1
|
Meder B, Duncker D, Helms TM, Leistner DM, Goss F, Perings C, Johnson V, Freund A, Reich C, Ledwoch J, Rahm AK, Milles BR, Perings S, Pöss J, Dieterich C, Fleck E, Breitbart P, Dutzmann J, Diller G, Thiele H, Frey N, Katus HA, Radke P. eCardiology: a structured approach to foster the digital transformation of cardiovascular medicine. DIE KARDIOLOGIE 2023. [PMCID: PMC9936476 DOI: 10.1007/s12181-022-00592-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
2
|
eCardiology: ein strukturierter Ansatz zur Förderung der digitalen Transformation in der Kardiologie. DIE KARDIOLOGIE 2023. [PMCID: PMC9841486 DOI: 10.1007/s12181-022-00584-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
3
|
Sedaghat-Hamedani F, Rebs S, Kayvanpour E, Zhu C, Amr A, Müller M, Haas J, Wu J, Steinmetz LM, Ehlermann P, Streckfuss-Bömeke K, Frey N, Meder B. Genotype Complements the Phenotype: Identification of the Pathogenicity of an LMNA Splice Variant by Nanopore Long-Read Sequencing in a Large DCM Family. Int J Mol Sci 2022; 23:ijms232012230. [PMID: 36293084 PMCID: PMC9602549 DOI: 10.3390/ijms232012230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is a common cause of heart failure (HF) and is of familial origin in 20−40% of cases. Genetic testing by next-generation sequencing (NGS) has yielded a definite diagnosis in many cases; however, some remain elusive. In this study, we used a combination of NGS, human-induced pluripotent-stem-cell-derived cardiomyocytes (iPSC-CMs) and nanopore long-read sequencing to identify the causal variant in a multi-generational pedigree of DCM. A four-generation family with familial DCM was investigated. Next-generation sequencing (NGS) was performed on 22 family members. Skin biopsies from two affected family members were used to generate iPSCs, which were then differentiated into iPSC-CMs. Short-read RNA sequencing was used for the evaluation of the target gene expression, and long-read RNA nanopore sequencing was used to evaluate the relevance of the splice variants. The pedigree suggested a highly penetrant, autosomal dominant mode of inheritance. The phenotype of the family was suggestive of laminopathy, but previous genetic testing using both Sanger and panel sequencing only yielded conflicting evidence for LMNA p.R644C (rs142000963), which was not fully segregated. By re-sequencing four additional affected family members, further non-coding LMNA variants could be detected: rs149339264, rs199686967, rs201379016, and rs794728589. To explore the roles of these variants, iPSC-CMs were generated. RNA sequencing showed the LMNA expression levels to be significantly lower in the iPSC-CMs of the LMNA variant carriers. We demonstrated a dysregulated sarcomeric structure and altered calcium homeostasis in the iPSC-CMs of the LMNA variant carriers. Using targeted nanopore long-read sequencing, we revealed the biological significance of the variant c.356+1G>A, which generates a novel 5′ splice site in exon 1 of the cardiac isomer of LMNA, causing a nonsense mRNA product with almost complete RNA decay and haploinsufficiency. Using novel molecular analysis and nanopore technology, we demonstrated the pathogenesis of the rs794728589 (c.356+1G>A) splice variant in LMNA. This study highlights the importance of precise diagnostics in the clinical management and workup of cardiomyopathies.
Collapse
Affiliation(s)
- Farbod Sedaghat-Hamedani
- Institute for Cardiomyopathies Heidelberg (ICH), University Hospital Heidelberg, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg and Mannheim, 69120 Heidelberg, Germany
- Department of Internal Medicine III, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Sabine Rebs
- Department of Cardiology and Pneumology, Georg-August-University Göttingen, 37073 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
- Department of Pharmacology and Toxicology, University of Würzburg, 97070 Würzburg, Germany
| | - Elham Kayvanpour
- Institute for Cardiomyopathies Heidelberg (ICH), University Hospital Heidelberg, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg and Mannheim, 69120 Heidelberg, Germany
- Department of Internal Medicine III, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Chenchen Zhu
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Ali Amr
- Institute for Cardiomyopathies Heidelberg (ICH), University Hospital Heidelberg, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg and Mannheim, 69120 Heidelberg, Germany
- Department of Internal Medicine III, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Marion Müller
- Institute for Cardiomyopathies Heidelberg (ICH), University Hospital Heidelberg, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg and Mannheim, 69120 Heidelberg, Germany
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany
| | - Jan Haas
- Institute for Cardiomyopathies Heidelberg (ICH), University Hospital Heidelberg, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg and Mannheim, 69120 Heidelberg, Germany
- Department of Internal Medicine III, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Jingyan Wu
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Lars M. Steinmetz
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg and Mannheim, 69120 Heidelberg, Germany
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Philipp Ehlermann
- Institute for Cardiomyopathies Heidelberg (ICH), University Hospital Heidelberg, 69120 Heidelberg, Germany
- Department of Internal Medicine III, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Katrin Streckfuss-Bömeke
- Department of Cardiology and Pneumology, Georg-August-University Göttingen, 37073 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
- Department of Pharmacology and Toxicology, University of Würzburg, 97070 Würzburg, Germany
| | - Norbert Frey
- Institute for Cardiomyopathies Heidelberg (ICH), University Hospital Heidelberg, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg and Mannheim, 69120 Heidelberg, Germany
- Department of Internal Medicine III, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Benjamin Meder
- Institute for Cardiomyopathies Heidelberg (ICH), University Hospital Heidelberg, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg and Mannheim, 69120 Heidelberg, Germany
- Department of Internal Medicine III, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- Correspondence:
| |
Collapse
|
4
|
Sedaghat-Hamedani F, Rebs S, El-Battrawy I, Chasan S, Krause T, Haas J, Zhong R, Liao Z, Xu Q, Zhou X, Akin I, Zitron E, Frey N, Streckfuss-Bömeke K, Kayvanpour E. Identification of SCN5a p.C335R Variant in a Large Family with Dilated Cardiomyopathy and Conduction Disease. Int J Mol Sci 2021; 22:ijms222312990. [PMID: 34884792 PMCID: PMC8657717 DOI: 10.3390/ijms222312990] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/08/2021] [Accepted: 11/26/2021] [Indexed: 12/30/2022] Open
Abstract
Introduction: Familial dilated cardiomyopathy (DCM) is clinically variable and has been associated with mutations in more than 50 genes. Rapid improvements in DNA sequencing have led to the identification of diverse rare variants with unknown significance (VUS), which underlines the importance of functional analyses. In this study, by investigating human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs), we evaluated the pathogenicity of the p.C335R sodium voltage-gated channel alpha subunit 5 (SCN5a) variant in a large family with familial DCM and conduction disease. Methods: A four-generation family with autosomal dominant familial DCM was investigated. Next-generation sequencing (NGS) was performed in all 16 family members. Clinical deep phenotyping, including endomyocardial biopsy, was performed. Skin biopsies from two patients and one healthy family member were used to generate human-induced pluripotent stem cells (iPSCs), which were then differentiated into cardiomyocytes. Patch-clamp analysis with Xenopus oocytes and iPSC-CMs were performed. Results: A SCN5a variant (c.1003T>C; p.C335R) could be detected in all family members with DCM or conduction disease. A novel truncating TTN variant (p.Ser24998LysfsTer28) could also be identified in two family members with DCM. Family members with the SCN5a variant (p.C335R) showed significantly longer PQ and QRS intervals and lower left ventricular ejection fractions (LV-EF). All four patients who received CRT-D were non-responders. Electrophysiological analysis with Xenopus oocytes showed a loss of function in SCN5a p.C335R. Na+ channel currents were also reduced in iPSC-CMs from DCM patients. Furthermore, iPSC-CM with compound heterozygosity (SCN5a p.C335R and TTNtv) showed significant dysregulation of sarcomere structures, which may be contributed to the severity of the disease and earlier onset of DCM. Conclusion: The SCN5a p.C335R variant is causing a loss of function of peak INa in patients with DCM and cardiac conduction disease. The co-existence of genetic variants in channels and structural genes (e.g., SCN5a p.C335R and TTNtv) increases the severity of the DCM phenotype.
Collapse
Affiliation(s)
- Farbod Sedaghat-Hamedani
- Department of Medicine III, Institute for Cardiomyopathies Heidelberg (ICH), University of Heidelberg, 69120 Heidelberg, Germany; (F.S.-H.); (S.C.); (T.K.); (J.H.); (E.Z.); (N.F.)
- DZHK (German Centre for Cardiovascular Research), Heidelberg-Mannheim, 17475 Greifswald, Germany; (I.E.-B.); (X.Z.); (I.A.)
| | - Sabine Rebs
- Clinic for Cardiology and Pneumology, Georg-August-University Göttingen, 37073 Göttingen, Germany; (S.R.); (K.S.-B.)
- DZHK (German Centre for Cardiovascular Research), 37073 Göttingen, Germany
- Institute of Pharmacology and Toxicology, University of Würzburg, 97070 Würzburg, Germany
| | - Ibrahim El-Battrawy
- DZHK (German Centre for Cardiovascular Research), Heidelberg-Mannheim, 17475 Greifswald, Germany; (I.E.-B.); (X.Z.); (I.A.)
- Department of Medicine, University Medical Centre Mannheim (UMM), 68159 Mannheim, Germany; (R.Z.); (Z.L.); (Q.X.)
| | - Safak Chasan
- Department of Medicine III, Institute for Cardiomyopathies Heidelberg (ICH), University of Heidelberg, 69120 Heidelberg, Germany; (F.S.-H.); (S.C.); (T.K.); (J.H.); (E.Z.); (N.F.)
- DZHK (German Centre for Cardiovascular Research), Heidelberg-Mannheim, 17475 Greifswald, Germany; (I.E.-B.); (X.Z.); (I.A.)
| | - Tobias Krause
- Department of Medicine III, Institute for Cardiomyopathies Heidelberg (ICH), University of Heidelberg, 69120 Heidelberg, Germany; (F.S.-H.); (S.C.); (T.K.); (J.H.); (E.Z.); (N.F.)
| | - Jan Haas
- Department of Medicine III, Institute for Cardiomyopathies Heidelberg (ICH), University of Heidelberg, 69120 Heidelberg, Germany; (F.S.-H.); (S.C.); (T.K.); (J.H.); (E.Z.); (N.F.)
- DZHK (German Centre for Cardiovascular Research), Heidelberg-Mannheim, 17475 Greifswald, Germany; (I.E.-B.); (X.Z.); (I.A.)
| | - Rujia Zhong
- Department of Medicine, University Medical Centre Mannheim (UMM), 68159 Mannheim, Germany; (R.Z.); (Z.L.); (Q.X.)
| | - Zhenxing Liao
- Department of Medicine, University Medical Centre Mannheim (UMM), 68159 Mannheim, Germany; (R.Z.); (Z.L.); (Q.X.)
| | - Qiang Xu
- Department of Medicine, University Medical Centre Mannheim (UMM), 68159 Mannheim, Germany; (R.Z.); (Z.L.); (Q.X.)
| | - Xiaobo Zhou
- DZHK (German Centre for Cardiovascular Research), Heidelberg-Mannheim, 17475 Greifswald, Germany; (I.E.-B.); (X.Z.); (I.A.)
- Department of Medicine, University Medical Centre Mannheim (UMM), 68159 Mannheim, Germany; (R.Z.); (Z.L.); (Q.X.)
| | - Ibrahim Akin
- DZHK (German Centre for Cardiovascular Research), Heidelberg-Mannheim, 17475 Greifswald, Germany; (I.E.-B.); (X.Z.); (I.A.)
- Department of Medicine, University Medical Centre Mannheim (UMM), 68159 Mannheim, Germany; (R.Z.); (Z.L.); (Q.X.)
| | - Edgar Zitron
- Department of Medicine III, Institute for Cardiomyopathies Heidelberg (ICH), University of Heidelberg, 69120 Heidelberg, Germany; (F.S.-H.); (S.C.); (T.K.); (J.H.); (E.Z.); (N.F.)
- DZHK (German Centre for Cardiovascular Research), Heidelberg-Mannheim, 17475 Greifswald, Germany; (I.E.-B.); (X.Z.); (I.A.)
| | - Norbert Frey
- Department of Medicine III, Institute for Cardiomyopathies Heidelberg (ICH), University of Heidelberg, 69120 Heidelberg, Germany; (F.S.-H.); (S.C.); (T.K.); (J.H.); (E.Z.); (N.F.)
- DZHK (German Centre for Cardiovascular Research), Heidelberg-Mannheim, 17475 Greifswald, Germany; (I.E.-B.); (X.Z.); (I.A.)
| | - Katrin Streckfuss-Bömeke
- Clinic for Cardiology and Pneumology, Georg-August-University Göttingen, 37073 Göttingen, Germany; (S.R.); (K.S.-B.)
- DZHK (German Centre for Cardiovascular Research), 37073 Göttingen, Germany
- Institute of Pharmacology and Toxicology, University of Würzburg, 97070 Würzburg, Germany
| | - Elham Kayvanpour
- Department of Medicine III, Institute for Cardiomyopathies Heidelberg (ICH), University of Heidelberg, 69120 Heidelberg, Germany; (F.S.-H.); (S.C.); (T.K.); (J.H.); (E.Z.); (N.F.)
- DZHK (German Centre for Cardiovascular Research), Heidelberg-Mannheim, 17475 Greifswald, Germany; (I.E.-B.); (X.Z.); (I.A.)
- Correspondence:
| |
Collapse
|
5
|
Amr A, Hinderer M, Griebel L, Deuber D, Egger C, Sedaghat-Hamedani F, Kayvanpour E, Huhn D, Haas J, Frese K, Schweig M, Marnau N, Krämer A, Durand C, Battke F, Prokosch HU, Backes M, Keller A, Schröder D, Katus HA, Frey N, Meder B. Controlling my genome with my smartphone: first clinical experiences of the PROMISE system. Clin Res Cardiol 2021; 111:638-650. [PMID: 34694434 PMCID: PMC9151530 DOI: 10.1007/s00392-021-01942-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/13/2021] [Indexed: 12/01/2022]
Abstract
Background The development of Precision Medicine strategies requires high-dimensional phenotypic and genomic data, both of which are highly privacy-sensitive data types. Conventional data management systems lack the capabilities to sufficiently handle the expected large quantities of such sensitive data in a secure manner. PROMISE is a genetic data management concept that implements a highly secure platform for data exchange while preserving patient interests, privacy, and autonomy. Methods The concept of PROMISE to democratize genetic data was developed by an interdisciplinary team. It integrates a sophisticated cryptographic concept that allows only the patient to grant selective access to defined parts of his genetic information with single DNA base-pair resolution cryptography. The PROMISE system was developed for research purposes to evaluate the concept in a pilot study with nineteen cardiomyopathy patients undergoing genotyping, questionnaires, and longitudinal follow-up. Results The safety of genetic data was very important to 79%, and patients generally regarded the data as highly sensitive. More than half the patients reported that their attitude towards the handling of genetic data has changed after using the PROMISE app for 4 months (median). The patients reported higher confidence in data security and willingness to share their data with commercial third parties, including pharmaceutical companies (increase from 5 to 32%). Conclusion PROMISE democratizes genomic data by a transparent, secure, and patient-centric approach. This clinical pilot study evaluating a genetic data infrastructure is unique and shows that patient’s acceptance of data sharing can be increased by patient-centric decision-making. Graphic abstract ![]()
Collapse
Affiliation(s)
- Ali Amr
- Institute for Cardiomyopathies, Department of Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), 69120, Heidelberg, Germany
| | - Marc Hinderer
- Chair of Medical Informatics, Friedrich Alexander University Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Lena Griebel
- Chair of Medical Informatics, Friedrich Alexander University Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Dominic Deuber
- Chair for Applied Cryptography, Friedrich-Alexander University Erlangen-Nürnberg, 90429, Erlangen, Germany
| | - Christoph Egger
- Chair for Applied Cryptography, Friedrich-Alexander University Erlangen-Nürnberg, 90429, Erlangen, Germany
| | - Farbod Sedaghat-Hamedani
- Institute for Cardiomyopathies, Department of Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), 69120, Heidelberg, Germany
| | - Elham Kayvanpour
- Institute for Cardiomyopathies, Department of Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), 69120, Heidelberg, Germany
| | - Daniel Huhn
- Department of General Internal Medicine and Psychosomatic, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Jan Haas
- Institute for Cardiomyopathies, Department of Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), 69120, Heidelberg, Germany
| | - Karen Frese
- Institute for Cardiomyopathies, Department of Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), 69120, Heidelberg, Germany
| | | | - Ninja Marnau
- CISPA Helmholtz Center for Information Security, 66123, Saarbrücken, Germany
| | - Annika Krämer
- Chair for Information Security and Cryptography, Saarland University, 66123, Saarbrücken, Germany
| | - Claudia Durand
- CeGaT GmbH, Center for Genomics and Transcriptomics, 72076, Tübingen, Germany
| | - Florian Battke
- CeGaT GmbH, Center for Genomics and Transcriptomics, 72076, Tübingen, Germany
| | - Hans-Ulrich Prokosch
- Chair of Medical Informatics, Friedrich Alexander University Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Michael Backes
- CISPA Helmholtz Center for Information Security, 66123, Saarbrücken, Germany.,Chair for Information Security and Cryptography, Saarland University, 66123, Saarbrücken, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
| | - Dominique Schröder
- Chair for Applied Cryptography, Friedrich-Alexander University Erlangen-Nürnberg, 90429, Erlangen, Germany
| | - Hugo A Katus
- Institute for Cardiomyopathies, Department of Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), 69120, Heidelberg, Germany
| | - Norbert Frey
- Institute for Cardiomyopathies, Department of Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), 69120, Heidelberg, Germany
| | - Benjamin Meder
- Institute for Cardiomyopathies, Department of Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany. .,DZHK (German Centre for Cardiovascular Research), 69120, Heidelberg, Germany. .,Stanford Genome Technology Center, Stanford University School of Medicine, Palo Alto, CA, 94305, USA.
| |
Collapse
|
6
|
Bayes-Genis A, Liu PP, Lanfear DE, de Boer RA, González A, Thum T, Emdin M, Januzzi JL. Omics phenotyping in heart failure: the next frontier. Eur Heart J 2021; 41:3477-3484. [PMID: 32337540 DOI: 10.1093/eurheartj/ehaa270] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/23/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022] Open
Abstract
This state-of-the-art review aims to provide an up-to-date look at breakthrough omic technologies that are helping to unravel heart failure (HF) disease mechanisms and heterogeneity. Genomics, transcriptomics, proteomics, and metabolomics in HF are reviewed in depth. In addition, there is a thorough, expert discussion regarding the value of omics in identifying novel disease pathways, advancing understanding of disease mechanisms, differentiating HF phenotypes, yielding biomarkers for diagnosis or prognosis, or identifying new therapeutic targets in HF. The combination of multiple omics technologies may create a more comprehensive picture of the factors and physiology involved in HF than achieved by either one alone and provides a rich resource for predictive phenotype modelling. However, the successful translation of omics tools as solutions to clinical HF requires that the observations are robust and reproducible and can be validated across multiple independent populations to ensure confidence in clinical decision-making.
Collapse
Affiliation(s)
- Antoni Bayes-Genis
- Heart Institute (iCor), University Hospital Germans Trias i Pujol, Badalona, Spain.,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain.,Department of Medicine, Universitat Autònoma Barcelona
| | - Peter P Liu
- University of Ottawa Heart Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - David E Lanfear
- Henry Ford Heart and Vascular Institute, Center for Individualized and Genomic Medicine Research, Henry Ford Hospital, Detroit, MI, USA
| | - Rudolf A de Boer
- Department of Cardiology, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Arantxa González
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain.,Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Michele Emdin
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Fondazione Toscana G. Monasterio, Pisa, Italy
| | - James L Januzzi
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Hershkovitz T, Kurolap A, Ruhrman-Shahar N, Monakier D, DeChene ET, Peretz-Amit G, Funke B, Zucker N, Hirsch R, Tan WH, Baris Feldman H. Clinical diversity of MYH7-related cardiomyopathies: Insights into genotype-phenotype correlations. Am J Med Genet A 2018; 179:365-372. [PMID: 30588760 DOI: 10.1002/ajmg.a.61017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 11/15/2018] [Accepted: 11/20/2018] [Indexed: 12/21/2022]
Abstract
MYH7-related disease (MRD) is the most common hereditary primary cardiomyopathy (CM), with pathogenic MYH7 variants accounting for approximately 40% of familial hypertrophic CMs. MRDs may also present as skeletal myopathies, with or without CM. Since pathogenic MYH7 variants result in highly variable clinical phenotypes, from mild to fatal forms of cardiac and skeletal myopathies, genotype-phenotype correlations are not always apparent, and translation of the genetic findings to clinical practice can be complicated. Data on genotype-phenotype correlations can help facilitate more specific and personalized decisions on treatment strategies, surveillance, and genetic counseling. We present a series of six MRD pedigrees with rare genotypes, encompassing various clinical presentations and inheritance patterns. This study provides new insights into the spectrum of MRD that is directly translatable to clinical practice.
Collapse
Affiliation(s)
- Tova Hershkovitz
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel
| | - Alina Kurolap
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel.,Rappaport School of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Noa Ruhrman-Shahar
- The Raphael Recanati Genetics Institute, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
| | - Daniel Monakier
- Department of Cardiology, Rabin Medical Center, Beilinson Hospital, Petah Tikva and the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Elizabeth T DeChene
- Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Gabriela Peretz-Amit
- The Raphael Recanati Genetics Institute, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
| | - Birgit Funke
- Department of Pathology, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Nili Zucker
- Pediatric Cardiology Unit, Schneider Children's Medical Center, Petah Tikva, Israel
| | - Rafael Hirsch
- Institute of Cardiology, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
| | - Wen-Hann Tan
- Division of Genetics and Genomics, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Hagit Baris Feldman
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel.,Rappaport School of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|