1
|
Grigo J, Szkitsak J, Höfler D, Fietkau R, Putz F, Bert C. "sCT-Feasibility" - a feasibility study for deep learning-based MRI-only brain radiotherapy. Radiat Oncol 2024; 19:33. [PMID: 38459584 PMCID: PMC10924348 DOI: 10.1186/s13014-024-02428-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/29/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Radiotherapy (RT) is an important treatment modality for patients with brain malignancies. Traditionally, computed tomography (CT) images are used for RT treatment planning whereas magnetic resonance imaging (MRI) images are used for tumor delineation. Therefore, MRI and CT need to be registered, which is an error prone process. The purpose of this clinical study is to investigate the clinical feasibility of a deep learning-based MRI-only workflow for brain radiotherapy, that eliminates the registration uncertainty through calculation of a synthetic CT (sCT) from MRI data. METHODS A total of 54 patients with an indication for radiation treatment of the brain and stereotactic mask immobilization will be recruited. All study patients will receive standard therapy and imaging including both CT and MRI. All patients will receive dedicated RT-MRI scans in treatment position. An sCT will be reconstructed from an acquired MRI DIXON-sequence using a commercially available deep learning solution on which subsequent radiotherapy planning will be performed. Through multiple quality assurance (QA) measures and reviews during the course of the study, the feasibility of an MRI-only workflow and comparative parameters between sCT and standard CT workflow will be investigated holistically. These QA measures include feasibility and quality of image guidance (IGRT) at the linear accelerator using sCT derived digitally reconstructed radiographs in addition to potential dosimetric deviations between the CT and sCT plan. The aim of this clinical study is to establish a brain MRI-only workflow as well as to identify risks and QA mechanisms to ensure a safe integration of deep learning-based sCT into radiotherapy planning and delivery. DISCUSSION Compared to CT, MRI offers a superior soft tissue contrast without additional radiation dose to the patients. However, up to now, even though the dosimetrical equivalence of CT and sCT has been shown in several retrospective studies, MRI-only workflows have still not been widely adopted. The present study aims to determine feasibility and safety of deep learning-based MRI-only radiotherapy in a holistic manner incorporating the whole radiotherapy workflow. TRIAL REGISTRATION NCT06106997.
Collapse
Affiliation(s)
- Johanna Grigo
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 27, DE- 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Juliane Szkitsak
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 27, DE- 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Daniel Höfler
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 27, DE- 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 27, DE- 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Florian Putz
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 27, DE- 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Christoph Bert
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 27, DE- 91054, Erlangen, Germany.
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany.
| |
Collapse
|
2
|
Rostami A, Robatjazi M, Javadinia SA, Shomoossi N, Shahraini R. The influence of patient positioning and immobilization equipment on MR image quality and image registration in radiation therapy. J Appl Clin Med Phys 2024; 25:e14162. [PMID: 37716368 PMCID: PMC10860429 DOI: 10.1002/acm2.14162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 08/14/2023] [Accepted: 09/07/2023] [Indexed: 09/18/2023] Open
Abstract
INTRODUCTION MRI is preferred for brain tumor assessment, while CT is used for radiotherapy simulation. This study evaluated immobilization equipment's impact on CT-MRI registration accuracy and MR image quality in RT setup. METHODS We included CT and MR images from 11 patients with high-grade glioma, all of whom were immobilized with a thermoplastic mask and headrest. T1- and T2-weighted MR images were acquired using an MR head coil in a diagnostic setup (DS) and a body matrix coil in RT setup. To assess MR image quality, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were considered in some dedicated regions of interest. We also evaluated the impact of immobilization equipment on CT-MRI rigid registration using line profile and external contour methods. RESULTS The CNR and SNR reduction was in the RT setup of imaging. This was more evident in T1-weighted images than in T2-weighted ones. The SNR decreased by 14.91% and 12.09%, while CNR decreased by 25.12% and 20.15% in T1- and T2-weighted images, respectively. The immobilization equipment in the RT setup decreased the mean error in rigid registration by 1.02 mm. The external contour method yielded Dice similarity coefficients (DSC) of 0.84 and 0.92 for CT-DS MRI and CT-RT MRI registration, respectively. CONCLUSION The image quality reduction in the RT setup was due to the imaged region's anatomy and its position relative to the applied coil. Furthermore, optimizing the pulse sequence is crucial for MR imaging in RT applications. Although the use of immobilization equipment may decrease the image quality in the RT setup, it does not affect organ delineation, and the image quality is still satisfactory for this purpose. Also, the use of immobilization equipment in the RT setup has increased registration accuracy.
Collapse
Affiliation(s)
- Atefeh Rostami
- Department of Medical Physics and Radiological SciencesSabzevar University of Medical SciencesSabzevarIran
| | - Mostafa Robatjazi
- Department of Medical Physics and Radiological SciencesSabzevar University of Medical SciencesSabzevarIran
- Non‐Communicable Diseases Research CenterSabzevar University of Medical SciencesSabzevarIran
| | - Seyed Alireza Javadinia
- Non‐Communicable Diseases Research CenterSabzevar University of Medical SciencesSabzevarIran
| | | | - Ramin Shahraini
- Department of RadiologySchool of MedicineSabzevar University of Medical SciencesSabzevarIran
| |
Collapse
|
3
|
Ohira S, Suzuki Y, Washio H, Yamamoto Y, Tateishi S, Inui S, Kanayama N, Kawamata M, Miyazaki M, Nishio T, Koizumi M, Nakanishi K, Konishi K. Impact of magnetic resonance imaging-related geometric distortion of dose distribution in fractionated stereotactic radiotherapy in patients with brain metastases. Strahlenther Onkol 2024; 200:39-48. [PMID: 37591978 DOI: 10.1007/s00066-023-02120-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/10/2023] [Indexed: 08/19/2023]
Abstract
PURPOSE The geometric distortion related to magnetic resonance (MR) imaging in a diagnostic radiology (MRDR) and radiotherapy (MRRT) setup is evaluated, and the dosimetric impact of MR distortion on fractionated stereotactic radiotherapy (FSRT) in patients with brain metastases is simulated. MATERIALS AND METHODS An anthropomorphic skull phantom was scanned using a 1.5‑T MR scanner, and the magnitude of MR distortion was calculated with (MRDR-DC and MRRT-DC) and without (MRDR-nDC and MRRT-nDC) distortion-correction algorithms. Automated noncoplanar volumetric modulated arc therapy (HyperArc, HA; Varian Medical Systems, Palo Alto, CA, USA) plans were generated for 53 patients with 186 brain metastases. The MR distortion at each gross tumor volume (GTV) was calculated using the distance between the center of the GTV and the MR image isocenter (MIC) and the quadratic regression curve derived from the phantom study (MRRT-DC and MRRT-nDC). Subsequently, the radiation isocenter of the HA plans was shifted according to the MR distortion at each GTV (HADC and HAnDC). RESULTS The median MR distortions were approximately 0.1 mm when the distance from the MIC was < 30 mm, whereas the median distortion varied widely when the distance was > 60 mm (0.23, 0.47, 0.37, and 0.57 mm in MRDR-DC, MRDR-nDC, MRRT-DC, and MRRT-nDC, respectively). The dose to the 98% of the GTV volume (D98%) decreased as the distance from the MIC increased. In the HADC plans, the relative dose difference of D98% was less than 5% when the GTV was located within 70 mm from the MIC, whereas the underdose of GTV exceeded 5% when it was 48 mm (-26.5% at maximum) away from the MIC in the HAnDC plans. CONCLUSION Use of a distortion-correction algorithm in the studied MR diagnoses is essential, and the dosimetric impact of MR distortion is not negligible, particularly for tumors located far away from the MIC.
Collapse
Affiliation(s)
- Shingo Ohira
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan.
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Japan.
| | - Yuta Suzuki
- Department of Diagnostic and Interventional Radiology, Osaka International Cancer Institute, Osaka, Japan
| | - Hayate Washio
- Department of Diagnostic and Interventional Radiology, Osaka International Cancer Institute, Osaka, Japan
| | - Yuki Yamamoto
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Japan
| | - Soichiro Tateishi
- Department of Diagnostic and Interventional Radiology, Osaka International Cancer Institute, Osaka, Japan
| | - Shoki Inui
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Naoyuki Kanayama
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Minoru Kawamata
- Department of Diagnostic and Interventional Radiology, Osaka International Cancer Institute, Osaka, Japan
| | - Masayoshi Miyazaki
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Teiji Nishio
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masahiko Koizumi
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Japan
| | - Katsuyuki Nakanishi
- Department of Diagnostic and Interventional Radiology, Osaka International Cancer Institute, Osaka, Japan
| | - Koji Konishi
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| |
Collapse
|
4
|
Putz F, Bock M, Schmitt D, Bert C, Blanck O, Ruge MI, Hattingen E, Karger CP, Fietkau R, Grigo J, Schmidt MA, Bäuerle T, Wittig A. Quality requirements for MRI simulation in cranial stereotactic radiotherapy: a guideline from the German Taskforce "Imaging in Stereotactic Radiotherapy". Strahlenther Onkol 2024; 200:1-18. [PMID: 38163834 PMCID: PMC10784363 DOI: 10.1007/s00066-023-02183-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/06/2023] [Indexed: 01/03/2024]
Abstract
Accurate Magnetic Resonance Imaging (MRI) simulation is fundamental for high-precision stereotactic radiosurgery and fractionated stereotactic radiotherapy, collectively referred to as stereotactic radiotherapy (SRT), to deliver doses of high biological effectiveness to well-defined cranial targets. Multiple MRI hardware related factors as well as scanner configuration and sequence protocol parameters can affect the imaging accuracy and need to be optimized for the special purpose of radiotherapy treatment planning. MRI simulation for SRT is possible for different organizational environments including patient referral for imaging as well as dedicated MRI simulation in the radiotherapy department but require radiotherapy-optimized MRI protocols and defined quality standards to ensure geometrically accurate images that form an impeccable foundation for treatment planning. For this guideline, an interdisciplinary panel including experts from the working group for radiosurgery and stereotactic radiotherapy of the German Society for Radiation Oncology (DEGRO), the working group for physics and technology in stereotactic radiotherapy of the German Society for Medical Physics (DGMP), the German Society of Neurosurgery (DGNC), the German Society of Neuroradiology (DGNR) and the German Chapter of the International Society for Magnetic Resonance in Medicine (DS-ISMRM) have defined minimum MRI quality requirements as well as advanced MRI simulation options for cranial SRT.
Collapse
Affiliation(s)
- Florian Putz
- Strahlenklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Michael Bock
- Klinik für Radiologie-Medizinphysik, Universitätsklinikum Freiburg, Freiburg, Germany
| | - Daniela Schmitt
- Klinik für Strahlentherapie und Radioonkologie, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Christoph Bert
- Strahlenklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Oliver Blanck
- Klinik für Strahlentherapie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Maximilian I Ruge
- Klinik für Stereotaxie und funktionelle Neurochirurgie, Zentrum für Neurochirurgie, Universitätsklinikum Köln, Cologne, Germany
| | - Elke Hattingen
- Institut für Neuroradiologie, Universitätsklinikum Frankfurt, Frankfurt am Main, Germany
| | - Christian P Karger
- Abteilung Medizinische Physik in der Strahlentherapie, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
- Nationales Zentrum für Strahlenforschung in der Onkologie (NCRO), Heidelberger Institut für Radioonkologie (HIRO), Heidelberg, Germany
| | - Rainer Fietkau
- Strahlenklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Johanna Grigo
- Strahlenklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Manuel A Schmidt
- Neuroradiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Tobias Bäuerle
- Radiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andrea Wittig
- Klinik und Poliklinik für Strahlentherapie und Radioonkologie, Universitätsklinikum Würzburg, Würzburg, Germany
| |
Collapse
|
5
|
Masitho S, Grigo J, Brandt T, Lambrecht U, Szkitsak J, Weiss A, Fietkau R, Putz F, Bert C. Synthetic CTs for MRI-only brain RT treatment: integration of immobilization systems. Strahlenther Onkol 2023; 199:739-748. [PMID: 37285037 PMCID: PMC10361877 DOI: 10.1007/s00066-023-02090-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/25/2023] [Indexed: 06/08/2023]
Abstract
PURPOSE Auxiliary devices such as immobilization systems should be considered in synthetic CT (sCT)-based treatment planning (TP) for MRI-only brain radiotherapy (RT). A method for auxiliary device definition in the sCT is introduced, and its dosimetric impact on the sCT-based TP is addressed. METHODS T1-VIBE DIXON was acquired in an RT setup. Ten datasets were retrospectively used for sCT generation. Silicone markers were used to determine the auxiliary devices' relative position. An auxiliary structure template (AST) was created in the TP system and placed manually on the MRI. Various RT mask characteristics were simulated in the sCT and investigated by recalculating the CT-based clinical plan on the sCT. The influence of auxiliary devices was investigated by creating static fields aimed at artificial planning target volumes (PTVs) in the CT and recalculated in the sCT. The dose covering 50% of the PTV (D50) deviation percentage between CT-based/recalculated plan (∆D50[%]) was evaluated. RESULTS Defining an optimal RT mask yielded a ∆D50[%] of 0.2 ± 1.03% for the PTV and between -1.6 ± 3.4% and 1.1 ± 2.0% for OARs. Evaluating each static field, the largest ∆D50[%] was delivered by AST positioning inaccuracy (max: 3.5 ± 2.4%), followed by the RT table (max: 3.6 ± 1.2%) and the RT mask (max: 3.0 ± 0.8% [anterior], 1.6 ± 0.4% [rest]). No correlation between ∆D50[%] and beam depth was found for the sum of opposing beams, except for (45° + 315°). CONCLUSION This study evaluated the integration of auxiliary devices and their dosimetric influence on sCT-based TP. The AST can be easily integrated into the sCT-based TP. Further, we found that the dosimetric impact was within an acceptable range for an MRI-only workflow.
Collapse
Affiliation(s)
- Siti Masitho
- Department of Radiation Oncology, Strahlenklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 27, 91054, Erlangen, Germany.
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany.
| | - Johanna Grigo
- Department of Radiation Oncology, Strahlenklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 27, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Tobias Brandt
- Department of Radiation Oncology, Strahlenklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 27, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Ulrike Lambrecht
- Department of Radiation Oncology, Strahlenklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 27, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Juliane Szkitsak
- Department of Radiation Oncology, Strahlenklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 27, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Alexander Weiss
- Department of Radiation Oncology, Strahlenklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 27, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Strahlenklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 27, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Florian Putz
- Department of Radiation Oncology, Strahlenklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 27, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Christoph Bert
- Department of Radiation Oncology, Strahlenklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 27, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| |
Collapse
|
6
|
Dorsch S, Paul K, Beyer C, Karger CP, Jäkel O, Debus J, Klüter S. Quality assurance and temporal stability of a 1.5 T MRI scanner for MR-guided Photon and Particle Therapy. Z Med Phys 2023:S0939-3889(23)00046-6. [PMID: 37150727 DOI: 10.1016/j.zemedi.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 03/12/2023] [Accepted: 04/04/2023] [Indexed: 05/09/2023]
Abstract
PURPOSE To describe performance measurements, adaptations and time stability over 20 months of a diagnostic MR scanner for integration into MR-guided photon and particle radiotherapy. MATERIAL AND METHODS For realization of MR-guided photon and particle therapy (MRgRT/MRgPT), a 1.5 T MR scanner was installed at the Heidelberg Ion Beam Therapy Center. To integrate MRI into the treatment process, a flat tabletop and dedicated coil holders for flex coils were used, which prevent deformation of the patient external contour and allow for the use of immobilization tools for reproducible positioning. The signal-to-noise ratio (SNR) was compared for the diagnostic and therapy-specific setup using the flat couch top and flexible coils for the a) head & neck and b) abdominal region as well as for different bandwidths and clinical pulse sequences. Additionally, a quality assurance (QA) protocol with monthly measurements of the ACR phantom and measurement of geometric distortions for a large field-of-view (FOV) was implemented to assess the imaging quality parameters of the device over the course of 20 months. RESULTS The SNR measurements showed a decreased SNR for the RT-specific as compared to the diagnostic setup of (a) 26% to 34% and (b) 11% to 33%. No significant bandwidth dependency for this ratio was found. The longitudinal assessment of the image quality parameters with the ACR and distortion phantom confirmed the long-term stability of the MRI device. CONCLUSION A diagnostic MRI was commissioned for use in MR-guided particle therapy. Using a radiotherapy specific setup, a high geometric accuracy and signal homogeneity was obtained after some adaptions and the measured parameters were shown to be stable over a period of 20 months.
Collapse
Affiliation(s)
- Stefan Dorsch
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany; National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany; Department of Radiation Oncology, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany.
| | - Katharina Paul
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany; Department of Radiation Oncology, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany
| | - Cedric Beyer
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany; Department of Radiation Oncology, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany
| | - Christian P Karger
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany; National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Oliver Jäkel
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany; National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jürgen Debus
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany; Department of Radiation Oncology, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Core center Heidelberg, German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Sebastian Klüter
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany; Department of Radiation Oncology, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany.
| |
Collapse
|
7
|
Moore-Palhares D, Ho L, Lu L, Chugh B, Vesprini D, Karam I, Soliman H, Symons S, Leung E, Loblaw A, Myrehaug S, Stanisz G, Sahgal A, Czarnota GJ. Clinical implementation of magnetic resonance imaging simulation for radiation oncology planning: 5 year experience. Radiat Oncol 2023; 18:27. [PMID: 36750891 PMCID: PMC9903411 DOI: 10.1186/s13014-023-02209-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023] Open
Abstract
PURPOSE Integrating magnetic resonance (MR) into radiotherapy planning has several advantages. This report details the clinical implementation of an MR simulation (MR-planning) program for external beam radiotherapy (EBRT) in one of North America's largest radiotherapy programs. METHODS AND MATERIALS An MR radiotherapy planning program was developed and implemented at Sunnybrook Health Sciences Center in 2016 with two dedicated wide-bore MR platforms (1.5 and 3.0 Tesla). Planning MR was sequentially implemented every 3 months for separate treatment sites, including the central nervous system (CNS), gynecologic (GYN), head and neck (HN), genitourinary (GU), gastrointestinal (GI), breast, and brachial plexus. Essential protocols and processes were detailed in this report, including clinical workflow, optimized MR-image acquisition protocols, MR-adapted patient setup, strategies to overcome risks and challenges, and an MR-planning quality assurance program. This study retrospectively reviewed simulation site data for all MR-planning sessions performed for EBRT over the past 5 years. RESULTS From July 2016 to December 2021, 8798 MR-planning sessions were carried out, which corresponds to 25% of all computer tomography (CT) simulations (CT-planning) performed during the same period at our institution. There was a progressive rise from 80 MR-planning sessions in 2016 to 1126 in 2017, 1492 in 2018, 1824 in 2019, 2040 in 2020, and 2236 in 2021. As a result, the relative number of planning MR/CT increased from 3% of all planning sessions in 2016 to 36% in 2021. The most common site of MR-planning was CNS (49%), HN (13%), GYN (12%), GU (12%), and others (8%). CONCLUSION Detailed clinical processes and protocols of our MR-planning program were presented, which have been improved over more than 5 years of robust experience. Strategies to overcome risks and challenges in the implementation process are highlighted. Our work provides details that can be used by institutions interested in implementing an MR-planning program.
Collapse
Affiliation(s)
- Daniel Moore-Palhares
- grid.413104.30000 0000 9743 1587Department of Radiation Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, T2, Toronto, ON M4N3M5 Canada ,grid.17063.330000 0001 2157 2938Department of Radiation Oncology, University of Toronto, Toronto, Canada ,grid.17063.330000 0001 2157 2938Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
| | - Ling Ho
- grid.413104.30000 0000 9743 1587Department of Radiation Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, T2, Toronto, ON M4N3M5 Canada
| | - Lin Lu
- grid.413104.30000 0000 9743 1587Department of Radiation Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, T2, Toronto, ON M4N3M5 Canada
| | - Brige Chugh
- grid.413104.30000 0000 9743 1587Department of Radiation Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, T2, Toronto, ON M4N3M5 Canada ,grid.17063.330000 0001 2157 2938Department of Radiation Oncology, University of Toronto, Toronto, Canada ,grid.17063.330000 0001 2157 2938Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
| | - Danny Vesprini
- grid.413104.30000 0000 9743 1587Department of Radiation Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, T2, Toronto, ON M4N3M5 Canada ,grid.17063.330000 0001 2157 2938Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Irene Karam
- grid.413104.30000 0000 9743 1587Department of Radiation Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, T2, Toronto, ON M4N3M5 Canada ,grid.17063.330000 0001 2157 2938Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Hany Soliman
- grid.413104.30000 0000 9743 1587Department of Radiation Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, T2, Toronto, ON M4N3M5 Canada ,grid.17063.330000 0001 2157 2938Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Sean Symons
- grid.17063.330000 0001 2157 2938Physical Sciences, Sunnybrook Research Institute, Toronto, Canada ,grid.413104.30000 0000 9743 1587Department of Medical Imaging, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Eric Leung
- grid.413104.30000 0000 9743 1587Department of Radiation Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, T2, Toronto, ON M4N3M5 Canada ,grid.17063.330000 0001 2157 2938Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Andrew Loblaw
- grid.413104.30000 0000 9743 1587Department of Radiation Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, T2, Toronto, ON M4N3M5 Canada ,grid.17063.330000 0001 2157 2938Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Sten Myrehaug
- grid.413104.30000 0000 9743 1587Department of Radiation Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, T2, Toronto, ON M4N3M5 Canada ,grid.17063.330000 0001 2157 2938Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Greg Stanisz
- grid.17063.330000 0001 2157 2938Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
| | - Arjun Sahgal
- grid.413104.30000 0000 9743 1587Department of Radiation Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, T2, Toronto, ON M4N3M5 Canada ,grid.17063.330000 0001 2157 2938Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Gregory J. Czarnota
- grid.413104.30000 0000 9743 1587Department of Radiation Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, T2, Toronto, ON M4N3M5 Canada ,grid.17063.330000 0001 2157 2938Department of Radiation Oncology, University of Toronto, Toronto, Canada ,grid.17063.330000 0001 2157 2938Physical Sciences, Sunnybrook Research Institute, Toronto, Canada ,grid.17063.330000 0001 2157 2938Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
8
|
Prospective Evaluation of CD45RA+/CCR7- Effector Memory T (T EMRA) Cell Subsets in Patients with Primary and Secondary Brain Tumors during Radiotherapy of the Brain within the Scope of the Prospective Glio-CMV-01 Clinical Trial. Cells 2023; 12:cells12040516. [PMID: 36831183 PMCID: PMC9954596 DOI: 10.3390/cells12040516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Radiotherapy (RT) of the brain is a common treatment for patients with high-grade gliomas and brain metastases. It has previously been shown that reactivation of cytomegalovirus (CMV) frequently occurs during RT of the brain. This causes neurological decline, demands antiviral treatment, and is associated with a worse prognosis. CMV-specific T cells are characterized by a differentiated effector memory phenotype and CD45RA+ CCR7- effector memory T (TEMRA) cells were shown to be enriched in CMV seropositive individuals. In this study, we investigated the distribution of TEMRA cells and their subsets in the peripheral blood of healthy donors and, for the first time, prospectively within the scope of the prospective Glio-CMV-01 clinical trial of patients with high-grade glioma and brain metastases during radiation therapy as a potential predictive marker. First, we developed a multicolor flow cytometry-based assay to monitor the frequency and distribution of TEMRA cells in a longitudinal manner. The CMV serostatus and age were considered as influencing factors. We revealed that patients who had a reactivation of CMV have significantly higher amounts of CD8+ TEMRA cells. Further, the distribution of the subsets of TEMRA cells based on the expression of CD27, CD28, and CD57 is highly dependent on the CMV serostatus. We conclude that the percentage of CD8+ TEMRA cells out of all CD8+ T cells has the potential to serve as a biomarker for predicting the risk of CMV reactivation during RT of the brain. Furthermore, this study highlights the importance of taking the CMV serostatus into account when analyzing TEMRA cells and their subsets.
Collapse
|
9
|
Grigo J, Masitho S, Fautz HP, Voigt R, Schonath M, Oleszczuk A, Uder M, Heiss R, Fietkau R, Putz F, Bert C. Usability of magnetic resonance images acquired at a novel low-field 0.55 T scanner for brain radiotherapy treatment planning. Phys Imaging Radiat Oncol 2023; 25:100412. [PMID: 36969504 PMCID: PMC10037089 DOI: 10.1016/j.phro.2023.100412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 01/14/2023] Open
Abstract
Background and Purpose Low-field magnetic resonance imaging (MRI) may offer specific advantages over high-field MRI, e.g. lower susceptibility-dependent distortions and simpler installation. The study aim was to evaluate if a novel 0.55 T MRI scanner provides sufficient image accuracy and quality for radiotherapy (RT) treatment planning. Material and methods The geometric accuracy of images acquired at a low-field MRI scanner was evaluated in phantom measurements regarding gradient non-linearity-related distortions. Patient-induced B0-susceptibility changes were investigated via B0-field-mapping in ten volunteers. Patients were positioned in RT-setup using a 3D-printed insert for the head/neck-coil that was tested for sufficient signal-to-noise-ratio (SNR). The suitability of the MRI-system for detection of metastases was evaluated in eleven patients. In comparison to diagnostic images, acquired at ≥1.5 T, three physicians evaluated the detectability of metastases by counting them in low- and high-field-images, respectively. Results The phantom measurements showed a high imaging fidelity after 3D-distortion-correction with (1.2 ± 0.9) mm geometric distortion in 10 cm radius from isocentre. At the edges remaining distortions were greater than at 1.5 T. The mean susceptibility-induced distortions in the head were (0.05 ± 0.05) mm and maximum 0.69 mm. SNR analysis showed that optimised positioning of RT-patients without signal loss in the head/neck-coil was possible with the RT-insert. No significant differences (p = 0.48) in detectability of metastases were found. Conclusion The 0.55 T MRI system provided sufficiently geometrically accurate and high-resolution images that can be used for RT-planning for brain metastases. Hence, modern low-field MRI may contribute to simply access MRI for RT-planning after further investigations.
Collapse
|
10
|
Bäumer C, Frakulli R, Kohl J, Nagaraja S, Steinmeier T, Worawongsakul R, Timmermann B. Adaptive Proton Therapy of Pediatric Head and Neck Cases Using MRI-Based Synthetic CTs: Initial Experience of the Prospective KiAPT Study. Cancers (Basel) 2022; 14:cancers14112616. [PMID: 35681594 PMCID: PMC9179385 DOI: 10.3390/cancers14112616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 12/07/2022] Open
Abstract
BACKGROUND AND PURPOSE Interfractional anatomical changes might affect the outcome of proton therapy (PT). We aimed to prospectively evaluate the role of Magnetic Resonance Imaging (MRI) based adaptive PT for children with tumors of the head and neck and base of skull. METHODS MRI verification images were acquired at half of the treatment course. A synthetic computed tomography (CT) image was created using this MRI and a deformable image registration (DIR) to the reference MRI. The methodology was verified with in-silico phantoms and validated using a clinical case with a shrinking cystic hygroma on the basis of dosimetric quantities of contoured structures. The dose distributions on the verification X-ray CT and on the synthetic CT were compared with a gamma-index test using global 2 mm/2% criteria. RESULTS Regarding the clinical validation case, the gamma-index pass rate was 98.3%. Eleven patients were included in the clinical study. The most common diagnosis was rhabdomyosarcoma (73%). Craniofacial tumor site was predominant in 64% of patients, followed by base of skull (18%). For one individual case the synthetic CT showed an increase in the median D2 and Dmax dose on the spinal cord from 20.5 GyRBE to 24.8 GyRBE and 14.7 GyRBE to 25.1 GyRBE, respectively. Otherwise, doses received by OARs remained relatively stable. Similarly, the target volume coverage seen by D95% and V95% remained unchanged. CONCLUSIONS The method of transferring anatomical changes from MRIs to a synthetic CTs was successfully implemented and validated with simple, commonly available tools. In the frame of our early results on a small cohort, no clinical relevant deterioration for neither PTV coverage nor an increased dose burden to OARs occurred. However, the study will be continued to identify a pediatric patient cohort, which benefits from adaptive treatment planning.
Collapse
Affiliation(s)
- Christian Bäumer
- West German Proton Therapy Centre Essen, 45147 Essen, Germany; (R.F.); (J.K.); (S.N.); (T.S.); (R.W.); (B.T.)
- University Hospital Essen, 45147 Essen, Germany
- West German Cancer Center (WTZ), 45147 Essen, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Department of Physics, Technische Universität Dortmund, 44227 Dortmund, Germany
- Correspondence:
| | - Rezarta Frakulli
- West German Proton Therapy Centre Essen, 45147 Essen, Germany; (R.F.); (J.K.); (S.N.); (T.S.); (R.W.); (B.T.)
- University Hospital Essen, 45147 Essen, Germany
- West German Cancer Center (WTZ), 45147 Essen, Germany
- Department of Particle Therapy, 45147 Essen, Germany
| | - Jessica Kohl
- West German Proton Therapy Centre Essen, 45147 Essen, Germany; (R.F.); (J.K.); (S.N.); (T.S.); (R.W.); (B.T.)
- University Hospital Essen, 45147 Essen, Germany
- West German Cancer Center (WTZ), 45147 Essen, Germany
| | - Sindhu Nagaraja
- West German Proton Therapy Centre Essen, 45147 Essen, Germany; (R.F.); (J.K.); (S.N.); (T.S.); (R.W.); (B.T.)
- University Hospital Essen, 45147 Essen, Germany
- West German Cancer Center (WTZ), 45147 Essen, Germany
- Department of Particle Therapy, 45147 Essen, Germany
| | - Theresa Steinmeier
- West German Proton Therapy Centre Essen, 45147 Essen, Germany; (R.F.); (J.K.); (S.N.); (T.S.); (R.W.); (B.T.)
- University Hospital Essen, 45147 Essen, Germany
- West German Cancer Center (WTZ), 45147 Essen, Germany
- Department of Particle Therapy, 45147 Essen, Germany
| | - Rasin Worawongsakul
- West German Proton Therapy Centre Essen, 45147 Essen, Germany; (R.F.); (J.K.); (S.N.); (T.S.); (R.W.); (B.T.)
- University Hospital Essen, 45147 Essen, Germany
- West German Cancer Center (WTZ), 45147 Essen, Germany
- Department of Particle Therapy, 45147 Essen, Germany
- Radiation Oncology Unit, Department of Diagnostic and Therapeutic Radiology, Ramathibodi Hospital, Mahidol University, Nakhon 73170, Thailand
| | - Beate Timmermann
- West German Proton Therapy Centre Essen, 45147 Essen, Germany; (R.F.); (J.K.); (S.N.); (T.S.); (R.W.); (B.T.)
- University Hospital Essen, 45147 Essen, Germany
- West German Cancer Center (WTZ), 45147 Essen, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Department of Particle Therapy, 45147 Essen, Germany
| |
Collapse
|