1
|
Raj V, Claudine S, Subramanian A, Tam K, Biswas A, Bongso A, Fong CY. Histological, immunohistochemical, and genomic evaluation of excisional and diabetic wounds treated with human Wharton's jelly stem cells with and without a nanocarrier. J Cell Biochem 2019; 120:11222-11240. [PMID: 30706534 DOI: 10.1002/jcb.28398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/15/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
We showed in previous studies that human umbilical cord Wharton's jelly stem cells (hWJSCs) improved the healing rates of excisional and diabetic wounds in the mouse model. As an extension of those studies, we report here the more detailed quantitative histological, immunohistochemical, and genomic evaluation of biopsies from those excisional and diabetic wounds in an attempt to understand the mechanisms of the enhanced wound healing aided by hWJSCs. Bright-field microscopic observations and ImageJ software analysis on histological sections of the excisional and diabetic wound biopsies collected at different time points showed that the thickness of the epidermis and dermis, and positive picrosirius-red stained areas for collagen, were significantly greater in the presence of hWJSCs compared with controls (P < 0.05). Immunohistochemistry of the diabetic wound biopsies showed increased positive staining for the vascular endothelial marker CD31 and cell proliferation marker Ki67 in the presence of hWJSCs and its conditioned medium (hWJSC-CM). Quantitative real-time polymerase chain reaction showed upregulation of groups of genes involved in extracellular matrix regulation, collagen biosynthesis, angiogenesis, antifibrosis, granulation, and immunomodulation in the presence of hWJSCs. Taken together, the results demonstrated that hWJSCs and hWJSC-CM that contains the paracrine secretions of hWJSCs, enhance the healing of excisional and diabetic wounds via re-epithelialization, collagen deposition, angiogenesis, and immunomodulation. The inclusion of an Aloe vera-polycaprolactone (AV/PCL) nanocarrier did not significantly change the effect of the hWJSCs. However, the topical application of an AV/PCL nanocarrier impregnated with hWJSCs is convenient and less invasive than the administration of hWJSC injections into wounds.
Collapse
Affiliation(s)
- Vaishnevi Raj
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore
| | - Stephanie Claudine
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore
| | - Arjunan Subramanian
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore
| | - Kimberley Tam
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance in Research and Technology, Singapore
| | - Arijit Biswas
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore
| | - Ariff Bongso
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore
| | - Chui-Yee Fong
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore
| |
Collapse
|
2
|
Sung DK, Chang YS, Sung SI, Ahn SY, Park WS. Thrombin Preconditioning of Extracellular Vesicles Derived from Mesenchymal Stem Cells Accelerates Cutaneous Wound Healing by Boosting Their Biogenesis and Enriching Cargo Content. J Clin Med 2019; 8:jcm8040533. [PMID: 31003433 PMCID: PMC6517934 DOI: 10.3390/jcm8040533] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/26/2019] [Accepted: 04/12/2019] [Indexed: 12/30/2022] Open
Abstract
The aim of this study was to determine the optimal preconditioning regimen for the wound healing therapeutic efficacy of mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs). To this end, we compared various preconditioning regimens for both the quantitative and qualitative production of MSC-derived EVs, and their therapeutic efficacy for proangiogenic activity in vitro and cutaneous wound healing in vivo. After preconditioning with thrombin (40 U), H2O2 (50 μM), lipopolysaccharide (1 μg/mL), or hypoxia (10% O2), EV secretion was assessed quantitatively by measuring production per cell and protein quantification, and qualitatively by measuring a proteome profiler and an enzyme-linked immunosorbent assay (ELISA) contained within EVs. The therapeutic efficacy of EVs was assessed in vitro by proliferation, migration and tube formation assays of human umbilical cord blood endothelial cells (HUVECs), and in vivo by quantification of cutaneous wound healing. Thrombin preconditioning optimally boosted EV production and enriched various growth factors including vascular endothelial growth factor and angiogenin contained within EVs compared to other preconditioning regimens. Thrombin preconditioning optimally enhanced proliferation, the migration and tube formation of HUVECs in vitro via pERK1/2 and pAKT signaling pathways, and cutaneous wound healing in vivo compared to other preconditioning regimens. Thrombin preconditioning exhibited optimal therapeutic efficacy compared with other preconditioning regimens in promoting proangiogenic activity in vitro and in enhancing cutaneous wound healing in vivo. These preconditioning regimen-dependent variations in therapeutic efficacy might be mediated by boosting EV production and enriching their cargo content.
Collapse
Affiliation(s)
- Dong Kyung Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea.
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Samsung Biomedical Research Institute, Seoul 06351, Korea.
| | - Yun Sil Chang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea.
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Samsung Biomedical Research Institute, Seoul 06351, Korea.
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea.
| | - Se In Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea.
| | - So Yoon Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea.
| | - Won Soon Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea.
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Samsung Biomedical Research Institute, Seoul 06351, Korea.
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea.
| |
Collapse
|
3
|
Martinello T, Gomiero C, Perazzi A, Iacopetti I, Gemignani F, DeBenedictis GM, Ferro S, Zuin M, Martines E, Brun P, Maccatrozzo L, Chiers K, Spaas JH, Patruno M. Allogeneic mesenchymal stem cells improve the wound healing process of sheep skin. BMC Vet Res 2018; 14:202. [PMID: 29940954 PMCID: PMC6019727 DOI: 10.1186/s12917-018-1527-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 06/18/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Skin wound healing includes a system of biological processes, collectively restoring the integrity of the skin after injury. Healing by second intention refers to repair of large and deep wounds where the tissue edges cannot be approximated and substantial scarring is often observed. The objective of this study was to evaluate the effects of mesenchymal stem cells (MSCs) in second intention healing using a surgical wound model in sheep. MSCs are known to contribute to the inflammatory, proliferative, and remodeling phases of the skin regeneration process in rodent models, but data are lacking for large animal models. This study used three different approaches (clinical, histopathological, and molecular analysis) to assess the putative action of allogeneic MSCs at 15 and 42 days after lesion creation. RESULTS At 15 days post-lesion, the wounds treated with MSCs showed a higher degree of wound closure, a higher percentage of re-epithelialization, proliferation, neovascularization and increased contraction in comparison to a control group. At 42 days, the wounds treated with MSCs had more mature and denser cutaneous adnexa compared to the control group. The MSCs-treated group showed an absence of inflammation and expression of CD3+ and CD20+. Moreover, the mRNA expression of hair-keratine (hKER) was observed in the MSCs-treated group 15 days after wound creation and had increased significantly by 42 days post-wound creation. Collagen1 gene (Col1α1) expression was also greater in the MSCs-treated group compared to the control group at both days 15 and 42. CONCLUSION Peripheral blood-derived MSCs may improve the quality of wound healing both for superficial injuries and deep lesions. MSCs did not induce an inflammatory response and accelerated the appearance of granulation tissue, neovascularization, structural proteins, and skin adnexa.
Collapse
Affiliation(s)
- T. Martinello
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020, Legnaro – Agripolis, Padua, Italy
| | - C. Gomiero
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020, Legnaro – Agripolis, Padua, Italy
| | - A. Perazzi
- Department of Animal Medicine, Production and Health, University of Padua, Padua, Italy
| | - I. Iacopetti
- Department of Animal Medicine, Production and Health, University of Padua, Padua, Italy
| | - F. Gemignani
- Department of Animal Medicine, Production and Health, University of Padua, Padua, Italy
| | - G. M. DeBenedictis
- Department of Animal Medicine, Production and Health, University of Padua, Padua, Italy
| | - S. Ferro
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020, Legnaro – Agripolis, Padua, Italy
| | | | | | - P. Brun
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - L. Maccatrozzo
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020, Legnaro – Agripolis, Padua, Italy
| | - K. Chiers
- Department of Pathology, Bacteriology and Poultry Diseases, University of Gent, Ghent, Belgium
| | - J. H. Spaas
- Global Stem cell Technology-ANACURA group, Noorwegenstraat 4, 9940 Evergem, Belgium
| | - M. Patruno
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020, Legnaro – Agripolis, Padua, Italy
| |
Collapse
|
4
|
Amato B, Compagna R, Amato M, Butrico L, Fugetto F, Chibireva MD, Barbetta A, Cannistrà M, de Franciscis S, Serra R. The role of adult tissue-derived stem cells in chronic leg ulcers: a systematic review focused on tissue regeneration medicine. Int Wound J 2015; 13:1289-1298. [PMID: 26399452 DOI: 10.1111/iwj.12499] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/10/2015] [Accepted: 08/16/2015] [Indexed: 12/12/2022] Open
Abstract
Wound healing is an articulated process that can be impaired in different steps in chronic wounds. Chronic leg ulcers are a special type of non-healing wounds that represent an important cause of morbidity and public cost in western countries. Because of their common recurrence after conventional managements and increasing prevalence due to an ageing population, newer approaches are needed. Over the last decade, the research has been focused on innovative treatment strategies, including stem-cell-based therapies. After the initial interest in embryonic pluripotent cells, several different types of adult stem cells have been studied because of ethical issues. Specific types of adult stem cells have shown a high potentiality in tissue healing, in both in vitro and in vivo studies. Aim of this review is to clearly report the newest insights on tissue regeneration medicine, with particular regard for chronic leg ulcers.
Collapse
Affiliation(s)
- Bruno Amato
- Interuniversity Center of Phlebolymphology (CIFL). International Research and Educational Program in Clinical and Experimental Biotechnology, Headquarters, University Magna Graecia of Catanzaro, Catanzaro, Italy.,Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Rita Compagna
- Interuniversity Center of Phlebolymphology (CIFL). International Research and Educational Program in Clinical and Experimental Biotechnology, Headquarters, University Magna Graecia of Catanzaro, Catanzaro, Italy.,Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Maurizio Amato
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Lucia Butrico
- Department of Medical and Surgical Sciences, University of Catanzaro, Catanzaro, Italy
| | - Francesco Fugetto
- School of Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Mariia D Chibireva
- School of Medicine, Kazan State Medical University, Kazan, Tatarstan Republic, Russian Federation
| | - Andrea Barbetta
- Department of Medical and Surgical Sciences, University of Catanzaro, Catanzaro, Italy
| | - Marco Cannistrà
- Department of Surgery, Annunziata Hospital of Cosenza, Cosenza, Italy
| | - Stefano de Franciscis
- Interuniversity Center of Phlebolymphology (CIFL). International Research and Educational Program in Clinical and Experimental Biotechnology, Headquarters, University Magna Graecia of Catanzaro, Catanzaro, Italy.,Department of Medical and Surgical Sciences, University of Catanzaro, Catanzaro, Italy
| | - Raffaele Serra
- Interuniversity Center of Phlebolymphology (CIFL). International Research and Educational Program in Clinical and Experimental Biotechnology, Headquarters, University Magna Graecia of Catanzaro, Catanzaro, Italy.,Department of Medical and Surgical Sciences, University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
5
|
Gibbons GW. Grafix ®, a Cryopreserved Placental Membrane, for the Treatment of Chronic/Stalled Wounds. Adv Wound Care (New Rochelle) 2015; 4:534-544. [PMID: 26339532 PMCID: PMC4529022 DOI: 10.1089/wound.2015.0647] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/09/2015] [Indexed: 12/17/2022] Open
Abstract
Objective: To discuss the use of Grafix®, a commercially available, cryopreserved placental membrane, for the treatment of chronic/stalled wounds of different etiologies. Approach: To describe the unique composition of Grafix, to provide an overview of the existing clinical evidence supporting the benefits of Grafix for wound treatment, and to share the experience of the South Shore Hospital Center for Wound Healing (Weymouth, MA) with Grafix for the treatment of nonhealing wounds. Results: Clinical evidence supports the safety and efficacy of Grafix for the treatment of chronic/stalled wounds, including those that have failed other advanced treatment modalities. Innovation: Grafix is a cryopreserved placental membrane manufactured utilizing a novel technology that enables the preservation of all placental membrane components in their native state. Placental membranes have a unique composition of extracellular matrix, growth factors, and cells (including mesenchymal stem cells), which makes this tissue unique among other advanced biological wound treatment modalities. Conclusion: Clinical evidences support the benefits of Grafix for head-to-toe wound treatment.
Collapse
Affiliation(s)
- Gary W Gibbons
- South Shore Hospital Center for Wound Healing , Weymouth, Massachusetts
| |
Collapse
|
6
|
Woodard GE, Ji Y, Christopherson GT, Wolcott KM, Hall DJ, Jackson WM, Nesti LJ. Characterization of discrete subpopulations of progenitor cells in traumatic human extremity wounds. PLoS One 2014; 9:e114318. [PMID: 25490403 PMCID: PMC4260839 DOI: 10.1371/journal.pone.0114318] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 11/05/2014] [Indexed: 12/22/2022] Open
Abstract
Here we show that distinct subpopulations of cells exist within traumatic human extremity wounds, each having the ability to differentiate into multiple cells types in vitro. A crude cell suspension derived from traumatized muscle was positively sorted for CD29, CD31, CD34, CD56 or CD91. The cell suspension was also simultaneously negatively sorted for either CD45 or CD117 to exclude hematopoietic stem cells. These subpopulations varied in terms their total numbers and their abilities to grow, migrate, differentiate and secrete cytokines. While all five subpopulations demonstrated equal abilities to undergo osteogenesis, they were distinct in their ability to undergo adipogenesis and vascular endotheliogenesis. The most abundant subpopulations were CD29+ and CD34+, which overlapped significantly. The CD29+ and CD34+ cells had the greatest proliferative and migratory capacity while the CD56+ subpopulation produced the highest amounts of TGFß1 and TGFß2. When cultured under endothelial differentiation conditions the CD29+ and CD34+ cells expressed VE-cadherin, Tie2 and CD31, all markers of endothelial cells. These data indicate that while there are multiple cell types within traumatized muscle that have osteogenic differentiation capacity and may contribute to bone formation in post-traumatic heterotopic ossification (HO), the major contributory cell types are CD29+ and CD34+, which demonstrate endothelial progenitor cell characteristics.
Collapse
Affiliation(s)
- Geoffrey E. Woodard
- Department of Surgery, Uniformed Services University of Health Sciences, Bethesda, MD, United States of America
- * E-mail: (GEW); (LJN)
| | - Youngmi Ji
- Clinical and Experimental Orthopaedics, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Gregory T. Christopherson
- Clinical and Experimental Orthopaedics, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Karen M. Wolcott
- Laboratory of Genome Integrity, Nation Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - David J. Hall
- Clinical and Experimental Orthopaedics, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Wesley M. Jackson
- Department of Surgery, Uniformed Services University of Health Sciences, Bethesda, MD, United States of America
| | - Leon J. Nesti
- Department of Surgery, Uniformed Services University of Health Sciences, Bethesda, MD, United States of America
- Clinical and Experimental Orthopaedics, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States of America
- Department of Orthopaedic Surgery, Walter Reed National Military Medical Center, Bethesda, MD, United States of America
- * E-mail: (GEW); (LJN)
| |
Collapse
|
7
|
Maxson S, Lopez EA, Yoo D, Danilkovitch-Miagkova A, LeRoux MA. Concise review: role of mesenchymal stem cells in wound repair. Stem Cells Transl Med 2012; 1:142-9. [PMID: 23197761 PMCID: PMC3659685 DOI: 10.5966/sctm.2011-0018] [Citation(s) in RCA: 531] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 01/04/2012] [Indexed: 12/13/2022] Open
Abstract
Wound healing requires a coordinated interplay among cells, growth factors, and extracellular matrix proteins. Central to this process is the endogenous mesenchymal stem cell (MSC), which coordinates the repair response by recruiting other host cells and secreting growth factors and matrix proteins. MSCs are self-renewing multipotent stem cells that can differentiate into various lineages of mesenchymal origin such as bone, cartilage, tendon, and fat. In addition to multilineage differentiation capacity, MSCs regulate immune response and inflammation and possess powerful tissue protective and reparative mechanisms, making these cells attractive for treatment of different diseases. The beneficial effect of exogenous MSCs on wound healing was observed in a variety of animal models and in reported clinical cases. Specifically, they have been successfully used to treat chronic wounds and stimulate stalled healing processes. Recent studies revealed that human placental membranes are a rich source of MSCs for tissue regeneration and repair. This review provides a concise summary of current knowledge of biological properties of MSCs and describes the use of MSCs for wound healing. In particular, the scope of this review focuses on the role MSCs have in each phase of the wound-healing process. In addition, characterization of MSCs containing skin substitutes is described, demonstrating the presence of key growth factors and cytokines uniquely suited to aid in wound repair.
Collapse
Affiliation(s)
- Scott Maxson
- Osiris Therapeutics, Inc., Columbia, Maryland, USA
| | | | - Dana Yoo
- Osiris Therapeutics, Inc., Columbia, Maryland, USA
| | | | | |
Collapse
|