1
|
赵 金, 贾 亿, 毛 汉, 王 世, 徐 凡, 李 鑫, 陶 冶, 薛 蕾, 刘 树, 宋 青, 周 必. [Effect of different delayed cooling time on organ injuries in rat models of exertional heat stroke]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:1858-1865. [PMID: 39523085 PMCID: PMC11526461 DOI: 10.12122/j.issn.1673-4254.2024.10.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Indexed: 11/16/2024]
Abstract
METHODS To investigate how the timing of cooling therapy affects organ injuries in rats with exertional heat stroke (EHS) and explore the possible mechanisms. METHODS A total of 60 adult male Wistar rat models of EHS were randomized into model group without active cooling after modeling, immediate cooling group with cold water bath immediately after modeling, delayed cooling groups with cold water bath at 5, 15 and 30 min after modeling, with another 12 mice without EHS as the normal control group. The changes in core body temperature of the mice were recorded and the cooling rate was calculated. After observation for 24 h, the mice were euthanized and blood samples were collected for detection of interleukin-1β (IL-1β), IL-2, IL-4, IL-6, IL-10, and interferon-γ, followed by pathological examination of the vital organs. The rats that died within 24 h were immediately dissected for examination. RESULTS The number of deaths of the model rats within 24 h increased significantly with the time of delay of cooling treatment. The delay of cooling was positively correlated (r=0.996, P=0.004) while the cooling rate negatively correlated with the mortality rate (r=-0.961, P=0.009). The inflammatory cytokine levels presented with different patterns of variations among the cooling intervention groups. All the rat models of EHS had significant organ damages characterized mainly by epithelial shedding, edema, effusion, and inflammatory cell infiltration, and brain and renal injuries reached the peak level at 24 h after EHS. CONCLUSION EHS causes significant nonspecific pathologies of varying severities in the vital organs of rats, and the injuries worsen progressively with the delay of cooling. There is a significant heterogeneity in changes of serum inflammatory cytokines in rats with different timing of cooling intervention following EHS.
Collapse
|
2
|
Li T, Lin C, Zhao B, Li Z, Zhao Y, Han X, Dai M, Guo J, Wang W. Development and validation of a nomogram for predicting clinically relevant delayed gastric emptying in patients undergoing total pancreatectomy. BMC Surg 2024; 24:283. [PMID: 39363181 PMCID: PMC11448429 DOI: 10.1186/s12893-024-02575-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/17/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Current research on delayed gastric emptying (DGE) after pancreatic surgery is predominantly focused on pancreaticoduodenectomy (PD), with little exploration into DGE following total pancreatectomy (TP). This study aims to investigate the risk factors for DGE after TP and develop a predictive model. METHODS This retrospective cohort study included 106 consecutive cases of TP performed between January 2013 and December 2023 at Peking Union Medical College Hospital (PUMCH). After applying the inclusion criteria, 96 cases were selected for analysis. These patients were randomly divided into a training set (n = 67) and a validation set (n = 29) in a 7:3 ratio. LASSO regression and multivariate logistic regression analyses were used to identify factors associated with clinically relevant DGE (grades B/C) and to construct a predictive nomogram. The ROC curve, calibration curve, decision curve analysis (DCA), and clinical impact curve (CIC) were employed to evaluate the model's prediction accuracy. RESULTS The predictive model identified end-to-side gastrointestinal anastomosis, intraoperative blood transfusion, and venous reconstruction as risk factors for clinically relevant DGE after TP. The ROC was 0.853 (95%CI 0.681-0.900) in the training set and 0.789 (95%CI 0.727-0.857) in the validation set. The calibration curve, DCA, and CIC confirmed the accuracy and practicality of the nomogram. CONCLUSION We developed a novel predictive model that accurately identifies potential risk factors associated with clinically relevant DGE in patients undergoing TP.
Collapse
Affiliation(s)
- Tianyu Li
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chen Lin
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bangbo Zhao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zeru Li
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yutong Zhao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xianlin Han
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Menghua Dai
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junchao Guo
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Weibin Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
3
|
Borges A, Bento L. Organ crosstalk and dysfunction in sepsis. Ann Intensive Care 2024; 14:147. [PMID: 39298039 DOI: 10.1186/s13613-024-01377-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 09/10/2024] [Indexed: 09/21/2024] Open
Abstract
Sepsis is a dysregulated immune response to an infection that leads to organ dysfunction. Sepsis-associated organ dysfunction involves multiple inflammatory mechanisms and complex metabolic reprogramming of cellular function. These mechanisms cooperate through multiple organs and systems according to a complex set of long-distance communications mediated by cellular pathways, solutes, and neurohormonal actions. In sepsis, the concept of organ crosstalk involves the dysregulation of one system, which triggers compensatory mechanisms in other systems that can induce further damage. Despite the abundance of studies published on organ crosstalk in the last decade, there is a need to formulate a more comprehensive framework involving all organs to create a more detailed picture of sepsis. In this paper, we review the literature published on organ crosstalk in the last 10 years and explore how these relationships affect the progression of organ failure in patients with septic shock. We explored these relationships in terms of the heart-kidney-lung, gut-microbiome-liver-brain, and adipose tissue-muscle-bone crosstalk in sepsis patients. A deep connection exists among these organs based on crosstalk. We also review how multiple therapeutic interventions administered in intensive care units, such as mechanical ventilation, antibiotics, anesthesia, nutrition, and proton pump inhibitors, affect these systems and must be carefully considered when managing septic patients. The progression to multiple organ dysfunction syndrome in sepsis patients is still one of the most frequent causes of death in critically ill patients. A better understanding and monitoring of the mechanics of organ crosstalk will enable the anticipation of organ damage and the development of individualized therapeutic strategies.
Collapse
Affiliation(s)
- André Borges
- Intensive Care Unit of Hospital de São José, Unidade de Urgência Médica, Rua José António Serrano, Lisbon, 1150-199, Portugal.
- NOVA Medical School, Campo dos Mártires da Pátria 130, Lisbon, 1169-056, Portugal.
| | - Luís Bento
- Intensive Care Unit of Hospital de São José, Unidade de Urgência Médica, Rua José António Serrano, Lisbon, 1150-199, Portugal
- NOVA Medical School, Campo dos Mártires da Pátria 130, Lisbon, 1169-056, Portugal
| |
Collapse
|
4
|
Zhou M, Lin X, Wang L, Yang C, Yu Y, Zhang Q. Preparation and Application of Hemostatic Hydrogels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309485. [PMID: 38102098 DOI: 10.1002/smll.202309485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/28/2023] [Indexed: 12/17/2023]
Abstract
Hemorrhage remains a critical challenge in various medical settings, necessitating the development of advanced hemostatic materials. Hemostatic hydrogels have emerged as promising solutions to address uncontrolled bleeding due to their unique properties, including biocompatibility, tunable physical characteristics, and exceptional hemostatic capabilities. In this review, a comprehensive overview of the preparation and biomedical applications of hemostatic hydrogels is provided. Particularly, hemostatic hydrogels with various materials and forms are introduced. Additionally, the applications of hemostatic hydrogels in trauma management, surgical procedures, wound care, etc. are summarized. Finally, the limitations and future prospects of hemostatic hydrogels are discussed and evaluated. This review aims to highlight the biomedical applications of hydrogels in hemorrhage management and offer insights into the development of clinically relevant hemostatic materials.
Collapse
Affiliation(s)
- Minyu Zhou
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiang Lin
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, 20520, Finland
| | - Li Wang
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, 20520, Finland
| | - Chaoyu Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Yunru Yu
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, 20520, Finland
| | - Qingfei Zhang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| |
Collapse
|
5
|
Costantini TW, Kornblith LZ, Pritts T, Coimbra R. The intersection of coagulation activation and inflammation after injury: What you need to know. J Trauma Acute Care Surg 2024; 96:347-356. [PMID: 37962222 PMCID: PMC11001294 DOI: 10.1097/ta.0000000000004190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Affiliation(s)
- Todd W Costantini
- From the Division of Trauma, Surgical Critical Care, Burns and Acute Care Surgery, Department of Surgery (T.W.C.), UC San Diego School of Medicine, San Diego; Department of Surgery (L.Z.K.), Zuckerberg San Francisco General Hospital, University of California, San Francisco, San Francisco, California; Department of Surgery (T.P.), University of Cincinnati College of Medicine, Cincinnati, Ohio; and Comparative Effectiveness and Clinical Outcomes Research Center (R.C.), Riverside University Health System, Loma Linda University School of Medicine, Riverside, California
| | | | | | | |
Collapse
|
6
|
Adeli OA, Heidari-Soureshjani S, Rostamian S, Azadegan-Dehkordi Z, Khaghani A. Effects and Mechanisms of Fisetin against Ischemia-reperfusion Injuries: A Systematic Review. Curr Pharm Biotechnol 2024; 25:2138-2153. [PMID: 38310454 DOI: 10.2174/0113892010281821240102105415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/13/2023] [Accepted: 12/22/2023] [Indexed: 02/05/2024]
Abstract
BACKGROUND Ischemia-reperfusion injury (IRI) is a well-known ailment that can disturb organ function. OBJECTIVES This systematic review study investigated fisetin's effects and possible mechanisms in attenuating myocardial, cerebral, renal, and hepatic IRIs. METHODS This systematic review included studies earlier than Sep 2023 by following the PRISMA statement 2020. After determining inclusion and exclusion criteria and related keywords, bibliographic databases, such as Cochrane Library, PubMed, Web of Science, Embase, and Scopus databases, were used to search the relevant studies. Studies were imported in End- Note X8, and the primary information was recorded in Excel. RESULTS Fisetin reduced reactive oxygen species (ROS) generation and upregulated antioxidant enzymes, such as superoxide dismutase (SOD), glutathione (GSH), catalase (CAT), and glutathione peroxidase (GPx), in ischemic tissues. Moreover, fisetin can attenuate oxidative stress by activating phosphoinositide-3-kinase-protein kinase B/Akt (PI3K/Akt) and nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathways. Fisetin has been indicated to prevent the activation of several pro-inflammatory signaling pathways, including NF-κB (Nuclear factor kappa-light-chain-enhancer of activated B cells) and MAPKs (Mitogen-activated protein kinases). It also inhibits the production of pro-inflammatory cytokines and enzymes like tumor necrosis factor-a (TNF-α), inducible-NO synthase (iNOS), cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), interleukin-1β (IL-1β), IL-1, and IL-6. Fisetin attenuates IRI by improving mitochondrial function, anti-apoptotic effects, promoting autophagy, and preserving tissues from histological changes induced by IRIs. CONCLUSION Fisetin, by antioxidant, anti-inflammatory, mitochondrial protection, promoting autophagy, and anti-apoptotic properties, can reduce cell injury due to myocardial, cerebral renal, and hepatic IRIs without any significant side effects.
Collapse
Affiliation(s)
- Omid-Ali Adeli
- Department of Pathology, Lorestan University of Medical Sciences, Khorramabad, Iran
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | | - Sahar Rostamian
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Zahra Azadegan-Dehkordi
- Oriented Nursing Midwifery Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Armin Khaghani
- Skin Diseases and Leishmaniasis Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|