1
|
Cau MF, Ferraresso F, Seadler M, Badior K, Zhang Y, Ketelboeter LM, Rodriguez GG, Chen T, Ferraresso M, Wietrzny A, Robertson M, Haugen A, Cullis PR, de Moya M, Dyer M, Kastrup CJ. siRNA-mediated reduction of a circulating protein in swine using lipid nanoparticles. Mol Ther Methods Clin Dev 2024; 32:101258. [PMID: 38779336 PMCID: PMC11109470 DOI: 10.1016/j.omtm.2024.101258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
Genetic manipulation of animal models is a fundamental research tool in biology and medicine but is challenging in large animals. In rodents, models can be readily developed by knocking out genes in embryonic stem cells or by knocking down genes through in vivo delivery of nucleic acids. Swine are a preferred animal model for studying the cardiovascular and immune systems, but there are limited strategies for genetic manipulation. Lipid nanoparticles (LNPs) efficiently deliver small interfering RNA (siRNA) to knock down circulating proteins, but swine are sensitive to LNP-induced complement activation-related pseudoallergy (CARPA). We hypothesized that appropriately administering optimized siRNA-LNPs could knock down circulating levels of plasminogen, a blood protein synthesized in the liver. siRNA-LNPs against plasminogen (siPLG) reduced plasma plasminogen protein and hepatic plasminogen mRNA levels to below 5% of baseline values. Functional assays showed that reducing plasminogen levels modulated systemic blood coagulation. Clinical signs of CARPA were not observed, and occasional mild and transient hepatotoxicity was present in siPLG-treated animals at 5 h post-infusion, which returned to baseline by 7 days. These findings advance siRNA-LNPs in swine models, enabling genetic engineering of blood and hepatic proteins, which can likely expand to proteins in other tissues in the future.
Collapse
Affiliation(s)
- Massimo F. Cau
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Francesca Ferraresso
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
| | - Monica Seadler
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Department of Surgery, Division of Trauma and Acute Care Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | - Youjie Zhang
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
| | | | | | - Taylor Chen
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
| | | | | | - Madelaine Robertson
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Amber Haugen
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
| | - Pieter R. Cullis
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Marc de Moya
- Department of Surgery, Division of Trauma and Acute Care Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mitchell Dyer
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Department of Surgery, Division of Vascular and Endovascular Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Christian J. Kastrup
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Department of Surgery, Division of Trauma and Acute Care Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Departments of Biochemistry, Biomedical Engineering, and Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
2
|
Durbin S, Brito A, Johnson A, Cotton B, Rowell S, Schreiber M. Association of fibrinolysis phenotype with patient outcomes following traumatic brain injury. J Trauma Acute Care Surg 2024; 96:482-486. [PMID: 37700441 PMCID: PMC10922039 DOI: 10.1097/ta.0000000000004122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
BACKGROUND Impaired coagulation is associated with elevated risk of mortality in trauma patients. Prior studies have demonstrated increased mortality in patients with hyperfibrinolysis (HF) and fibrinolysis shutdown (SD). In addition, prior studies have demonstrated no effect of tranexamic acid (TXA) on fibrinolysis phenotypes. We examined the association of admission fibrinolysis phenotype with traumatic brain injury (TBI) patient outcomes. METHODS Data were extracted from a placebo-controlled multicenter clinical trial. Patients ≥15 years with TBI (Glasgow Coma Scale score, 3-12) and systolic blood pressure ≥90 mm Hg were randomized in the out-of-hospital setting to receive placebo bolus/placebo infusion (Placebo), 1 gram (g) TXA bolus/1 g TXA infusion (bolus maintenance [BM]); or 2 g TXA bolus/placebo infusion (bolus only [BO]). Fibrinolysis phenotypes on admission were determined by clot lysis at 30 minutes (LY30): SD, ≤0.8%; physiologic, 0.9% to 2.9%; HF, ≥3%. Logistic regression was used to control for age, sex, penetrating injury, Injury Severity Score, maximum head AIS, and TXA treatment group. RESULTS Seven hundred forty-seven patients met inclusion criteria. Fibrinolysis shutdown was the most common phenotype in all treatment groups and was associated with increased age, Injury Severity Score, and presence of intracranial hemorrhage (ICH). Inpatient mortality was 15.2% for SD and HF, and 10.6% for physiologic ( p = 0.49). No differences in mortality, disability rating scale at 6 months, acute kidney injury, acute respiratory distress syndrome, or multi-organ failure were noted between fibrinolysis phenotypes. CONCLUSION SD is the most common phenotype expressed in moderate to severe TBI. In TBI, there is no association between fibrinolysis phenotype and mortality or other major complications. LEVEL OF EVIDENCE Prognostic and Epidemiological; Level IV.
Collapse
Affiliation(s)
| | - Alexandra Brito
- Oregon Health & Science University, Portland, OR
- The Queen’s Medical Center, Honolulu, HI
| | | | | | - Susan Rowell
- The University of Chicago Medicine & Biological Sciences, Chicago, IL
| | | |
Collapse
|
3
|
Coleman JR, Moore EE, Kelher MR, Jones K, Cohen MJ, Banerjee A, Silliman CC. Losing the forest for the trees: The complexities of fibrinolysis will never be explained with one variable alone. J Trauma Acute Care Surg 2024; 96:e5-e7. [PMID: 37784230 PMCID: PMC11250562 DOI: 10.1097/ta.0000000000004137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Fibrinolytic shutdown (versus hypofibrinolysis) = plasmin burst followed by diminished fibrinolysis. After thrombin and plasmin burst, fibrinolysis is inhibited, mediated by increased TAFI. #TAFI #TIC #surgscience @JuliaColemanMD @CUDeptSurg @DenverHealthMed @OhioStateSurg @mitchelljayc
Collapse
|
4
|
Weber B, Sturm R, Henrich D, Marzi I, Leppik L. CD44+ and CD31+ extracellular vesicles (EVs) are significantly reduced in polytraumatized patients with hemorrhagic shock - evaluation of their diagnostic and prognostic potential. Front Immunol 2023; 14:1196241. [PMID: 37662913 PMCID: PMC10471799 DOI: 10.3389/fimmu.2023.1196241] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/25/2023] [Indexed: 09/05/2023] Open
Abstract
Background Hemorrhagic shock (HS) is responsible for approximately 2 million deaths per year worldwide and is caused in 80% by polytrauma. These patients need a precise and quick diagnostic, which should be based on a combination of laboratory markers and radiological data. Extracellular vesicles (EVs) were described as potential new markers and mediators in trauma. The aim of the present study was to analyze, whether the surface epitopes of plasma-EVs reflect HS in polytraumatized patients and whether cell-specific EV subpopulations are useful diagnostic tools. Material and methods Plasma samples from polytraumatized patients (ISS ≥16) with HS (n=10) and without (n=15), were collected at emergency room (ER) and 24h after trauma. Plasma-EVs were isolated via size exclusion chromatography and EV-concentrations were detected by Coomassie Plus (Bradford) Assay. The EVs subpopulations were investigated by a bead-based multiplex flow cytometry measurement of surface epitopes and were compared with healthy controls (n=10). To investigate the diagnostic and prognostic potential of EVs subpopulations, results were correlated with clinical outcome parameters documented in the electronical patients' record. Results We observed a significant reduction of the total amount of plasma EVs in polytrauma patients with HS, as compared to polytrauma patients without HS and healthy controls. We found significant reduction of CD42a+ and CD41b+ (platelet-derived) EVs in all polytrauma patients, as well as a reduction of CD29+ EVs compared to healthy volunteers (*p<0.05). CD44+ and CD31+ EVs were specifically altered in patients with HS (*p<0.05). Both EV populations showed a moderate correlation (r² = 0.42) with the transfusion of erythrocyte concentrate, were associated with non-survival and the need for catecholamines (*p<0.05). Conclusion Our data reveal that polytrauma patients with a hemorrhagic shock are characterized by a reduction of CD44+ and CD31+ plasma-EVs. Both EV populations showed a moderate correlation with the need of erythrocyte transfusion, were associated with non-survival and the need for catecholamines.
Collapse
Affiliation(s)
- Birte Weber
- Department of Trauma−, Hand− and Reconstructive Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
5
|
LaCroix IS, Cohen M, Moore EE, Dzieciatkowska M, Silliman CC, Hansen KC, D'Alessandro A. Omics markers of platelet transfusion in trauma patients. Transfusion 2023; 63:1447-1462. [PMID: 37466356 DOI: 10.1111/trf.17472] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/26/2023] [Accepted: 05/30/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND Even in the era of the COVID-19 pandemic, trauma remains the global leading cause of mortality under the age of 49. Trauma-induced coagulopathy is a leading driver of early mortality in critically ill patients, and transfusion of platelet products is a life-saving intervention to restore hemostasis in the bleeding patient. However, despite extensive functional studies based on viscoelastic assays, limited information is available about the impact of platelet transfusion on the circulating molecular signatures in trauma patients receiving platelet transfusion. MATERIALS AND METHODS To bridge this gap, we leveraged metabolomics and proteomics approaches to characterize longitudinal plasma samples (n = 118; up to 11 time points; total samples: 759) from trauma patients enrolled in the Control Of Major Bleeding After Trauma (COMBAT) study. Samples were collected in the field, in the emergency department (ED), and at intervals up to 168 h (7 days) post-hospitalization. Transfusion of platelet (PLT) products was performed (n = 30; total samples: 250) in the ED through 24 h post-hospitalization. Longitudinal plasma samples were subjected to mass spectrometry-based metabolomics and proteomics workflows. Multivariate analyses were performed to determine omics markers of transfusion of one, two, three, or more PLT transfusions. RESULTS Higher levels of tranexamic acid (TXA), inflammatory proteins, carnitines, and polyamines were detected in patients requiring PLT transfusion. Correlation of PLT units with omics data suggested sicker patients required more units and partially overlap with the population requiring transfusion of packed red blood cell products. Furthermore, platelet activation was likely increased in the most severely injured patients. Fatty acid levels were significantly lower in PLT transfusion recipients (at time of maximal transfusion: Hour 4) compared with non-recipients, while carnitine levels were significantly higher. Fatty acid levels restore later in the time course (e.g., post-PLT transfusion). DISCUSSION The present study provides the first multi-omics characterization of platelet transfusion efficacy in a clinically relevant cohort of trauma patients. Physiological alterations following transfusion were detected, highlighting the efficacy of mass spectrometry-based omics techniques to improve personalized transfusion medicine. More specialized clinical research studies focused on PLT transfusion, including organized pre and post transfusion sample collection and limitation to PLT products only, are required to fully understand subsequent metabolomic and proteomic alterations.
Collapse
Affiliation(s)
- Ian S LaCroix
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA
| | - Mitchell Cohen
- Department of Surgery, University of Colorado - Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ernest E Moore
- Department of Surgery, University of Colorado - Anschutz Medical Campus, Aurora, Colorado, USA
- "Ernest E Moore" Trauma Center at Denver Health, Denver, Colorado, USA
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA
| | - Christopher C Silliman
- Vitalant Research Institute, Denver, Colorado, USA
- Department of Pediatrics, University of Colorado - Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|