (R.D.); (K.W.); (H.W.); (Y.H.)
| | - Keyao Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (R.D.); (K.W.); (H.W.); (Y.H.)
| | - Huimin Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (R.D.); (K.W.); (H.W.); (Y.H.)
| | - Yufeng Han
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (R.D.); (K.W.); (H.W.); (Y.H.)
| | - Zhibian Duan
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (R.D.); (K.W.); (H.W.); (Y.H.)
| |
Collapse
|
2
|
Xu S, Han X, Wang X, Yu Y, Qu C, Liu X, Yang B. The role of oxidative stress in aortic dissection: a potential therapeutic target. Front Cardiovasc Med 2024; 11:1410477. [PMID: 39070552 PMCID: PMC11272543 DOI: 10.3389/fcvm.2024.1410477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
The incidence of aortic dissection (AD) is steadily increasing, driven by the rising prevalence of chronic conditions such as hypertension and the global aging of the population. Oxidative stress emerges as a pivotal pathophysiological mechanism contributing to the progression of AD. Oxidative stress triggers apoptosis in vascular smooth muscle cells, reshapes the extracellular matrix (ECM), and governs ECM degradation and remodeling, subsequently impacting aortic compliance. Furthermore, oxidative stress not only facilitates the infiltration of macrophages and mononuclear lymphocytes but also disrupts the integral structure and functionality of endothelial cells, thereby inducing endothelial cell dysfunction and furthering the degeneration of the middle layer of the aortic wall. Investigating antioxidants holds promise as a therapeutic avenue for addressing AD.
Collapse
Affiliation(s)
- Shengnan Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Xueyu Han
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Xiukun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Yi Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Chuan Qu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Xin Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Bo Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Zhao J, Yoshizumi M. A Comprehensive Retrospective Study on the Mechanisms of Cyclic Mechanical Stretch-Induced Vascular Smooth Muscle Cell Death Underlying Aortic Dissection and Potential Therapeutics for Preventing Acute Aortic Aneurysm and Associated Ruptures. Int J Mol Sci 2024; 25:2544. [PMID: 38473793 DOI: 10.3390/ijms25052544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Acute aortic dissection (AAD) and associated ruptures are the leading causes of death in cardiovascular diseases (CVDs). Hypertension is a prime risk factor for AAD. However, the molecular mechanisms underlying AAD remain poorly understood. We previously reported that cyclic mechanical stretch (CMS) leads to the death of rat aortic smooth muscle cells (RASMCs). This review focuses on the mechanisms of CMS-induced vascular smooth muscle cell (VSMC) death. Moreover, we have also discussed the potential therapeutics for preventing AAD and aneurysm ruptures.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Pharmacology, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara 634-8521, Japan
| | - Masanori Yoshizumi
- Department of Pharmacology, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara 634-8521, Japan
| |
Collapse
|
4
|
Zhang Y, Liu C, Li Y, Xu H. Mechanism of the Mitogen-Activated Protein Kinases/Mammalian Target of Rapamycin Pathway in the Process of Cartilage Endplate Stem Cell Degeneration Induced by Tension Load. Global Spine J 2023; 13:2396-2408. [PMID: 35400210 PMCID: PMC10538332 DOI: 10.1177/21925682221085226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
STUDY DESIGN Basic Research. OBJECTIVE Intervertebral disc degeneration (IVDD) is caused by the cartilage endplate (CEP). Cartilage endplate stem cell (CESC) is involved in the recovery of CEP degeneration. Tension load (TL) contributes a lot to the initiation and progression of IVDD. This study aims to investigate the regulatory mechanism of the Mitogen-activated protein kinases/Mammalian target of rapamycin (MAPK/mTOR) pathway during TL-induced CESC degeneration. METHODS CESCs were isolated from New Zealand big-eared white female rabbits (6 months old). FX-4000T cell stress loading system was applied to establish a TL-induced degeneration model of CESCs. Western blotting was used to detect the level of mTOR pathway-related proteins and autophagy markers LC3-Ⅱ, Beclin-1, and p62 in degenerative CESCs. The expression of MAPK pathway-related proteins JNK and extracellular signal-regulated kinases (ERK) in degenerated CESCs was inhibited by cell transfection to explore whether JNK and ERK play a regulatory role in TL-induced autophagy in CESCs. RESULTS In the CESC degeneration model, the mTOR pathway was activated. After inhibition of mTOR, the autophagy level of CESCs was increased, and the degeneration of CESCs was alleviated. The MAPK pathway was also activated in the CESC degeneration model. Inhibition of JNK expression may alleviate TL-induced CEP degeneration by inhibiting Raptor phosphorylation and activating autophagy. Inhibition of ERK expression may alleviate TL-induced CEP degeneration by inhibiting mTOR phosphorylation and activating autophagy. CONCLUSION Inhibition of JNK and ERK in the MAPK signaling family alleviated TL-induced CESC degeneration by inhibiting the phosphorylation of Raptor and mTOR in the mTOR pathway.
Collapse
Affiliation(s)
- Yu Zhang
- Spine Research Center of Wannan Medical College, Department of Spine Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, P.R. China
| | - Chen Liu
- Spine Research Center of Wannan Medical College, Department of Spine Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, P.R. China
| | - Yu Li
- Spine Research Center of Wannan Medical College, Department of Spine Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, P.R. China
| | - Hongguang Xu
- Spine Research Center of Wannan Medical College, Department of Spine Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, P.R. China
| |
Collapse
|
5
|
Ma H, Du M, Hou T, Guo J, Liu Y, Jia Y, Wang L, An M. HMGB1/RAGE axis accelerates the repair of HUVECs injured by pathological mechanical stretching via promoting bFGF expression. Biochem Biophys Res Commun 2022; 636:75-83. [DOI: 10.1016/j.bbrc.2022.10.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 09/22/2022] [Accepted: 10/18/2022] [Indexed: 11/02/2022]
|
6
|
Xie Y, Zhang J, Zhang M, Jiang L. [Gly14]-Humanin inhibits an angiotensin II-induced vascular smooth muscle cell phenotypic switch via ameliorating intracellular oxidative stress. Hum Exp Toxicol 2022; 41:9603271221136208. [PMID: 36289015 DOI: 10.1177/09603271221136208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Angiotensin II (AngII) is involved in the pathogenesis of hypertensive artery remodeling by inducing a phenotypic switch in vascular smooth muscle cells [Gly14]-Humanin (HNG), a humanin analogue, exerts potent cytoprotective effects both in vitro and in vivo. This study aimed to investigate the effects of HNG on an AngII-induced phenotypic switch in VSMCs and the potential mechanisms underlying these effects. The roles of [Gly14]-Humanin in AngII-stimulated VSMCs proliferation and migration was detected by CCK-8 assay, Cell cycle analysis, wound healing assay, trsnswell assay and western blot. The mechanism by which [Gly14]-Humanin regulates VSMC phenotypic switch was determined by intracellular oxidative stress detection, transcriptomic analysis and qRT-PCR. The results showed that HNG inhibited AngII-induced VSMC proliferation and migration and maintained a stable VSMC contractile phenotype. In addition, HNG reduced the level of AngII-induced oxidative stress in vascular smooth muscle cells. This process could be accomplished by inhibiting nicotinamide adenine dinucleotide phosphate oxidase activity. In conclusion, the results suggested that HNG ameliorated intracellular oxidative stress by inhibiting NAD(P)H oxidase activity, thereby suppressing the AngII-induced VSMC phenotype switch. Thus, HNG is a potential drug to ameliorate artery remodeling in hypertension.
Collapse
Affiliation(s)
- Yi Xie
- Division of Cardiology, Tongren Hospital, 537229Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Zhang
- Division of Cardiology, Tongren Hospital, 537229Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of General Surgery, Tongren Hospital, 537229Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Zhang
- Division of Cardiology, Tongren Hospital, 537229Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Jiang
- Division of Cardiology, Tongren Hospital, 537229Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Jensen LF, Bentzon JF, Albarrán-Juárez J. The Phenotypic Responses of Vascular Smooth Muscle Cells Exposed to Mechanical Cues. Cells 2021; 10:2209. [PMID: 34571858 PMCID: PMC8469800 DOI: 10.3390/cells10092209] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
During the development of atherosclerosis and other vascular diseases, vascular smooth muscle cells (SMCs) located in the intima and media of blood vessels shift from a contractile state towards other phenotypes that differ substantially from differentiated SMCs. In addition, these cells acquire new functions, such as the production of alternative extracellular matrix (ECM) proteins and signal molecules. A similar shift in cell phenotype is observed when SMCs are removed from their native environment and placed in a culture, presumably due to the absence of the physiological signals that maintain and regulate the SMC phenotype in the vasculature. The far majority of studies describing SMC functions have been performed under standard culture conditions in which cells adhere to a rigid and static plastic plate. While these studies have contributed to discovering key molecular pathways regulating SMCs, they have a significant limitation: the ECM microenvironment and the mechanical forces transmitted through the matrix to SMCs are generally not considered. Here, we review and discuss the recent literature on how the mechanical forces and derived biochemical signals have been shown to modulate the vascular SMC phenotype and provide new perspectives about their importance.
Collapse
Affiliation(s)
- Lise Filt Jensen
- Atherosclerosis Research Unit, Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark; (L.F.J.); (J.F.B.)
| | - Jacob Fog Bentzon
- Atherosclerosis Research Unit, Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark; (L.F.J.); (J.F.B.)
- Experimental Pathology of Atherosclerosis Laboratory, Spanish National Center for Cardiovascular Research (CNIC), 28029 Madrid, Spain
- Steno Diabetes Center Aarhus, Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Julian Albarrán-Juárez
- Atherosclerosis Research Unit, Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark; (L.F.J.); (J.F.B.)
| |
Collapse
|
8
|
Wang L, Deng L, Lin N, Shi Y, Chen J, Zhou Y, Chen D, Liu S, Li C. Berberine inhibits proliferation and apoptosis of vascular smooth muscle cells induced by mechanical stretch via the PDI/ERS and MAPK pathways. Life Sci 2020; 259:118253. [PMID: 32795536 DOI: 10.1016/j.lfs.2020.118253] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/03/2020] [Accepted: 08/08/2020] [Indexed: 12/13/2022]
Abstract
AIMS We recently demonstrated that mechanical stretch increases the proliferation and apoptosis of vascular smooth muscle cells (VSMCs) by activating the protein disulfide isomerase (PDI) redox system, thus accelerating atherosclerotic lesion formation in the transplanted vein. At present, there are no efficient intervention measures to prevent this phenomenon. Berberine inhibits pathological vascular remodeling caused by hypertension, but the underlying mechanism is controversial. Herein, we investigate the role of berberine and the underlying mechanism of its effects on mechanical stretch-induced VSMC proliferation and apoptosis. MAIN METHODS Mouse VSMCs cultivated on flexible membranes were pretreated for 1 h with one of the following substances: berberine, PDI inhibitor bacitracin, MAPK inhibitors, or ERS inhibitor 4-PBA. VSMCs were then subjected to mechanical stretch. Immunofluorescence and western blot were used to detect proliferation and apoptosis, as well as to analyze signaling pathways in VSMCs. KEY FINDINGS Our results showed that berberine inhibits the PDI-endoplasmic reticulum stress system, thereby attenuating the simultaneous increase of VSMC proliferation and apoptosis in response to mechanical stretch. Interestingly, MAPK inhibitors PD98059, SP600125, and SB202190 significantly reduced the activation of ERS signaling cascades, and their combination with berberine had additive effects. The ERS inhibitor 4-PBA reduced PDI activation and ERS signaling, but not MAPK phosphorylation. Moreover, caspase-3 and caspase-12 were downregulated by berberine. SIGNIFICANCE These results illustrate a novel mechanism of action of berberine that has practical implications. Our data provide important insights for the prevention and treatment of vascular remodeling and diseases caused by mechanical stretching during hypertension.
Collapse
Affiliation(s)
- Linli Wang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Lie Deng
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Ning Lin
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Yi Shi
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, China
| | - Jingbo Chen
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Yan Zhou
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Dadi Chen
- Experimental Center for Basic Medical Teaching, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Shuying Liu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, China.
| | - Chaohong Li
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, China.
| |
Collapse
|
9
|
Chen J, Zhou Y, Liu S, Li C. Biomechanical signal communication in vascular smooth muscle cells. J Cell Commun Signal 2020; 14:357-376. [PMID: 32780323 DOI: 10.1007/s12079-020-00576-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022] Open
Abstract
Biomechanical stresses are closely associated with cardiovascular development and diseases. In vivo, vascular smooth muscle cells are constantly stimulated by biomechanical factors caused by increased blood pressure leading to the non-specific activation of cell transmembrane proteins. Thus, various intracellular signal molecules are simultaneously activated via signaling cascades, which are closely related to alterations in the differentiation, phenotype, inflammation, migration, pyroptosis, calcification, proliferation, and apoptosis of vascular smooth muscle cells. Meanwhile, mechanical stress-induced miRNAs and epigenetics modification on vascular smooth muscle cells play critical roles as well. Eventually, the overall pathophysiology of the cells is altered, resulting in the development of many major clinical diseases, including hypertension, atherosclerosis, grafted venous atherosclerosis, and aneurysm, among others. In this paper, important advances in mechanical signal communication in vascular smooth muscle cells are reviewed.
Collapse
Affiliation(s)
- Jingbo Chen
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan Zhou
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuying Liu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Chaohong Li
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
10
|
Durairaj Pandian V, Giovannucci DR, Vazquez G, Kumarasamy S. CACNB2 is associated with aberrant RAS-MAPK signaling in hypertensive Dahl Salt-Sensitive rats. Biochem Biophys Res Commun 2019; 513:760-765. [DOI: 10.1016/j.bbrc.2019.03.215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 03/31/2019] [Indexed: 12/25/2022]
|