1
|
Finsterer J, Mehri S. Pathophysiology of myocardial infarction in MELAS. Minerva Cardiol Angiol 2023; 71:702-703. [PMID: 37994634 DOI: 10.23736/s2724-5683.22.06194-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Affiliation(s)
- Josef Finsterer
- Department of Neurology, Neurology and Neurophysiology Center, Vienna, Austria -
| | - Sounira Mehri
- Laboratory of Biochemistry, LR12ES05 "Nutrition-Functional Foods and Vascular Health", Faculty of Medicine, Monastir, Tunisia
| |
Collapse
|
2
|
Ryytty S, Hämäläinen RH. The Mitochondrial m.3243A>G Mutation on the Dish, Lessons from In Vitro Models. Int J Mol Sci 2023; 24:13478. [PMID: 37686280 PMCID: PMC10487608 DOI: 10.3390/ijms241713478] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
The m.3243A>G mutation in the tRNA Leu(UUR) gene (MT-TL1) is one of the most common pathogenic point mutations in human mtDNA. Patient symptoms vary widely and the severity of the disease ranges from asymptomatic to lethal. The reason for the high heterogeneity of m.3243A>G-associated disease is still unknown, and the treatment options are limited, with only supportive interventions available. Furthermore, the heteroplasmic nature of the m.3243A>G mutation and lack of specific animal models of mtDNA mutations have challenged the study of m.3243A>G, and, besides patient data, only cell models have been available for studies. The most commonly used cell models are patient derived, such as fibroblasts and induced pluripotent stem cell (iPSC)-derived models, and cybrid models where the mutant DNA is transferred to an acceptor cell. Studies on cell models have revealed cell-type-specific effects of the m.3243A>G mutation and that the tolerance for this mutation varies between cell types and between patients. In this review, we summarize the literature on the effects of m.3243A>G in cell models.
Collapse
Affiliation(s)
| | - Riikka H. Hämäläinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland;
| |
Collapse
|
3
|
Yu C, Deng XJ, Xu D. Gene mutations in comorbidity of epilepsy and arrhythmia. J Neurol 2023; 270:1229-1248. [PMID: 36376730 DOI: 10.1007/s00415-022-11430-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022]
Abstract
Epilepsy is one of the most common neurological disorders, and sudden unexpected death in epilepsy (SUDEP) is the most severe outcome of refractory epilepsy. Arrhythmia is one of the heterogeneous factors in the pathophysiological mechanism of SUDEP with a high incidence in patients with refractory epilepsy, increasing the risk of premature death. The gene co-expressed in the brain and heart is supposed to be the genetic basis between epilepsy and arrhythmia, among which the gene encoding ion channel contributes to the prevalence of "cardiocerebral channelopathy" theory. Nevertheless, this theory could only explain the molecular mechanism of comorbid arrhythmia in part of patients with epilepsy (PWE). Therefore, we summarized the mutant genes that can induce comorbidity of epilepsy and arrhythmia and the possible corresponding treatments. These variants involved the genes encoding sodium, potassium, calcium and HCN channels, as well as some non-ion channel coding genes such as CHD4, PKP2, FHF1, GNB5, and mitochondrial genes. The relationship between genotype and clinical phenotype was not simple linear. Indeed, genes co-expressed in the brain and heart could independently induce epilepsy and/or arrhythmia. Mutant genes in brain could affect cardiac rhythm through central or peripheral regulation, while in the heart it could also affect cerebral electrical activity by changing the hemodynamics or internal environment. Analysis of mutations in comorbidity of epilepsy and arrhythmia could refine and expand the theory of "cardiocerebral channelopathy" and provide new insights for risk stratification of premature death and corresponding precision therapy in PWE.
Collapse
Affiliation(s)
- Cheng Yu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China
| | - Xue-Jun Deng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China
| | - Da Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China.
| |
Collapse
|
4
|
Finsterer J, Mehri S. Commentary: Mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes with an MT-TL1 m.3243A> G point mutation: neuroradiological features and their implications for underlying pathogenesis. Front Neurosci 2023; 17:1173654. [PMID: 37139525 PMCID: PMC10149787 DOI: 10.3389/fnins.2023.1173654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Affiliation(s)
- Josef Finsterer
- Neurology and Neurophysiology Center, Vienna, Austria
- *Correspondence: Josef Finsterer
| | - Sounira Mehri
- Biochemistry Laboratory, LR12ES05 “Nutrition-Functional Foods and Vascular Health”, Faculty of Medicine, Monastir, Tunisia
| |
Collapse
|
5
|
Li D, Liang C, Zhang T, Marley JL, Zou W, Lian M, Ji D. Pathogenic mitochondrial DNA 3243A>G mutation: From genetics to phenotype. Front Genet 2022; 13:951185. [PMID: 36276941 PMCID: PMC9582660 DOI: 10.3389/fgene.2022.951185] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
The mitochondrial DNA (mtDNA) m.3243A>G mutation is one of the most common pathogenic mtDNA variants, showing complex genetics, pathogenic molecular mechanisms, and phenotypes. In recent years, the prevention of mtDNA-related diseases has trended toward precision medicine strategies, such as preimplantation genetic diagnosis (PGD) and mitochondrial replacement therapy (MRT). These techniques are set to allow the birth of healthy children, but clinical implementation relies on thorough insights into mtDNA genetics. The genotype and phenotype of m.3243A>G vary greatly from mother to offspring, which compromises genetic counseling for the disease. This review is the first to systematically elaborate on the characteristics of the m.3243A>G mutation, from genetics to phenotype and the relationship between them, as well as the related influencing factors and potential strategies for preventing disease. These perceptions will provide clarity for clinicians providing genetic counseling to m.3243A>G patients.
Collapse
Affiliation(s)
- Danyang Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
| | - Chunmei Liang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
| | - Tao Zhang
- Department of Obstetrics and Gynecology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Jordan Lee Marley
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Weiwei Zou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
| | - Muqing Lian
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Dongmei Ji
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
- *Correspondence: Dongmei Ji,
| |
Collapse
|
6
|
|
7
|
Campbell T, Slone J, Huang T. Mitochondrial Genome Variants as a Cause of Mitochondrial Cardiomyopathy. Cells 2022; 11:cells11182835. [PMID: 36139411 PMCID: PMC9496904 DOI: 10.3390/cells11182835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Mitochondria are small double-membraned organelles responsible for the generation of energy used in the body in the form of ATP. Mitochondria are unique in that they contain their own circular mitochondrial genome termed mtDNA. mtDNA codes for 37 genes, and together with the nuclear genome (nDNA), dictate mitochondrial structure and function. Not surprisingly, pathogenic variants in the mtDNA or nDNA can result in mitochondrial disease. Mitochondrial disease primarily impacts tissues with high energy demands, including the heart. Mitochondrial cardiomyopathy is characterized by the abnormal structure or function of the myocardium secondary to genetic defects in either the nDNA or mtDNA. Mitochondrial cardiomyopathy can be isolated or part of a syndromic mitochondrial disease. Common manifestations of mitochondrial cardiomyopathy are a phenocopy of hypertrophic cardiomyopathy, dilated cardiomyopathy, and cardiac conduction defects. The underlying pathophysiology of mitochondrial cardiomyopathy is complex and likely involves multiple abnormal processes in the cell, stemming from deficient oxidative phosphorylation and ATP depletion. Possible pathophysiology includes the activation of alternative metabolic pathways, the accumulation of reactive oxygen species, dysfunctional mitochondrial dynamics, abnormal calcium homeostasis, and mitochondrial iron overload. Here, we highlight the clinical assessment of mtDNA-related mitochondrial cardiomyopathy and offer a novel hypothesis of a possible integrated, multivariable pathophysiology of disease.
Collapse
|
8
|
Ryytty S, Modi SR, Naumenko N, Shakirzyanova A, Rahman MO, Vaara M, Suomalainen A, Tavi P, Hämäläinen RH. Varied Responses to a High m.3243A>G Mutation Load and Respiratory Chain Dysfunction in Patient-Derived Cardiomyocytes. Cells 2022; 11:cells11162593. [PMID: 36010669 PMCID: PMC9406376 DOI: 10.3390/cells11162593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
The m.3243A>G mutation in mitochondrial tRNA-Leu(UUR) is one of the most common pathogenic mitochondrial DNA mutations in humans. The clinical manifestations are highly heterogenous and the causes for the drastic clinical variability are unknown. Approximately one third of patients suffer from cardiac disease, which often increases mortality. Why only some patients develop cardiomyopathy is unknown. Here, we studied the molecular effects of a high m.3243A>G mutation load on cardiomyocyte functionality, using cells derived from induced pluripotent stem cells (iPSC-CM) of two different m.3243A>G patients, only one of them suffering from severe cardiomyopathy. While high mutation load impaired mitochondrial respiration in both patients' iPSC-CMs, the downstream consequences varied. mtDNA mutant cells from a patient with no clinical heart disease showed increased glucose metabolism and retained cellular ATP levels, whereas cells from the cardiac disease patient showed reduced ATP levels. In this patient, the mutations also affected intracellular calcium signaling, while this was not true in the other patient's cells. Our results reflect the clinical variability in mitochondrial disease patients and show that iPSC-CMs retain tissue specific features seen in patients.
Collapse
Affiliation(s)
- Sanna Ryytty
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Shalem R. Modi
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Nikolay Naumenko
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Anastasia Shakirzyanova
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Muhammad Obaidur Rahman
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Miia Vaara
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Anu Suomalainen
- Stem Cell and Metabolism Research Program, Research Programs Unit, University of Helsinki, 00290 Helsinki, Finland
- HUSLab, Helsinki University Hospital, 00290 Helsinki, Finland
| | - Pasi Tavi
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Riikka H. Hämäläinen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
- Correspondence:
| |
Collapse
|
9
|
Abstract
Abstract
Mitochondria, the cell powerhouse, are membrane-bound organelles present in the cytoplasm of almost all the eukaryotic cells. Their main function is to generate energy in the form of adenosine triphosphate (ATP). In addition, mitochondria store calcium for the cell signaling activities, generate heat, harbor pathways of intermediate metabolism and mediate cell growth and death. Primary mitochondrial diseases (MDs) form a clinically as well as genetically heterogeneous group of inherited disorders that result from the mitochondrial energetic metabolism malfunctions. The lifetime risk of the MDs development is estimated at 1:1470 of newborns, which makes them one of the most recurrent groups of inherited disorders with an important burden for society.
MDs are progressive with wide range of symptoms of variable severity that can emerge congenitally or anytime during the life. MD can be caused by mutations in the mitochondrial DNA (mtDNA) or nuclear DNA genes. Mutations inducing impairment of mitochondrial function have been found in more than 400 genes. Furthermore, more than 1200 nuclear genes, which could play a role in the MDs’ genetic etiology, are involved in the mitochondrial activities. However, the knowledge regarding the mechanism of the mitochondrial pathogenicity appears to be most essential for the development of effective patient’s treatment suffering from the mitochondrial disease. This is an overview update focused on the mitochondrial biology and the mitochondrial diseases associated genes.
Collapse
|
10
|
Yoshida K, Sato H, Kimura S, Tanaka T, Kasai K. A case of sudden cardiac death due to mitochondrial disease. Leg Med (Tokyo) 2022; 55:102026. [DOI: 10.1016/j.legalmed.2022.102026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 12/25/2022]
|
11
|
Finsterer J, Kudlacek M, Mirzaei S. Stroke-Like Lesion in an m.3243A>G Carrier Presenting as Hyperperfusion and Hypometabolism. Cureus 2021; 13:e15487. [PMID: 34262823 PMCID: PMC8261341 DOI: 10.7759/cureus.15487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2021] [Indexed: 12/01/2022] Open
Abstract
Carriers of the m.3243A>G variant typically manifest with stroke-like episodes (SLEs), of which the morphological correlate on imaging is the stroke-like lesion (SLL). The pathophysiology of SLLs is poorly understood but acute and chronic stages are delineated. Here we present the case of an m.3243A>G carrier who presented with hypometabolism during his second SLL. The patient was a 56-year-old male who was diagnosed with MELAS (mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes) at the age of 50 upon a third SLE, muscle biopsy, and the detection of the m.3243A>G variant in the muscle. A fluorodeoxyglucose-positron emission tomography (FDG-PET) during the second SLE revealed hypometabolism in the occipital lobes bilaterally. The patient was misdiagnosed for years and was repeatedly exposed to mitochondrion-toxic drugs (metformin, steroids, valproic acid, oxcarbazepine, zolpidem). The previous data and the present findings indicate that the hypometabolism on FDG-PET together with reduced oxygen-extraction fraction (OEF) on OEF-MRI and hyperperfusion on perfusion-weighted imaging (PWI) characterise best the acute stage of an SLL. In conclusion, an acute SLE in m.3243A>G carriers typically manifests with a mismatch between hyperperfusion on PWI or single-photon emission computed tomography (SPECT) and hypometabolism on FDG-PET and hypointensity on OEF-MRI. Since SLEs are not vascular events, they should be managed by a multispecialist approach and not by general or stroke neurologists.
Collapse
|
12
|
Finsterer J. Lifestyle Changes Normalize Serum Lactate Levels in an m.3243A>G Carrier. AMERICAN JOURNAL OF CASE REPORTS 2021; 22:e930175. [PMID: 33867519 PMCID: PMC8063763 DOI: 10.12659/ajcr.930175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The normalization of serum lactate levels in a patient with non-syndromic mitochondrial disorder due to the m.3243A>G mitochondrial DNA (mtDNA) variant has not been previously reported. CASE REPORT A 57-year-old woman was diagnosed with mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) due to the m.3243A>G variant, with low heteroplasmy rates (31%), at age 50. The initial manifestations were short stature, migraine, and diabetes. With progression of the disease, multisystem involvement developed, affecting the brain (stroke-like episode, mild cognitive impairment), eyes (pigmentary retinopathy), ears and the vestibular system (impaired hearing, tinnitus, imbalance, drop attacks, vertigo), intestines (constipation, distended abdomen, gastro-esophageal reflux, gastroparesis), and the muscles (muscle weakness). The gastrointestinal involvement was most prominent and most significantly lowered the patient's quality of life. The diabetes was well controlled with an insulin pump. Recurrent, acute deteriorations responded favorably to L-arginine. Owing to lifestyle and diet changes 2 years after diagnosis (start of art classes, increase in spin biking to 22.5 km 3 times per week, travel to Hawaii, adherence to low-carbohydrate high-protein diet), the patient managed to lower elevated serum lactate levels to largely normal values. CONCLUSIONS Gastrointestinal compromise may be the prominent manifestation of the m.3243A>G variant, lifestyle and diet changes may lower serum lactate in m.3243A>G carriers, and low heteroplasmy rates of the m.3243A>G variant in scarcely affected tissues do not exclude pathogenicity.
Collapse
Affiliation(s)
- Josef Finsterer
- Neurological Department, Landstrasse Clinic, Messerli Institute, Vienna, Austria
| |
Collapse
|
13
|
Finsterer J, Laccone F. Phenotypic Heterogeneity in 5 Family Members with the Mitochondrial Variant m.3243A>G. AMERICAN JOURNAL OF CASE REPORTS 2020; 21:e927938. [PMID: 33237887 PMCID: PMC7704058 DOI: 10.12659/ajcr.927938] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Case series Patients:— Final Diagnosis: Metabolic acidosis Symptoms: Deafness Medication: — Clinical Procedure: — Specialty: Neurology
Collapse
Affiliation(s)
- Josef Finsterer
- Neurological Department, Klinik Landstrasse, Messerli Institute, Vienna, Austria
| | - Franco Laccone
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
14
|
Finsterer J. Energy requirements in m.3243A>G carriers depend on multiple factors. JPEN J Parenter Enteral Nutr 2020; 45:227-228. [PMID: 33047310 DOI: 10.1002/jpen.2027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 11/08/2022]
|
15
|
Manolis AS, Manolis AA, Manolis TA, Apostolaki NE, Apostolopoulos EJ, Melita H, Katsiki N. Mitochondrial dysfunction in cardiovascular disease: Current status of translational research/clinical and therapeutic implications. Med Res Rev 2020; 41:275-313. [PMID: 32959403 DOI: 10.1002/med.21732] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022]
Abstract
Mitochondria provide energy to the cell during aerobic respiration by supplying ~95% of the adenosine triphosphate (ATP) molecules via oxidative phosphorylation. These organelles have various other functions, all carried out by numerous proteins, with the majority of them being encoded by nuclear DNA (nDNA). Mitochondria occupy ~1/3 of the volume of myocardial cells in adults, and function at levels of high-efficiency to promptly meet the energy requirements of the myocardial contractile units. Mitochondria have their own DNA (mtDNA), which contains 37 genes and is maternally inherited. Over the last several years, a variety of functions of these organelles have been discovered and this has led to a growing interest in their involvement in various diseases, including cardiovascular (CV) diseases. Mitochondrial dysfunction relates to the status where mitochondria cannot meet the demands of a cell for ATP and there is an enhanced formation of reactive-oxygen species. This dysfunction may occur as a result of mtDNA and/or nDNA mutations, but also as a response to aging and various disease and environmental stresses, leading to the development of cardiomyopathies and other CV diseases. Designing mitochondria-targeted therapeutic strategies aiming to maintain or restore mitochondrial function has been a great challenge as a result of variable responses according to the etiology of the disorder. There have been several preclinical data on such therapies, but clinical studies are scarce. A major challenge relates to the techniques needed to eclectically deliver the therapeutic agents to cardiac tissues and to damaged mitochondria for successful clinical outcomes. All these issues and progress made over the last several years are herein reviewed.
Collapse
Affiliation(s)
- Antonis S Manolis
- First Department of Cardiology, Athens University School of Medicine, Athens, Greece
| | | | | | | | | | | | - Niki Katsiki
- First Department of Internal Medicine, Division of Endocrinology and Metabolism, Diabetes Center, Medical School, AHEPA University Hospital, Thessaloniki, Greece
| |
Collapse
|
16
|
Finsterer J. Stroke-like Episodes in m.3243A≥G Carriers Need to Be Monitored by MRI Starting with the Onset of Clinical Manifestations. AJNR Am J Neuroradiol 2020; 41:E17-E18. [PMID: 32029472 DOI: 10.3174/ajnr.a6418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- J Finsterer
- Krankenanstalt RudolfstiftungMesserli InstituteVienna, Austria
| |
Collapse
|