1
|
Moldt JA, Festl-Wietek T, Madany Mamlouk A, Nieselt K, Fuhl W, Herrmann-Werner A. Chatbots for future docs: exploring medical students' attitudes and knowledge towards artificial intelligence and medical chatbots. MEDICAL EDUCATION ONLINE 2023; 28:2182659. [PMID: 36855245 PMCID: PMC9979998 DOI: 10.1080/10872981.2023.2182659] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/06/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Artificial intelligence (AI) in medicine and digital assistance systems such as chatbots will play an increasingly important role in future doctor - patient communication. To benefit from the potential of this technical innovation and ensure optimal patient care, future physicians should be equipped with the appropriate skills. Accordingly, a suitable place for the management and adaptation of digital assistance systems must be found in the medical education curriculum. To determine the existing levels of knowledge of medical students about AI chatbots in particular in the healthcare setting, this study surveyed medical students of the University of Luebeck and the University Hospital of Tuebingen. Using standardized quantitative questionnaires and qualitative analysis of group discussions, the attitudes of medical students toward AI and chatbots in medicine were investigated. From this, relevant requirements for the future integration of AI into the medical curriculum could be identified. The aim was to establish a basic understanding of the opportunities, limitations, and risks, as well as potential areas of application of the technology. The participants (N = 12) were able to develop an understanding of how AI and chatbots will affect their future daily work. Although basic attitudes toward the use of AI were positive, the students also expressed concerns. There were high levels of agreement regarding the use of AI in administrative settings (83.3%) and research with health-related data (91.7%). However, participants expressed concerns that data protection may be insufficiently guaranteed (33.3%) and that they might be increasingly monitored at work in the future (58.3%). The evaluations indicated that future physicians want to engage more intensively with AI in medicine. In view of future developments, AI and data competencies should be taught in a structured way during the medical curriculum and integrated into curricular teaching.
Collapse
Affiliation(s)
| | | | - Amir Madany Mamlouk
- Institute for Neuro- and Bioinformatics, University of Luebeck, Luebeck, Germany
| | - Kay Nieselt
- Institute for Bioinformatics and Medical Informatics, University of Tuebingen, Germany
| | - Wolfgang Fuhl
- Institute for Bioinformatics and Medical Informatics, University of Tuebingen, Germany
| | - Anne Herrmann-Werner
- University of Tuebingen, Tuebingen, Germany
- Department of Internal Medicine VI/Psychosomatic Medicine and Psychotherapy, University Hospital Tuebingen, Tuebingen, Germany
| |
Collapse
|
2
|
Schuh S, Schiele S, Thamm J, Kranz S, Welzel J, Blum A. Implementation of a dermatoscopy curriculum during residency at Augsburg University Hospital in Germany. J Dtsch Dermatol Ges 2023; 21:872-879. [PMID: 37235503 DOI: 10.1111/ddg.15115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/04/2023] [Indexed: 05/28/2023]
Abstract
BACKGROUND AND OBJECTIVES To date, there is no structured program for dermatoscopy training during residency in Germany. Whether and how much dermatoscopy training is acquired is left to the initiative of each resident, although dermatoscopy is one of the core competencies of dermatological training and daily practice. The aim of the study was to establish a structured dermatoscopy curriculum during residency at the University Hospital Augsburg. PATIENTS AND METHODS An online platform with dermatoscopy modules was created, accessible regardless of time and place. Practical skills were acquired under the personal guidance of a dermatoscopy expert. Participants were tested on their level of knowledge before and after completing the modules. Test scores on management decisions and correct dermatoscopic diagnosis were analyzed. RESULTS Results of 28 participants showed improvements in management decisions from pre- to posttest (74.0% vs. 89.4%) and in dermatoscopic accuracy (65.0% vs. 85.6%). Pre- vs. posttest differences in test score (7.05/10 vs. 8.94/10 points) and correct diagnosis were significant (p < 0.001). CONCLUSIONS The dermatoscopy curriculum increases the number of correct management decisions and dermatoscopy diagnoses. This will result in more skin cancers being detected, and fewer benign lesions being excised. The curriculum can be offered to other dermatology training centers and medical professionals.
Collapse
Affiliation(s)
- Sandra Schuh
- Department of Dermatology and Allergology, University Hospital Augsburg, Augsburg, Germany
| | - Stefan Schiele
- Institute of Mathematics, University of Augsburg, Augsburg, Germany
| | - Janis Thamm
- Department of Dermatology and Allergology, University Hospital Augsburg, Augsburg, Germany
| | - Stefanie Kranz
- Department of Dermatology and Allergology, University Hospital Augsburg, Augsburg, Germany
| | - Julia Welzel
- Department of Dermatology and Allergology, University Hospital Augsburg, Augsburg, Germany
| | - Andreas Blum
- Public, Private and Teaching Practice of Dermatology, Konstanz, Germany
| |
Collapse
|
3
|
Schuh S, Schiele S, Thamm J, Kranz S, Welzel J, Blum A. Implementierung eines Dermatoskopie-Curriculums in der Facharztausbildung am Universitätsklinikum Augsburg. J Dtsch Dermatol Ges 2023; 21:872-881. [PMID: 37574685 DOI: 10.1111/ddg.15115_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/04/2023] [Indexed: 08/15/2023]
Abstract
ZusammenfassungHintergrund und ZieleBislang gibt es in Deutschland kein strukturiertes Programm für die Dermatoskopieausbildung während der Facharztausbildung. Es bleibt der Initiative des einzelnen Assistenzarztes überlassen, ob und in welchem Umfang er sich in der Dermatoskopie weiterbildet, obwohl die Dermatoskopie zu den Kernkompetenzen der dermatologischen Ausbildung und der täglichen Praxis gehört. Ziel der Studie war die Etablierung eines strukturierten Dermatoskopie‐Curriculums während der dermatologischen Facharztausbildung am Universitätsklinikum Augsburg.Patienten und MethodikEs wurde eine Online‐Plattform mit Dermatoskopie‐Modulen geschaffen, auf die von überall und jederzeit zugegriffen werden kann. Praktische Fertigkeiten wurden unter individueller Anleitung eines Dermatoskopie‐Experten erworben. Die Teilnehmer wurden vor und nach Abschluss der Module auf ihren Wissensstand getestet. Die Testergebnisse zum therapeutischen Management und zur korrekten dermatoskopischen Diagnose wurden analysiert.ErgebnisseDie Ergebnisse der 28 Teilnehmer verbesserten sich vom Eingangs‐ zum Abschlusstest bei der Managemententscheidung (74,0% vs. 89,4%) und bei der dermatoskopischen Genauigkeit (65,0% vs. 85,6%). Die Unterschiede zwischen Eingangs‐ und Abschlusstest bei der Gesamtpunktzahl (7,05/10 vs. 8,94/10 Punkte) und bei der richtigen Diagnose waren signifikant (p < 0,001).SchlussfolgerungenDas Dermatoskopie‐Curriculum verbessert die Managemententscheidungen und die dermatoskopische Diagnostik der Teilnehmer. Das wird dazu führen, dass mehr Hautkrebsfälle erkannt werden und weniger gutartige Läsionen reseziert werden müssen. Das Curriculum kann anderen dermatologischen Ausbildungszentren und Gesundheitsberufen angeboten werden.
Collapse
Affiliation(s)
- Sandra Schuh
- Klinik für Dermatologie und Allergologie, Universitätsklinikum Augsburg
| | | | - Janis Thamm
- Klinik für Dermatologie und Allergologie, Universitätsklinikum Augsburg
| | - Stefanie Kranz
- Klinik für Dermatologie und Allergologie, Universitätsklinikum Augsburg
| | - Julia Welzel
- Klinik für Dermatologie und Allergologie, Universitätsklinikum Augsburg
| | - Andreas Blum
- Hautarzt- und Lehrpraxis für Dermatologie, Konstanz
| |
Collapse
|
4
|
Giansanti D. Advancing Dermatological Care: A Comprehensive Narrative Review of Tele-Dermatology and mHealth for Bridging Gaps and Expanding Opportunities beyond the COVID-19 Pandemic. Healthcare (Basel) 2023; 11:1911. [PMID: 37444745 DOI: 10.3390/healthcare11131911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Mobile health (mHealth) has recently had significant advances in tele-dermatology (TD) thanks to the developments following the COVID-19 pandemic. This topic is very important, as telemedicine and mHealth, when applied to dermatology, could improve both the quality of healthcare for citizens and the workflow in the health domain. The proposed study was centered on the last three years. We conducted an overview on the opportunities, the perspectives, and the problems involved in TD integration with mHealth. The methodology of the narrative review was based on: (I) a search of PubMed and Scopus and (II) an eligibility assessment, using properly proposed parameters. The outcome of the study showed that during the COVID-19 pandemic, TD integration with mHealth advanced rapidly. This integration enabled the monitoring of dermatological problems and facilitated remote specialist visits, reducing face-to-face interactions. AI and mobile apps have empowered citizens to take an active role in their healthcare. This differs from other imaging sectors where information exchange is limited to professionals. The opportunities for TD in mHealth include improving service quality, streamlining healthcare processes, reducing costs, and providing more accessible care. It can be applied to various conditions, such as (but not limited to) acne, vitiligo, psoriasis, and skin cancers. Integration with AI and augmented reality (AR), as well as the use of wearable sensors, are anticipated as future developments. However, integrating TD with mHealth also brings about problems and challenges related to regulations, ethics, cybersecurity, data privacy, and device management. Scholars and policymakers need to address these issues while involving citizens in the process.
Collapse
|
5
|
Giansanti D. The Artificial Intelligence in Teledermatology: A Narrative Review on Opportunities, Perspectives, and Bottlenecks. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20105810. [PMID: 37239537 DOI: 10.3390/ijerph20105810] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023]
Abstract
Artificial intelligence (AI) is recently seeing significant advances in teledermatology (TD), also thanks to the developments that have taken place during the COVID-19 pandemic. In the last two years, there was an important development of studies that focused on opportunities, perspectives, and problems in this field. The topic is very important because the telemedicine and AI applied to dermatology have the opportunity to improve both the quality of healthcare for citizens and the workflow of healthcare professionals. This study conducted an overview on the opportunities, the perspectives, and the problems related to the integration of TD with AI. The methodology of this review, following a standardized checklist, was based on: (I) a search of PubMed and Scopus and (II) an eligibility assessment, using parameters with five levels of score. The outcome highlighted that applications of this integration have been identified in various skin pathologies and in quality control, both in eHealth and mHealth. Many of these applications are based on Apps used by citizens in mHealth for self-care with new opportunities but also open questions. A generalized enthusiasm has been registered regarding the opportunities and general perspectives on improving the quality of care, optimizing the healthcare processes, minimizing costs, reducing the stress in the healthcare facilities, and in making citizens, now at the center, more satisfied. However, critical issues have emerged related to: (a) the need to improve the process of diffusion of the Apps in the hands of citizens, with better design, validation, standardization, and cybersecurity; (b) the need for better attention paid to medico-legal and ethical issues; and (c) the need for the stabilization of international and national regulations. Targeted agreement initiatives, such as position statements, guidelines, and/or consensus initiatives, are needed to ensure a better result for all, along with the design of both specific plans and shared workflows.
Collapse
|
6
|
Winkler JK, Haenssle HA. [Artificial intelligence-based classification for the diagnostics of skin cancer]. DERMATOLOGIE (HEIDELBERG, GERMANY) 2022; 73:838-844. [PMID: 36094608 DOI: 10.1007/s00105-022-05058-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Convolutional neural networks (CNN) achieve a level of performance comparable or even superior to dermatologists in the assessment of pigmented and nonpigmented skin lesions. In the analysis of images by artificial neural networks, images on a pixel level pass through various layers of the network with different graphic filters. Based on excellent study results, a first deep learning network (Moleanalyzer pro, Fotofinder Systems GmBH, Bad Birnbach, Germany) received market approval in Europe. However, such neural networks also reveal relevant limitations, whereby rare entities with insufficient training images are classified less adequately and image artifacts can lead to false diagnoses. Best results can ultimately be achieved in a cooperation of "man with machine". For future skin cancer screening, automated total body mapping is evaluated, which combines total body photography, automated data extraction and assessment of all relevant skin lesions.
Collapse
Affiliation(s)
- Julia K Winkler
- Universitätshautklinik Heidelberg, Im Neuenheimer Feld 440, 69120, Heidelberg, Deutschland.
| | - Holger A Haenssle
- Universitätshautklinik Heidelberg, Im Neuenheimer Feld 440, 69120, Heidelberg, Deutschland
| |
Collapse
|
7
|
Pecqueux M, Riediger C, Distler M, Oehme F, Bork U, Kolbinger FR, Schöffski O, van Wijngaarden P, Weitz J, Schweipert J, Kahlert C. The use and future perspective of Artificial Intelligence-A survey among German surgeons. Front Public Health 2022; 10:982335. [PMID: 36276381 PMCID: PMC9580562 DOI: 10.3389/fpubh.2022.982335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/05/2022] [Indexed: 01/25/2023] Open
Abstract
Purpose Clinical abundance of artificial intelligence has increased significantly in the last decade. This survey aims to provide an overview of the current state of knowledge and acceptance of AI applications among surgeons in Germany. Methods A total of 357 surgeons from German university hospitals, academic teaching hospitals and private practices were contacted by e-mail and asked to participate in the anonymous survey. Results A total of 147 physicians completed the survey. The majority of respondents (n = 85, 52.8%) stated that they were familiar with AI applications in medicine. Personal knowledge was self-rated as average (n = 67, 41.6%) or rudimentary (n = 60, 37.3%) by the majority of participants. On the basis of various application scenarios, it became apparent that the respondents have different demands on AI applications in the area of "diagnosis confirmation" as compared to the area of "therapy decision." For the latter category, the requirements in terms of the error level are significantly higher and more respondents view their application in medical practice rather critically. Accordingly, most of the participants hope that AI systems will primarily improve diagnosis confirmation, while they see their ethical and legal problems with regard to liability as the main obstacle to extensive clinical application. Conclusion German surgeons are in principle positively disposed toward AI applications. However, many surgeons see a deficit in their own knowledge and in the implementation of AI applications in their own professional environment. Accordingly, medical education programs targeting both medical students and healthcare professionals should convey basic knowledge about the development and clinical implementation process of AI applications in different medical fields, including surgery.
Collapse
Affiliation(s)
- Mathieu Pecqueux
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, National Center for Tumor Diseases Dresden (NCT/UCC), Dresden, Germany
| | - Carina Riediger
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, National Center for Tumor Diseases Dresden (NCT/UCC), Dresden, Germany
| | - Marius Distler
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, National Center for Tumor Diseases Dresden (NCT/UCC), Dresden, Germany
| | - Florian Oehme
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, National Center for Tumor Diseases Dresden (NCT/UCC), Dresden, Germany
| | - Ulrich Bork
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, National Center for Tumor Diseases Dresden (NCT/UCC), Dresden, Germany
| | - Fiona R. Kolbinger
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, National Center for Tumor Diseases Dresden (NCT/UCC), Dresden, Germany
- Else Kröner Fresenius Center for Digital Health (EKFZ) Dresden, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, National Center for Tumor Diseases Dresden (NCT/UCC), Dresden, Germany
| | - Oliver Schöffski
- Chair of Health Management, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nürnberg, Germany
| | - Peter van Wijngaarden
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Jürgen Weitz
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, National Center for Tumor Diseases Dresden (NCT/UCC), Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, German Cancer Research Center (DKFZ), National Center for Tumor Diseases Dresden (NCT/UCC), Heidelberg, Germany
| | - Johannes Schweipert
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, National Center for Tumor Diseases Dresden (NCT/UCC), Dresden, Germany
| | - Christoph Kahlert
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, National Center for Tumor Diseases Dresden (NCT/UCC), Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, German Cancer Research Center (DKFZ), National Center for Tumor Diseases Dresden (NCT/UCC), Heidelberg, Germany
| |
Collapse
|
8
|
Over-Detection of Melanoma-Suspect Lesions by a CE-Certified Smartphone App: Performance in Comparison to Dermatologists, 2D and 3D Convolutional Neural Networks in a Prospective Data Set of 1204 Pigmented Skin Lesions Involving Patients' Perception. Cancers (Basel) 2022; 14:cancers14153829. [PMID: 35954491 PMCID: PMC9367531 DOI: 10.3390/cancers14153829] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/20/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Early detection and resection of cutaneous melanoma are crucial for a good prognosis. However, visual distinction of early melanomas from benign nevi remains challenging. New artificial intelligence-based approaches for risk stratification of pigmented skin lesions provide screening methods for laypersons with increasing use of smartphone applications (apps). Our study aims to prospectively investigate the diagnostic accuracy of a CE-certified smartphone app, SkinVision®, in melanoma recognition. Based on classification into three different risk scores, the app provides a recommendation to consult a dermatologist. In addition, both patients’ and dermatologists’ perspectives towards AI-based mobile health apps were evaluated. We observed that the app classified a significantly higher number of lesions as high-risk than dermatologists, which would have led to a clinically harmful number of unnecessary excisions. The diagnostic performance of the app in dichotomous classification of 1204 pigmented skin lesions (risk classification for nevus vs. melanoma) remained below advertised rates with low sensitivity (41.3–83.3%) and specificity (60.0–82.9%). The confidence in the app was low among both patients and dermatologists, and no patient favored an assessment by the app alone. Although smartphone apps are a potential medium for increasing awareness of melanoma screening in the lay population, they should be evaluated for certification with prospective real-world evidence. Abstract The exponential increase in algorithm-based mobile health (mHealth) applications (apps) for melanoma screening is a reaction to a growing market. However, the performance of available apps remains to be investigated. In this prospective study, we investigated the diagnostic accuracy of a class 1 CE-certified smartphone app in melanoma risk stratification and its patient and dermatologist satisfaction. Pigmented skin lesions ≥ 3 mm and any suspicious smaller lesions were assessed by the smartphone app SkinVision® (SkinVision® B.V., Amsterdam, the Netherlands, App-Version 6.8.1), 2D FotoFinder ATBM® master (FotoFinder ATBM® Systems GmbH, Bad Birnbach, Germany, Version 3.3.1.0), 3D Vectra® WB360 (Canfield Scientific, Parsippany, NJ, USA, Version 4.7.1) total body photography (TBP) devices, and dermatologists. The high-risk score of the smartphone app was compared with the two gold standards: histological diagnosis, or if not available, the combination of dermatologists’, 2D and 3D risk assessments. A total of 1204 lesions among 114 patients (mean age 59 years; 51% females (55 patients at high-risk for developing a melanoma, 59 melanoma patients)) were included. The smartphone app’s sensitivity, specificity, and area under the receiver operating characteristics (AUROC) varied between 41.3–83.3%, 60.0–82.9%, and 0.62–0.72% according to two study-defined reference standards. Additionally, all patients and dermatologists completed a newly created questionnaire for preference and trust of screening type. The smartphone app was rated as trustworthy by 36% (20/55) of patients at high-risk for melanoma, 49% (29/59) of melanoma patients, and 8.8% (10/114) of dermatologists. Most of the patients rated the 2D TBP imaging (93% (51/55) resp. 88% (52/59)) and the 3D TBP imaging (91% (50/55) resp. 90% (53/59)) as trustworthy. A skin cancer screening by combination of dermatologist and smartphone app was favored by only 1.8% (1/55) resp. 3.4% (2/59) of the patients; no patient preferred an assessment by a smartphone app alone. The diagnostic accuracy in clinical practice was not as reliable as previously advertised and the satisfaction with smartphone apps for melanoma risk stratification was scarce. MHealth apps might be a potential medium to increase awareness for melanoma screening in the lay population, but healthcare professionals and users should be alerted to the potential harm of over-detection and poor performance. In conclusion, we suggest further robust evidence-based evaluation before including market-approved apps in self-examination for public health benefits.
Collapse
|
9
|
Veronese F, Tarantino V, Zavattaro E, Biacchi F, Airoldi C, Salvi M, Seoni S, Branciforti F, Meiburger KM, Savoia P. Teledermoscopy in the Diagnosis of Melanocytic and Non-Melanocytic Skin Lesions: NurugoTM Derma Smartphone Microscope as a Possible New Tool in Daily Clinical Practice. Diagnostics (Basel) 2022; 12:diagnostics12061371. [PMID: 35741181 PMCID: PMC9221805 DOI: 10.3390/diagnostics12061371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 11/28/2022] Open
Abstract
Background: Due to the COVID-19 pandemic, teledermoscopy has been increasingly used in the remote diagnosis of skin cancers. In a study conducted in 2020, we demonstrated a potential role of an inexpensive device (NurugoTM Derma) as a first triage to select the skin lesions that require a face-to-face consultation with dermatologists. Herein, we report the results of a novel study that aimed to better investigate the performance of NurugoTM. Objectives: (i) verify whether the NurugoTM can be a communication tool between the general practitioner (GP) and dermatologist in the first assessment of skin lesions, (ii) analyze the degree of diagnostic–therapeutic agreement between dermatologists, (iii) estimate the number of potentially serious diagnostic errors. Methods: One hundred and forty-four images of skin lesions were collected at the Dermatology Outpatient Clinic in Novara using a conventional dermatoscope (instrument F), the NurugoTM (instrument N), and the latter with the interposition of a laboratory slide (instrument V). The images were evaluated in-blind by four dermatologists, and each was asked to make a diagnosis and to specify a possible treatment. Results: Our data show that F gave higher agreement values for all dermatologists, concerning the real clinical diagnosis. Nevertheless, a medium/moderate agreement value was obtained also for N and V instruments and that can be considered encouraging and indicate that all examined tools can potentially be used for the first screening of skin lesions. The total amount of misclassified lesions was limited (especially with the V tool), with up to nine malignant lesions wrongly classified as benign. Conclusions: NurugoTM, with adequate training, can be used to build a specific support network between GP and dermatologist or between dermatologists. Furthermore, its use could be extended to the diagnosis and follow-up of other skin diseases, especially for frail patients in emergencies, such as the current pandemic context.
Collapse
Affiliation(s)
- Federica Veronese
- SCDU Dermatologia, AOU Maggiore della Carità, C.so Mazzini 18, 28100 Novara, Italy; (F.V.); (V.T.)
| | - Vanessa Tarantino
- SCDU Dermatologia, AOU Maggiore della Carità, C.so Mazzini 18, 28100 Novara, Italy; (F.V.); (V.T.)
| | - Elisa Zavattaro
- Department of Translational Medicine, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy;
- Correspondence: ; Tel.: +39-032-1373-3269
| | - Francesca Biacchi
- School of Medicine, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy;
| | - Chiara Airoldi
- Department of Translational Medicine, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy;
| | - Massimo Salvi
- Biolab, PolitoMed Lab, Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Torino, Italy; (M.S.); (S.S.); (F.B.); (K.M.M.)
| | - Silvia Seoni
- Biolab, PolitoMed Lab, Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Torino, Italy; (M.S.); (S.S.); (F.B.); (K.M.M.)
| | - Francesco Branciforti
- Biolab, PolitoMed Lab, Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Torino, Italy; (M.S.); (S.S.); (F.B.); (K.M.M.)
| | - Kristen M. Meiburger
- Biolab, PolitoMed Lab, Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Torino, Italy; (M.S.); (S.S.); (F.B.); (K.M.M.)
| | - Paola Savoia
- Department of Health Science, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy;
| |
Collapse
|
10
|
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has fundamentally transformed the landscape of providing dermatologic care. In an age of lockdowns and social distancing, teledermatology (TD) has emerged as a powerful tool to deliver remote care. Here, we review literature on TD use during the pandemic to evaluate the positives and negatives of TD implementation. We especially consider the reception of TD in underserved communities and the developing world as well as the ethico-legal challenges wrought by the burgeoning utilization of this new paradigm of care. The potential of TD to occupy a more prominent role in dermatologic care in a post-COVID-19 world is also discussed.
Collapse
Affiliation(s)
- Morgan A Farr
- School of Medicine, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Madeleine Duvic
- Department of Dermatology, MD Anderson Cancer Center, Houston, TX, USA
| | - Tejas P Joshi
- School of Medicine, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|