1
|
Zeng Y, Tao G, Zeng Y, He J, Cao H, Zhang L. Bibliometric and visualization analysis in the field of epigenetics and glioma (2009-2024). Front Oncol 2024; 14:1431636. [PMID: 39534093 PMCID: PMC11555291 DOI: 10.3389/fonc.2024.1431636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Glioma represents the most prevalent primary malignant tumor in the central nervous system, a deeper understanding of the underlying molecular mechanisms driving glioma is imperative for guiding future treatment strategies. Emerging evidence has implicated a close relationship between glioma development and epigenetic regulation. However, there remains a significant lack of comprehensive summaries in this domain. This study aims to analyze epigenetic publications pertaining to gliomas from 2009 to 2024 using bibliometric methods, consolidate the extant research, and delineate future prospects for investigation in this critical area. Methods For the purpose of this study, publications spanning the years 2009 to 2024 were extracted from the esteemed Web of Science Core Collection (WoSCC) database. Utilizing advanced visualization tools such as CiteSpace and VOSviewer, comprehensive data pertaining to various aspects including countries, authors, author co-citations, countries/regions, institutions, journals, cited literature, and keywords were systematically visualized and analyzed. Results A thorough analysis was conducted on a comprehensive dataset consisting of 858 publications, which unveiled a discernible trend of steady annual growth in research output within this specific field. The nations of the United States, China, and Germany emerged as the foremost contributors to this research domain. It is noteworthy that von Deimling A and the Helmholtz Association were distinguished as prominent authors and institutions, respectively, in this corpus of literature. A rigorous keyword search and subsequent co-occurrence analysis were executed, ultimately leading to the identification of seven distinct clusters: "epigenetic regulation", "DNA repair", "DNA methylation", "brain tumors", "diffuse midline glioma (DMG)", "U-87 MG" and "epigenomics". Furthermore, an intricate cluster analysis revealed that the primary foci of research within this field were centered around the exploration of glioma pathogenesis and the development of corresponding treatment strategies. Conclusion This article underscores the prevailing trends and hotspots in glioma epigenetics, offering invaluable insights that can guide future research endeavors. The investigation of epigenetic mechanisms primarily centers on DNA modification, non-coding RNAs (ncRNAs), and histone modification. Furthermore, the pursuit of overcoming temozolomide (TMZ) resistance and the exploration of diverse emerging therapeutic strategies have emerged as pivotal avenues for future research within the field of glioma epigenetics.
Collapse
Affiliation(s)
- Yijun Zeng
- Department of Neurosurgery, The Third Affiliated Hospital of Chengdu Medical College, Chengdu Pidu District People’s Hospital, Chengdu, China
| | - Ge Tao
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Yong Zeng
- Department of Neurosurgery, The Third Affiliated Hospital of Chengdu Medical College, Chengdu Pidu District People’s Hospital, Chengdu, China
| | - Jihong He
- Department of Neurosurgery, The Third Affiliated Hospital of Chengdu Medical College, Chengdu Pidu District People’s Hospital, Chengdu, China
| | - Hui Cao
- Development and Regeneration Key Laboratory of Sichuan Province, Institute of Neuroscience, Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, China
| | - Lushun Zhang
- Development and Regeneration Key Laboratory of Sichuan Province, Institute of Neuroscience, Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, China
| |
Collapse
|
2
|
Luo W, Quan Q, Xu Z, Lei J, Peng R. Bioinformatics analysis of MMP14+ myeloid cells affecting endothelial-mesenchymal transformation and immune microenvironment in glioma. Heliyon 2024; 10:e26859. [PMID: 38434278 PMCID: PMC10904238 DOI: 10.1016/j.heliyon.2024.e26859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2024] Open
Abstract
Background Gliomas, known for their complex and aggressive characteristics, are deeply influenced by the tumor microenvironment. Matrix metalloproteinases (MMPs) play a vital role in shaping this environment, presenting an opportunity for novel treatment strategies. Methods We collected six bulk RNA datasets, one single-cell RNA sequencing (scRNA-seq) dataset, and gene sets related to Matrix Metalloproteinases (MMPs), Endothelial-Mesenchymal Transformation (EndMT), and sprouting angiogenesis. We computed enrichment scores using Gene Set Variation Analysis (GSVA) and Single-sample Gene Set Enrichment Analysis (ssGSEA). To analyze immune infiltration, we employed the CIBERSORT method. Data analysis techniques included the log-rank test, Cox regression, Kruskal-Wallis test, and Pearson correlation. For single-cell data, we utilized tools such as Seurat and CellChat for dimensionality reduction, clustering, and cell communication analysis. Results 1. MMP14 was identified as an independent prognostic marker, highly expressed in myeloid cells in recurrent glioblastoma, highlighting these cells as functionally significant. 2. C-C Motif Chemokine Ligand (CCL) signaling from MMP14+ myeloid cells was identified as a critical immune regulatory pathway, with high C-C Motif Chemokine Receptor 1 (CCR1) expression correlating with increased M2 macrophage infiltration and PD-L1 expression. 3. Patients with high MMP14 expression showed better responses to bevacizumab combined chemotherapy. 4. Signaling pathways involving Visfatin, VEGF, and TGFb, emanating from myeloid cells, significantly impact endothelial cells. These pathways facilitate EndMT and angiogenesis in gliomas. 5. Nicotinamide Phosphoribosyltransferase (NAMPT) showed a strong link with angiogenesis and EndMT, and its association with chemotherapy resistance and differential sensitivity to bevacizumab was evident. Conclusions MMP14+ myeloid cells are critical in promoting tumor angiogenesis via EndMT and in mediating immunosuppression through CCL signaling in glioblastoma. MMP14 and NAMPT serve as vital clinical indicators for selecting treatment regimens in recurrent glioma. The study suggests that a combined blockade of CCR1 and CD274 could be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Wei Luo
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Qi Quan
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Zihao Xu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Jinju Lei
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China
| | - Roujun Peng
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| |
Collapse
|
3
|
Goutnik M, Iakovidis A, Still MEH, Moor RSF, Melnick K, Yan S, Abbas M, Huang J, Ghiaseddin AP. Advancements in chimeric antigen receptor-expressing T-cell therapy for glioblastoma multiforme: Literature review and future directions. Neurooncol Adv 2024; 6:vdae025. [PMID: 38486856 PMCID: PMC10939440 DOI: 10.1093/noajnl/vdae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024] Open
Abstract
Glioblastoma multiforme (GBM) is an aggressive cancer that has been difficult to treat and often requires multimodal therapy consisting of surgery, radiotherapy, and chemotherapy. Chimeric antigen receptor-expressing (CAR-T) cells have been efficacious in treating hematological malignancies, resulting in several FDA-approved therapies. CAR-T cells have been more recently studied for the treatment of GBM, with some promising preclinical and clinical results. The purpose of this literature review is to highlight the commonly targeted antigens, results of clinical trials, novel modifications, and potential solutions for challenges that exist for CAR-T cells to become more widely implemented and effective in eradicating GBM.
Collapse
Affiliation(s)
- Michael Goutnik
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Alexandria Iakovidis
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Megan E H Still
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Rachel S F Moor
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Kaitlyn Melnick
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Sandra Yan
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Muhammad Abbas
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Jianping Huang
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Ashley P Ghiaseddin
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
4
|
Du Y, Pollok KE, Shen J. Unlocking Glioblastoma Secrets: Natural Killer Cell Therapy against Cancer Stem Cells. Cancers (Basel) 2023; 15:5836. [PMID: 38136381 PMCID: PMC10741423 DOI: 10.3390/cancers15245836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/27/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Glioblastoma (GBM) represents a paramount challenge as the most formidable primary brain tumor characterized by its rapid growth, aggressive invasiveness, and remarkable heterogeneity, collectively impeding effective therapeutic interventions. The cancer stem cells within GBM, GBM stem cells (GSCs), hold pivotal significance in fueling tumor advancement, therapeutic refractoriness, and relapse. Given their unique attributes encompassing self-renewal, multipotent differentiation potential, and intricate interplay with the tumor microenvironment, targeting GSCs emerges as a critical strategy for innovative GBM treatments. Natural killer (NK) cells, innate immune effectors recognized for their capacity to selectively detect and eliminate malignancies without the need for prior sensitization, offer substantial therapeutic potential. Harnessing the inherent capabilities of NK cells can not only directly engage tumor cells but also augment broader immune responses. Encouraging outcomes from clinical investigations underscore NK cells as a potentially effective modality for cancer therapy. Consequently, NK cell-based approaches hold promise for effectively targeting GSCs, thereby presenting an avenue to enhance treatment outcomes for GBM patients. This review outlines GBM's intricate landscape, therapeutic challenges, GSC-related dynamics, and elucidates the potential of NK cell as an immunotherapeutic strategy directed towards GSCs.
Collapse
Affiliation(s)
- Yuanning Du
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA;
| | - Karen E. Pollok
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Department of Pediatrics, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
| | - Jia Shen
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA;
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
| |
Collapse
|
5
|
Wang Y, Xu C, Zhang Z. Prognostic value of pretreatment lymphocyte-to-monocyte ratio in patients with glioma: a meta-analysis. BMC Med 2023; 21:486. [PMID: 38053096 PMCID: PMC10696791 DOI: 10.1186/s12916-023-03199-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Many studies have explored the prognostic role of the lymphocyte-to-monocyte ratio (LMR) in patients with glioma, but the results have been inconsistent. We therefore conducted the current meta-analysis to identify the accurate prognostic effect of LMR in glioma. METHODS The electronic databases of PubMed, Web of Science, Embase, and Cochrane Library were thoroughly searched from inception to July 25, 2023. The pooled hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated to estimate the prognostic role of LMR for glioma. RESULTS A total of 16 studies comprising 3,407 patients were included in this meta-analysis. A low LMR was significantly associated with worse overall survival (OS) (HR = 1.35, 95% CI = 1.13-1.61, p = 0.001) in glioma. However, there was no significant correlation between LMR and progression-free survival (PFS) (HR = 1.20, 95% CI = 0.75-1.91, p = 0.442) in glioma patients. Subgroup analysis indicated that a low LMR was significantly associated with inferior OS and PFS in glioma when using a cutoff value of ≤ 3.7 or when patients received mixed treatment. CONCLUSIONS This meta-analysis demonstrated that a low LMR was significantly associated with poor OS in glioma. There was no significant correlation between LMR and PFS in glioma patients. The LMR could be a promising and cost-effective prognostic biomarker in patients with glioma in clinical practice.
Collapse
Affiliation(s)
- Yan Wang
- Clinical Laboratory, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, The Fifth School of Clinical Medicine Zhejiang Chinese Medical University, Huzhou, 313000, Zhejiang, China
| | - Chu Xu
- Department of Neurosurgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Zongxin Zhang
- Clinical Laboratory, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, The Fifth School of Clinical Medicine Zhejiang Chinese Medical University, Huzhou, 313000, Zhejiang, China.
| |
Collapse
|
6
|
Potez M, Snedal S, She C, Kim J, Thorner K, Tran TH, Ramello MC, Abate-Daga D, Liu JKC. Use of phage display biopanning as a tool to design CAR-T cells against glioma stem cells. Front Oncol 2023; 13:1124272. [PMID: 37035164 PMCID: PMC10080078 DOI: 10.3389/fonc.2023.1124272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/21/2023] [Indexed: 04/11/2023] Open
Abstract
Background Glioblastoma (GBM) is both the most common and aggressive type of primary brain tumor, associated with high mortality rates and resistance to conventional therapy. Despite recent advancements in knowledge and molecular profiling, recurrence of GBM is nearly inevitable. This recurrence has been attributed to the presence of glioma stem cells (GSCs), a small fraction of cells resistant to standard-of-care treatments and capable of self-renewal and tumor initiation. Therefore, targeting these cancer stem cells will allow for the development of more effective therapeutic strategies against GBM. We have previously identified several 7-amino acid length peptides which specifically target GSCs through in vitro and in vivo phage display biopanning. Methods and results We have combined two of these peptides to create a dual peptide construct (EV), and demonstrated its ability to bind GSCs in vitro and target intracranial GBM in mouse models. A peptide pull-down performed with peptide EV followed by mass spectrometry determined N-cadherin as the binding partner of the peptide, which was validated by enzyme-linked immunosorbent assay and surface plasmon resonance. To develop cytotoxic cellular products aimed at specifically targeting GSCs, chimeric antigen receptors (CARs) were engineered containing the peptide EV in place of the single-chain variable fragment (scFv) as the antigen-binding domain. EV CAR-transduced T cells demonstrated specific reactivity towards GSCs by production of interferon-gamma when exposed to GSCs, in addition to the induction of GSC-specific apoptosis as illustrated by Annexin-V staining. Conclusion These results exemplify the use of phage display biopanning for the isolation of GSC-targeting peptides, and their potential application in the development of novel cytotoxic therapies for GBM.
Collapse
Affiliation(s)
- Marine Potez
- Neurosurgical Oncology, Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Sebastian Snedal
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Chunhua She
- Neurosurgical Oncology, Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Jongmyung Kim
- Neurosurgical Oncology, Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Konrad Thorner
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Timothy H. Tran
- Chemical Biology Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Maria Cecilia Ramello
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Daniel Abate-Daga
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - James K. C. Liu
- Neurosurgical Oncology, Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
7
|
Propofol Suppresses Glioma Tumorigenesis by Regulating circ_0047688/miR-516b-5p/IFI30 Axis. Biochem Genet 2023; 61:151-169. [PMID: 35763173 DOI: 10.1007/s10528-022-10243-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/07/2022] [Indexed: 01/24/2023]
Abstract
Propofol has recently attracted increasing attention for its anti-tumor property in cancers, including glioma. Circular RNAs (circRNAs) can act as key regulators in various cancers. However, the relationship between propofol and circ_0047688 in glioma is still unclear. Cell proliferation was evaluated by Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), and colony formation assays. Cell migration and invasion were determined using transwell assay. Cell apoptosis was detected by flow cytometry. Protein levels and RNA levels were detected by western blot assay and real-time quantitative polymerase chain reaction (RT‑qPCR), respectively. The intermolecular interaction was predicted by bioinformatics analysis and verified by dual-luciferase reporter assay. A mouse xenograft model was established for in vivo experiments. Propofol inhibited cell proliferation, migration, and invasion and accelerated apoptosis in glioma cells. Circ_0047688 was upregulated in glioma tissues and cells, and propofol downregulated circ_0047688 in a dose-dependent manner. Circ_0047688 knockdown inhibited glioma cell progression and its overexpression abated the anti-tumor role of propofol in glioma cells. Moreover, miR-516b-5p was a direct target of circ_0047688, and circ_0047688 promoted glioma cell progression by sponging miR-516b-5p. In addition, IFI30 was a direct target of miR-516b-5p, and miR-516b-5p inhibited glioma cell malignant behaviors by targeting IFI30 in propofol-treated cells. Furthermore, circ_0047688 overexpression could weaken the anti-tumor role of propofol in vivo. Propofol inhibited glioma progression via modulating circ_0047688/miR-516b-5p/IFI30 axis, providing a potential therapeutic strategy for treatment of glioma.
Collapse
|
8
|
Ding J, Li X, Khan S, Zhang C, Gao F, Sen S, Wasylishen AR, Zhao Y, Lozano G, Koul D, Alfred Yung WK. EGFR suppresses p53 function by promoting p53 binding to DNA-PKcs: a noncanonical regulatory axis between EGFR and wild-type p53 in glioblastoma. Neuro Oncol 2022; 24:1712-1725. [PMID: 35474131 PMCID: PMC9527520 DOI: 10.1093/neuonc/noac105] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR) amplification and TP53 mutation are the two most common genetic alterations in glioblastoma multiforme (GBM). A comprehensive analysis of the TCGA GBM database revealed a subgroup with near mutual exclusivity of EGFR amplification and TP53 mutations indicative of a role of EGFR in regulating wild-type-p53 (wt-p53) function. The relationship between EGFR amplification and wt-p53 function remains undefined and this study describes the biological significance of this interaction in GBM. METHODS Mass spectrometry was used to identify EGFR-dependent p53-interacting proteins. The p53 and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) interaction was detected by co-immunoprecipitation. We used CRISPR-Cas9 gene editing to knockout EGFR and DNA-PKcs and the Edit-R CRIPSR-Cas9 system for conditional knockout of EGFR. ROS activity was measured with a CM-H2DCFDA probe, and real-time PCR was used to quantify expression of p53 target genes. RESULTS Using glioma sphere-forming cells (GSCs), we identified, DNA-PKcs as a p53 interacting protein that functionally inhibits p53 activity. We demonstrate that EGFR knockdown increased wt-p53 transcriptional activity, which was associated with decreased binding between p53 and DNA-PKcs. We further show that inhibition of DNA-PKcs either by siRNA or an inhibitor (nedisertib) increased wt-p53 transcriptional activity, which was not enhanced further by EGFR knockdown, indicating that EGFR suppressed wt-p53 activity through DNA-PKcs binding with p53. Finally, using conditional EGFR-knockout GSCs, we show that depleting EGFR increased animal survival in mice transplanted with wt-p53 GSCs. CONCLUSION This study demonstrates that EGFR signaling inhibits wt-p53 function in GBM by promoting an interaction between p53 and DNA-PKcs.
Collapse
Affiliation(s)
- Jie Ding
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xiaolong Li
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sabbir Khan
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Chen Zhang
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Feng Gao
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shayak Sen
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Amanda R Wasylishen
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yang Zhao
- Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
- Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Guillermina Lozano
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Dimpy Koul
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - W K Alfred Yung
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
9
|
Boyle Y, Johns TG, Fletcher EV. Potassium Ion Channels in Malignant Central Nervous System Cancers. Cancers (Basel) 2022; 14:cancers14194767. [PMID: 36230692 PMCID: PMC9563970 DOI: 10.3390/cancers14194767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Malignant central nervous system (CNS) cancers are among the most difficult to treat, with low rates of survival and a high likelihood of recurrence. This is primarily due to their location within the CNS, hindering adequate drug delivery and tumour access via surgery. Furthermore, CNS cancer cells are highly plastic, an adaptive property that enables them to bypass targeted treatment strategies and develop drug resistance. Potassium ion channels have long been implicated in the progression of many cancers due to their integral role in several hallmarks of the disease. Here, we will explore this relationship further, with a focus on malignant CNS cancers, including high-grade glioma (HGG). HGG is the most lethal form of primary brain tumour in adults, with the majority of patient mortality attributed to drug-resistant secondary tumours. Hence, targeting proteins that are integral to cellular plasticity could reduce tumour recurrence, improving survival. This review summarises the role of potassium ion channels in malignant CNS cancers, specifically how they contribute to proliferation, invasion, metastasis, angiogenesis, and plasticity. We will also explore how specific modulation of these proteins may provide a novel way to overcome drug resistance and improve patient outcomes.
Collapse
Affiliation(s)
- Yasmin Boyle
- Telethon Kids Institute, Perth Children’s Hospital, 15 Hospital Ave, Nedlands, Perth, WA 6009, Australia
- School of Biomedicine, The University of Western Australia, 35 Stirling Hwy, Crawley, Perth, WA 6009, Australia
- Correspondence:
| | - Terrance G. Johns
- Telethon Kids Institute, Perth Children’s Hospital, 15 Hospital Ave, Nedlands, Perth, WA 6009, Australia
- School of Biomedicine, The University of Western Australia, 35 Stirling Hwy, Crawley, Perth, WA 6009, Australia
| | - Emily V. Fletcher
- Telethon Kids Institute, Perth Children’s Hospital, 15 Hospital Ave, Nedlands, Perth, WA 6009, Australia
- School of Biomedicine, The University of Western Australia, 35 Stirling Hwy, Crawley, Perth, WA 6009, Australia
| |
Collapse
|
10
|
Gamma Irradiation Triggers Immune Escape in Glioma-Propagating Cells. Cancers (Basel) 2022; 14:cancers14112728. [PMID: 35681710 PMCID: PMC9179833 DOI: 10.3390/cancers14112728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Stem cell-like glioma-propagating cells (GPCs) are crucial for initiation, growth, and treatment resistance of glioblastoma multiforme. Due to their strong immunosuppressive activities, they essentially limit immunotherapeutic approaches. This study offers a new model of radio-selected patient-derived GPCs mimicking a clinical treatment regime of tumor irradiation which is especially useful for immunotherapeutic studies. We provide evidence that clinically relevant, sub-lethal fractions of γ radiation select for a more radio-resistant GPC phenotype with lower immunogenic potential, potentially hampering the success of adjuvant T-cell-based immunotherapies. The immune evasion in GPCs was characterized by quantitative proteomics. It revealed a marked downregulation of the antigen processing machinery in lipid rafts of these cells, leading to reduced MHC surface expression and weaker cytotoxic T lymphocyte (CTL) recognition. Abstract Glioblastoma multiforme is the most common and devastating form of brain tumor for which only palliative radio- and chemotherapy exists. Although some clinical studies on vaccination approaches have shown promising efficacy due to their potential to generate long-term immune surveillance against cancer cells, the evasion mechanisms preventing therapy response are largely uncharacterized. Here, we studied the response of glioblastoma-propagating cells (GPCs) to clinically relevant doses of γ radiation. GPCs were treated with 2.5 Gy of γ radiation in seven consecutive cellular passages to select for GPCs with increased colony-forming properties and intrinsic or radiation-induced resistance (rsGPCs). Quantitative proteomic analysis of the cellular signaling platforms of the detergent-resistant membranes (lipid rafts) in GPCs vs. rsGPCs revealed a downregulation of the MHC class I antigen-processing and -presentation machinery. Importantly, the radio-selected GPCs showed reduced susceptibility towards cytotoxic CD8+ T-cell-mediated killing. While previous studies suggested that high-dose irradiation results in enhanced antigen presentation, we demonstrated that clinically relevant sub-lethal fractionated irradiation results in reduced expression of components of the MHC class I antigen-processing and -presentation pathway leading to immune escape.
Collapse
|
11
|
Wang K, Li J, Zhou B. KIAA0101 knockdown inhibits glioma progression and glycolysis by inactivating the PI3K/AKT/mTOR pathway. Metab Brain Dis 2022; 37:489-499. [PMID: 34792707 DOI: 10.1007/s11011-021-00863-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/28/2021] [Indexed: 11/25/2022]
Abstract
KIAA0101, a proliferating cell nuclear antigen (PCNA)-associated factor, is reported to be overexpressed and identified as an oncogene in several human malignancies. The purpose of this study is to determine the function and possible mechanism of KIAA0101 in glioma progression. KIAA0101 expression in glioma patients was analyzed by GSE50161 and GEPIA datasets. Kaplan-Meier survival analysis was used to evaluate the survival distributions. KIAA0101 expression in glioma cells were detected by qRT-PCR and western blot analyses. The function of KIAA0101 was investigated using MTT, flow cytometry, caspase-3 activity, and Transwell assays. Additionally, glycolytic flux was determined by measuring extracellular acidification rate (ECAR), glucose consumption, lactate production, and adenosine triphosphate (ATP) level. The changes of phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway were detected by western blot analysis. Results showed that KIAA0101 was upregulated in glioma tissues and cells. High KIAA0101 expression predicted a poor prognosis in glioma patients. KIAA0101 depletion impeded cell proliferation, migration, and invasion and triggered apoptosis in glioma cells. KIAA0101 silencing reduced the ECAR, glucose consumption, lactate production, and ATP level in glioma cells, suggesting that KIAA0101 knockdown inhibited glycolysis in glioma cells. Mechanistically, KIAA0101 knockdown inhibited the PI3K/AKT/mTOR pathway. In conclusion, KIAA0101 silencing inhibited glioma progression and glycolysis by inactivating the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Kai Wang
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, 223002, China
| | - Jinxiao Li
- Department of Neurosurgery, Xinyi People's Hospital, Xuzhou, 221400, China
| | - Botao Zhou
- Department of Neurosurgery, The Second Affiliated Hospital of Xuzhou Medical University, 32 Meijian Road, Xuzhou, 221006, China.
| |
Collapse
|
12
|
Barthel L, Hadamitzky M, Dammann P, Schedlowski M, Sure U, Thakur BK, Hetze S. Glioma: molecular signature and crossroads with tumor microenvironment. Cancer Metastasis Rev 2021; 41:53-75. [PMID: 34687436 PMCID: PMC8924130 DOI: 10.1007/s10555-021-09997-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/06/2021] [Indexed: 11/29/2022]
Abstract
In patients with glioblastoma, the average survival time with current treatments is short, mainly due to recurrences and resistance to therapy. This insufficient treatment success is, in large parts, due to the tremendous molecular heterogeneity of gliomas, which affects the overall prognosis and response to therapies and plays a vital role in gliomas’ grading. In addition, the tumor microenvironment is a major player for glioma development and resistance to therapy. Active communication between glioma cells and local or neighboring healthy cells and the immune environment promotes the cancerogenic processes and contributes to establishing glioma stem cells, which drives therapy resistance. Besides genetic alterations in the primary tumor, tumor-released factors, cytokines, proteins, extracellular vesicles, and environmental influences like hypoxia provide tumor cells the ability to evade host tumor surveillance machinery and promote disease progression. Moreover, there is increasing evidence that these players affect the molecular biological properties of gliomas and enable inter-cell communication that supports pro-cancerogenic cell properties. Identifying and characterizing these complex mechanisms are inevitably necessary to adapt therapeutic strategies and to develop novel measures. Here we provide an update about these junctions where constant traffic of biomolecules adds complexity in the management of glioblastoma.
Collapse
Affiliation(s)
- Lennart Barthel
- Department of Neurosurgery and Spine Surgery, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany. .,Institute of Medical Psychology and Behavioral Immunobiology Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, 45147, Essen, Germany.
| | - Martin Hadamitzky
- Institute of Medical Psychology and Behavioral Immunobiology Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, 45147, Essen, Germany
| | - Philipp Dammann
- Department of Neurosurgery and Spine Surgery, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Manfred Schedlowski
- Institute of Medical Psychology and Behavioral Immunobiology Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, 45147, Essen, Germany.,Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ulrich Sure
- Department of Neurosurgery and Spine Surgery, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Basant Kumar Thakur
- Cancer Exosome Research Lab, Department of Pediatric Hematology and Oncology, University Hospital Essen, 45147, Essen, Germany
| | - Susann Hetze
- Department of Neurosurgery and Spine Surgery, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany.,Institute of Medical Psychology and Behavioral Immunobiology Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, 45147, Essen, Germany
| |
Collapse
|
13
|
Alves ALV, Gomes INF, Carloni AC, Rosa MN, da Silva LS, Evangelista AF, Reis RM, Silva VAO. Role of glioblastoma stem cells in cancer therapeutic resistance: a perspective on antineoplastic agents from natural sources and chemical derivatives. Stem Cell Res Ther 2021; 12:206. [PMID: 33762015 PMCID: PMC7992331 DOI: 10.1186/s13287-021-02231-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/15/2021] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma (GBM) is the highest-grade form of glioma, as well as one of the most aggressive types of cancer, exhibiting rapid cellular growth and highly invasive behavior. Despite significant advances in diagnosis and therapy in recent decades, the outcomes for high-grade gliomas (WHO grades III-IV) remain unfavorable, with a median overall survival time of 15–18 months. The concept of cancer stem cells (CSCs) has emerged and provided new insight into GBM resistance and management. CSCs can self-renew and initiate tumor growth and are also responsible for tumor cell heterogeneity and the induction of systemic immunosuppression. The idea that GBM resistance could be dependent on innate differences in the sensitivity of clonogenic glial stem cells (GSCs) to chemotherapeutic drugs/radiation prompted the scientific community to rethink the understanding of GBM growth and therapies directed at eliminating these cells or modulating their stemness. This review aims to describe major intrinsic and extrinsic mechanisms that mediate chemoradioresistant GSCs and therapies based on antineoplastic agents from natural sources, derivatives, and synthetics used alone or in synergistic combination with conventional treatment. We will also address ongoing clinical trials focused on these promising targets. Although the development of effective therapy for GBM remains a major challenge in molecular oncology, GSC knowledge can offer new directions for a promising future.
Collapse
Affiliation(s)
- Ana Laura V Alves
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Izabela N F Gomes
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Adriana C Carloni
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Marcela N Rosa
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Luciane S da Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Adriane F Evangelista
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's PT Government Associate Laboratory, 4806-909, Braga, Portugal
| | - Viviane Aline O Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil.
| |
Collapse
|
14
|
Mishra VS, Kumar N, Raza M, Sehrawat S. Amalgamation of PI3K and EZH2 blockade synergistically regulates invasion and angiogenesis: combination therapy for glioblastoma multiforme. Oncotarget 2020; 11:4754-4769. [PMID: 33473259 PMCID: PMC7771717 DOI: 10.18632/oncotarget.27842] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme is known as the primary malignant and most devastating form of tumor in central nervous system of adult population. Amongst all CNS cancers, Glioblastoma multiforme GBM is a rare grade IV astrocytoma and it has the worst prognosis initiated by metastasis to supra-tentorial region of the brain. Current options for the treatment include surgery, radiation therapy and chemotherapy. Substantial information of its pathology and molecular signaling exposed new avenues for generating innovative therapies. In our study, we have undertaken a novel combination approach for GBM treatment. PI3K signaling participates in cancer progression and plays a significant role in metastasis. Here, we are targeting PI3K signaling pathways in glioblastoma along with EZH2, a known transcriptional regulator. We found that targeting transcriptional regulator EZH2 and PI3K affect cellular migration and morphological changes. These changes in signatory activities of cancerous cells led to inhibit its progression in vitro. With further analysis we confirmed the angiogenic inhibition and reduction in stem-ness potential of GBM. Later, cytokine proteome array analysis revealed several participants of metastasis and tumor induced angiogenesis using combination regime. This study provides a significant reduction in GBM progression investigated using Glioblastoma Multiforme U-87 cells with effective combination of pharmacological inhibitors PI-103 and EPZ-6438. This strategy will be further used to combat GBM more innovatively along with the existing therapies.
Collapse
Affiliation(s)
- Vishnu S Mishra
- Precision NeuroOncology & NeuroVascular Disease Modeling Group, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, NCR 201314, India.,These authors contributed equally to this work
| | - Naveen Kumar
- Precision NeuroOncology & NeuroVascular Disease Modeling Group, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, NCR 201314, India.,These authors contributed equally to this work
| | - Masoom Raza
- Precision NeuroOncology & NeuroVascular Disease Modeling Group, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, NCR 201314, India
| | - Seema Sehrawat
- Precision NeuroOncology & NeuroVascular Disease Modeling Group, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, NCR 201314, India
| |
Collapse
|
15
|
LNX1 Modulates Notch1 Signaling to Promote Expansion of the Glioma Stem Cell Population during Temozolomide Therapy in Glioblastoma. Cancers (Basel) 2020; 12:cancers12123505. [PMID: 33255632 PMCID: PMC7759984 DOI: 10.3390/cancers12123505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Glioblastoma is the most common adult malignant brain tumor. It is an aggressive tumor that returns even after surgical removal and temozolomide-based chemotherapy and radiation. Our goal was to understand what genes are altered by temozolomide and how those genes may contribute to tumor return. Our work shows that one of the genes altered is LNX1, which increases the expression of Notch1, a gene important for glioblastoma progression. We further showed that the elevation of LNX1 and Notch1 results in an increase in the tumor stem cell population, a subpopulation of cells thought to help propagate a more aggressive tumor. Finally, we showed that forced reduction in LNX1 expression results in increased survival of animals implanted with glioblastoma. Together, these results suggest that LNX1 may be a novel therapeutic target that would allow modulation of Notch1 activity and the stem cell population, potentially resulting in increased patient survival. Abstract Glioblastoma (GBM) is the most common primary brain malignancy in adults, with a 100% recurrence rate and 21-month median survival. Our lab and others have shown that GBM contains a subpopulation of glioma stem cells (GSCs) that expand during chemotherapy and may contribute to therapeutic resistance and recurrence in GBM. To investigate the mechanism behind this expansion, we applied gene set expression analysis (GSEA) to patient-derived xenograft (PDX) cells in response to temozolomide (TMZ), the most commonly used chemotherapy against GBM. Results showed significant enrichment of cancer stem cell and cell cycle pathways (False Discovery Rate (FDR) < 0.25). The ligand of numb protein 1 (LNX1), a known regulator of Notch signaling by targeting negative regulator Numb, is strongly upregulated after TMZ therapy (p < 0.0001) and is negatively correlated with survival of GBM patients. LNX1 is also upregulated after TMZ therapy in multiple PDX lines with concomitant downregulations in Numb and upregulations in intracellular Notch1 (NICD). Overexpression of LNX1 results in Notch1 signaling activation and increased GSC populations. In contrast, knocking down LNX1 reverses these changes, causing a significant downregulation of NICD, reduction in stemness after TMZ therapy, and resulting in more prolonged median survival in a mouse model. Based on this, we propose that during anti-GBM chemotherapy, LNX1-regulated Notch1 signaling promotes stemness and contributes to therapeutic resistance.
Collapse
|
16
|
Tan S, Hou X, Mei L. Dihydrotanshinone I inhibits human glioma cell proliferation via the activation of ferroptosis. Oncol Lett 2020; 20:122. [PMID: 32863935 PMCID: PMC7448571 DOI: 10.3892/ol.2020.11980] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 07/24/2020] [Indexed: 01/14/2023] Open
Abstract
The aim of the present study was to investigate the effect of dihydrotanshinone I (DHI) on the survival of human glioma cells and the expression levels of ferroptosis-associated proteins. Human U251 and U87 glioma cells were cultured in vitro and treated with different concentrations of DHI and/or the ferroptosis inhibitor ferrostatin-1. A Cell Counting Kit-8 assay was used to determine the cell survival rate. The cells were further analyzed to determine their 5-, 12- and 15-hydroxyeicosatetraenoic acid (HETE), lactate dehydrogenase (LDH) and malondialdehyde (MDA) levels, and reduced glutathione (GSH)/oxidized glutathione (GSSG) ratios. Western blotting was used to detect ferroptosis-associated glutathione peroxidase 4 (GPX4) and long-chain acyl-CoA synthetase 4 (ACSL-4). Changes in the mitochondrial membrane potential (MMP) were also observed using tetramethylrhodamine methyl ester staining and confocal fluorescence microscopy. The results revealed that DHI inhibited the proliferation of human glioma cells. Following treatment of the U251 and U87 cells with DHI, changes in the expression levels of ferroptosis-associated proteins were observed; the expression level of GPX4 decreased and that of ACSL-4 increased. DHI also increased the levels of LDH and MDA in the human glioma cells and reduced the GSH/GSSG ratio. The DHI-treated cells also exhibited a marked reduction in MMP. Furthermore, ferrostatin-1 blocked the DHI-induced effects in human glioma cells. From these results, it may be concluded that DHI inhibits the proliferation of human glioma cells via the induction of ferroptosis.
Collapse
Affiliation(s)
- Shougang Tan
- Department of Neurosurgery, Qingdao Municipal Hospital, Qingdao, Shandong 266000, P.R. China
| | - Xiaoqun Hou
- Department of Neurosurgery, Qingdao Municipal Hospital, Qingdao, Shandong 266000, P.R. China
| | - Lin Mei
- Department of Neurosurgery, Qingdao Municipal Hospital, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|
17
|
Feng L, Lin T, Che H, Wang X. Long noncoding RNA DANCR knockdown inhibits proliferation, migration and invasion of glioma by regulating miR-135a-5p/BMI1. Cancer Cell Int 2020; 20:53. [PMID: 32099526 PMCID: PMC7029463 DOI: 10.1186/s12935-020-1123-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/24/2020] [Indexed: 11/23/2022] Open
Abstract
Background Glioma is the most common and aggressive primary brain tumor with high mortality rate around the world. LncRNAs have been identified to play key roles in tumorigenesis in various cancers, including glioma. However, the precise mechanism of DANCR in progression of glioma remains poorly defined. Methods The expression levels of DANCR, miR-135a-5p and BMI1 were measured by qRT-PCR in glioma tissues and cells. Cell proliferation, migration and invasion were detected by CCK-8 assay and transwell assay, respectively. The possible binding sites of miR-135a-5p and DANCR or BMI1 were predicted by online software and verified using luciferase report assay and RNA immunoprecipitation (RIP) assay. Western blot analysis was carried out to detect the protein of BMI1 expression. A xenograft tumor model was established to investigate the functions of DANCR in glioma progression in vivo. Results DANCR was upregulated and miR-135a-5p was downregulated in glioma tissues and cells. Knockdown of DANCR inhibited cell proliferation, migration and invasion in glioma cells. In addition, miR-135a-5p was a direct target of DANCR, and its elevated expression could reverse miR-135a-5p inhibition-mediated progression of glioma. Moreover, miR-135a-5p could specially bind to BMI1, and the expression of BMI1 was obviously elevated in glioma tissues and cells. Furthermore, DANCR acted as a ceRNA to regulate BMI1 expression and BMI1-mediated effects on progression of glioma by sponging miR-135a-5p. Besides, inhibition of DANCR limited tumor growth by regulating miR-135a-5p and BMI1 expression in vivo. Conclusion DANCR knockdown inhibited cell proliferation, migration and invasion in glioma cells through regulating miR-135a-5p/BMI1 axis, providing viable therapeutic avenues for treatment of glioma.
Collapse
Affiliation(s)
- Lei Feng
- Department of Neurosurgery, Xidian Group Hospital, No. 97, Fengdeng road, Lianhu District, Xi'an, 710000 Shaanxi China
| | - Tao Lin
- Department of Neurosurgery, Xidian Group Hospital, No. 97, Fengdeng road, Lianhu District, Xi'an, 710000 Shaanxi China
| | - Haijiang Che
- Department of Neurosurgery, Xidian Group Hospital, No. 97, Fengdeng road, Lianhu District, Xi'an, 710000 Shaanxi China
| | - Xiaoming Wang
- Department of Neurosurgery, Xidian Group Hospital, No. 97, Fengdeng road, Lianhu District, Xi'an, 710000 Shaanxi China
| |
Collapse
|
18
|
Matarredona ER, Pastor AM. Extracellular Vesicle-Mediated Communication between the Glioblastoma and Its Microenvironment. Cells 2019; 9:E96. [PMID: 31906023 PMCID: PMC7017035 DOI: 10.3390/cells9010096] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/18/2019] [Accepted: 12/27/2019] [Indexed: 12/19/2022] Open
Abstract
The glioblastoma is the most malignant form of brain cancer. Glioblastoma cells use multiple ways of communication with the tumor microenvironment in order to tune it for their own benefit. Among these, extracellular vesicles have emerged as a focus of study in the last few years. Extracellular vesicles contain soluble proteins, DNA, mRNA and non-coding RNAs with which they can modulate the phenotypes of recipient cells. In this review we summarize recent findings on the extracellular vesicles-mediated bilateral communication established between glioblastoma cells and their tumor microenvironment, and the impact of this dialogue for tumor progression and recurrence.
Collapse
|
19
|
Han X, Wang X, Li H, Zhang H. Mechanism of microRNA-431-5p- EPB41L1 interaction in glioblastoma multiforme cells. Arch Med Sci 2019; 15:1555-1564. [PMID: 31749885 PMCID: PMC6855151 DOI: 10.5114/aoms.2019.88274] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 06/13/2017] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION Glioblastoma multiforme (GBM) is a kind of malignant brain tumor prevalent in adults, with the characteristics well adapted to poorly immunogenic and hypoxic conditions. Effective treatment of GBM is impeded due to the high proliferation, migration and invasion of GBM cells. GBM cells migrate by degrading the extracellular matrix, so it is difficult to have GBM cells eradicated completely by surgery. This study aims to confirm that miR-431-5p could influence the proliferation, invasion and migration of human glioblastoma multiforme cells by targeting EPB41L1 (erythrocyte membrane protein band 4.1). MATERIAL AND METHODS The expression levels of miR-431-5p and EPB41L1 were detected in GBM cells and tissues using qRT-PCR. Dual luciferase reporter gene assay and western blot were applied to confirm the targeting relationship between miR-431-5p and EPB41L1. GBM cell line U87 was used in MTT, flow cytometry, Transwell, and wound healing assays to determine cell proliferation, migration and invasion. RESULTS MiR-431-5p was overexpressed in GBM tissues while EPB41L1 was under-expressed. The results of dual luciferase reporter gene assay and western blot demonstrated that miR-431-5p could target EPB41L1 and suppress its expression. Down-regulating the expression of miR-431-5p or up-regulating the expression of EPB41L1 could inhibit the proliferation, invasion and migration but promote the apoptosis of GBM cells. CONCLUSIONS MiR-431-5p facilitated the progression of GBM by inhibiting EPB41L1 expression.
Collapse
Affiliation(s)
- Xiaoyong Han
- Third Department of Neurosurgery, CangZhou Central Hospital, CangZhou, Hebei, China
| | - Xirui Wang
- Third Department of Neurosurgery, CangZhou Central Hospital, CangZhou, Hebei, China
| | - Hui Li
- Department of Surgery, Dongguang County Chinese Traditional Medicine Hospital, CangZhou, Hebei, China
| | - Hui Zhang
- Third Department of Neurosurgery, CangZhou Central Hospital, CangZhou, Hebei, China
| |
Collapse
|
20
|
Association of Notch-1, osteopontin and stem-like cells in ENU-glioma malignant process. Oncotarget 2018; 9:31330-31341. [PMID: 30140373 PMCID: PMC6101132 DOI: 10.18632/oncotarget.25808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 07/12/2018] [Indexed: 12/13/2022] Open
Abstract
Notch-1 and osteopontin (OPN) mediate angiogenesis and glioma stem-like cell (GSLC) maintenance. However, the relationship between these molecules and GSLCs during the development of glioma is unknown. We investigate the expression of Notch-1, OPN and vascular endothelial growth factor (VEGF) associated to the stemness markers nestin and CD133 in three stages of murine gliomas induced by N-ethyl-N-nitrosourea (ENU). Notch-1 and OPN overexpress in the intermediate stage (II), which corresponds to the "angiogenesis switch". Nestin+ cells appear in all stages of ENU-glioma but CD133 only from stage II on. In stage III, neoplastic cells expressing nestin, CD133 and nestin/CD133 reside in spheroid-like aggregates (SAs) and in the neoangiogenic border. These aggregates show Notch-1 and VEGF+ surrounding cells and a significant size and density increase with respect to stage I (3.3 ± 1.5 to 22.4 ± 6.3 µm2, n° = 0.3 ± 0.1 to 4.2 ± 0.9, from stage I to stage III, respectively). OPN expression increases in correlation to the glioma malignancy from 4.5 ± 1.8% (I) to 12.3 ± 1.2% of OPN+ cells (III). It predominates in astrocyte-like cells of the neoangiogenic border, displaying co-location with VEGF and CD133. The OPN immunopositivity distribution correlates with the CD133 distribution. In conclusion, OPN co-expressing with CD133 contributes to the identification of GSLCs in the neoangiogenic border, while Notch-1 is present around SAs in advanced stages. The ENU-glioma, mainly in stage II, is a useful tool for assessing new antitumour therapies against these molecules.
Collapse
|
21
|
Ten-eleven translocation 1 regulates methylation of autophagy-related genes in human glioma. Neuroreport 2018; 29:731-738. [DOI: 10.1097/wnr.0000000000001024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Cui D, Sajan P, Shi J, Shen Y, Wang K, Deng X, Zhou L, Hu P, Gao L. MiR-148a increases glioma cell migration and invasion by downregulating GADD45A in human gliomas with IDH1 R132H mutations. Oncotarget 2018; 8:25345-25361. [PMID: 28445981 PMCID: PMC5421935 DOI: 10.18632/oncotarget.15867] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 02/13/2017] [Indexed: 01/09/2023] Open
Abstract
High-grade gliomas are severe tumors with poor prognosis. An R132H mutation in the isocitrate dehydrogenase (IDH1) gene prolongs the life of glioma patients. In this study, we investigated which genes are differentially regulated in IDH1 wild type (IDH1WT) or IDH1 R132H mutation (IDH1R132H) glioblastoma cells. Growth arrest and DNA-damage-inducible protein (GADD45A) was downregulated and microRNA 148a (miR-148a) was upregulated in in IDH1R132H human glioblastomas tissues. The relationship between GADD45A and miR-148a is unknown. In vitro experiments showed that GADD45A negatively regulates IDH1R132H glioma cell proliferation, migration, and invasion, and neurosphere formation in IDH1R132H glioblastoma stem cells (GSC). In addition, a human orthotopic xenograft mouse model showed that GADD45A reduced tumorigenesis in vivo. Our findings demonstrated that miR-148a promotes glioma cell invasion and tumorigenesis by downregulating GADD45A. Our findings provide novel insights into how GADD45A is downregulated by miR-148a in IDH1R132H glioma and may help to identify therapeutic targets for the effective treatment of high-grade glioma.
Collapse
Affiliation(s)
- Daming Cui
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, People's Republic of China
| | - Pandey Sajan
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, People's Republic of China
| | - Jinlong Shi
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Yiwen Shen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200070, People's Republic of China
| | - Ke Wang
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, People's Republic of China
| | - Xianyu Deng
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, People's Republic of China
| | - Lin Zhou
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, People's Republic of China
| | - Pingping Hu
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, People's Republic of China
| | - Liang Gao
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, People's Republic of China
| |
Collapse
|
23
|
Shi J, Dong B, Cao J, Mao Y, Guan W, Peng Y, Wang S. Long non-coding RNA in glioma: signaling pathways. Oncotarget 2018; 8:27582-27592. [PMID: 28187439 PMCID: PMC5432359 DOI: 10.18632/oncotarget.15175] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/24/2017] [Indexed: 12/19/2022] Open
Abstract
Glioma is regarded as the most prevalent malignant carcinoma of the central nervous system. Thus, the development of new therapeutic strategies targeting glioma is of significant clinical importance. Long non-coding RNAs (lncRNAs) are functional RNA molecules without a protein-coding function and are reportedly involved in the initiation and progression of glioma. Dysregulation of lncRNAs in glioma is due to activation of several signaling pathways, such as the BRD4-HOTAIR-β-catenin/PDCD4, p53-Hif-H19/IGF2 and CRNDE/mTOR pathways. Furthermore, microRNAs (miRNAs) such as miR-675 also interact with lncRNAs in glioma. Thus, exploring the mechanisms by which lncRNA control processes will be instrumental for devising new effective therapies against glioma.
Collapse
Affiliation(s)
- Jia Shi
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Bo Dong
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jiachao Cao
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yumin Mao
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Wei Guan
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Ya Peng
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Suinuan Wang
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
24
|
TET1 exerts its tumour suppressor function by regulating autophagy in glioma cells. Biosci Rep 2017; 37:BSR20160523. [PMID: 28341638 PMCID: PMC5672083 DOI: 10.1042/bsr20160523] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/24/2017] [Accepted: 03/24/2017] [Indexed: 12/19/2022] Open
Abstract
DNA methylation and demethylation play a critical role in the regulation of the molecular pathogenesis of gliomas. Tet methylcytosine dioxygenase 1 (TET1) catalyses the sequential oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine, (5hmC) leading to eventual DNA demethylation. It has been reported that TET1 is a tumour suppressor in several cancers. However, whether TET1 plays a role in glioma development is largely unclear. Different glioma specimens and corresponding normal controls were collected to analyse the expression of TET1. At the same time, TET1 of glioma U251 cells was knocked down or overexpressed to observe its effect on glioma cell proliferation and invasion as well as autophagy level. Here, we reported that the expression of TET1 in glioma tissue was significantly lower than the corresponding non-tumour normal tissues, and the concentration of TET1 is negatively correlated with the glioma WHO classification. When TET1 gene in glioma U251 cells was knocked down by CRISPR/Caspase-9 system, the proliferation and invasive ability of U251 increased remarkably. But when TET1 was overexpressed in U251 cells, the proliferation and invasion were impaired. Following the down-expression of TET1, the level of autophagy in U251 cells decreased accordingly.However, when TET1 was overexpressed in U251 cells, the level of autophagy incraesed. Furthermore, bafilomycin A1 (Baf-A1) but not 3-methyladenine (3-MA) could decrease the autophagy level of TET1−/− U251 cells as the wild-type controls. It suggests that the tumour suppressor effect of TET1 seems to be mediated by regulating the level of autophagy, and the regulation of TET1 on autophagy is at an early stage.
Collapse
|
25
|
Xu L, Huang TJ, Hu H, Wang MY, Shi SM, Yang Q, Lin F, Qiang YY, Mei Y, Lang YH, Li CZ, Peng LX, Zheng LS, Huang JL, Li XJ, Zhang SJ, Qian CN, Huang BJ. The developmental transcription factor IRF6 attenuates ABCG2 gene expression and distinctively reverses stemness phenotype in nasopharyngeal carcinoma. Cancer Lett 2017; 431:230-243. [PMID: 29111349 DOI: 10.1016/j.canlet.2017.10.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/24/2017] [Accepted: 10/12/2017] [Indexed: 10/18/2022]
Abstract
Nasopharyngeal carcinoma (NPC), which originates from the nasopharynx, is highly prevalent in Southern China and Southeast Asia, and more than 90% of all NPCs are non-keratinizing undifferentiated cells or poorly differentiated squamous cells. Cancer stem cells (CSCs) are capable of self-renewal and have differentiation potential. These properties form the basis of cancer initiation, development, and radiochemoresistance. However, the molecular mechanisms underlying NPC CSC maintenance remain poorly understood. Here, genomic expression profiling using our previously established monoclonal cellular and animal models revealed that interferon regulatory factor 6 (IRF6) was downregulated in highly metastatic NPC cells, cancer stem-like NPC cells and animal models. Functional assays revealed that elevated IRF6 expression suppressed cell proliferation, growth, CSCs properties and enhanced cell chemotherapeutic sensitivity. However, silencing IRF6 resulted in opposing effects. Moreover, we determined that as a tumor suppressor gene and transcription factor, IRF6 directly bound the upstream region of the ATP-binding cassette sub-family G member 2 (ABCG2) DNA element and suppressed target ABCG2 expression in NPC cells. Consistently, an inverse correlation was observed between the mRNA levels of IRF6 and ABCG2 in clinical NPC samples. With these results, we provide the first evidence that IRF6 directly targets the ABCG2 gene and selectively kills CSCs in NPC and that IRF6 may be a valuable tool for developing new CSC-targeted treatment strategies for undifferentiated NPC patients.
Collapse
Affiliation(s)
- Liang Xu
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Tie-Jun Huang
- Department of Nuclear Medicine, The Second People's Hospital of Shenzhen, Shenzhen, China
| | - Hao Hu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Meng-Yao Wang
- Radiotherapy Department, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| | - Si-Mei Shi
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Qin Yang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Fen Lin
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yuan-Yuan Qiang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yan Mei
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yan-Hong Lang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Chang-Zhi Li
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Li-Xia Peng
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Li-Sheng Zheng
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jia-Ling Huang
- Department of Pathology, Saint Barnabas Medical Center, Livingston, NJ, USA
| | - Xin-Jian Li
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, TX, USA
| | - Shi-Jun Zhang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Chao-Nan Qian
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China; Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| | - Bi-Jun Huang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
26
|
Convection-enhanced delivery of sulfasalazine prolongs survival in a glioma stem cell brain tumor model. J Neurooncol 2017; 136:23-31. [PMID: 28929335 DOI: 10.1007/s11060-017-2621-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 09/09/2017] [Indexed: 01/07/2023]
Abstract
Expression of CD44 in glioma cells was previously correlated with tumor grade and is considered a stem cell marker. CD44 stabilizes the cystine-glutamate transporter (xCT) and inhibits apoptosis in cancer stem cells (CSCs). Recently it was found that Sulfasalazine (SSZ), an anti-inflammatory drug, acts as an inhibitor of xCT and therefore has potential as a targeted therapy for CSCs. In this study, we tested an efficacy of SSZ against glioma stem cell model developed in rats. As poor penetration of blood-brain barrier resulted in insufficient efficacy of systemic SSZ treatment, SSZ was delivered locally with convection-enhanced delivery (CED). In vitro, expression of CD44 in glioma cells and efficacy of SSZ against glioma cells and glioma stem cells were confirmed. SSZ demonstrated anti-proliferative activity in a dose dependent manner against these cells. This activity was partially reversible with the addition of antioxidant, N-acetyl-L-cysteine, to the medium. In vivo, CED successfully delivered SSZ into the rat brain parenchyma. When delivered at 5 mM concentration, which was the highest possible concentration when SSZ was dissolved in water, CED of SSZ resulted in almost no tissue damage. Against highly malignant bRiTs-G3 brain tumor xenografted rat model; the glioma stem cell model, CED of SSZ at 5 mM concentration induced apoptosis and prolonged survival. Consequently, CED of SSZ induced glioma stem cell death without evidence of tissue damage to normal brain parenchyma. This strategy may be a promising targeted treatment against glioma stem cells.
Collapse
|
27
|
Ramezani S, Hadjighassem M, Vousooghi N, Parvaresh M, Arbabi F, Amini N, Joghataei MT. The Role of Protein Kinase B Signaling Pathway in Anti-Cancer Effect of Rolipram on Glioblastoma Multiforme: An In Vitro Study. Basic Clin Neurosci 2017; 8:325-336. [PMID: 29158883 PMCID: PMC5683690 DOI: 10.18869/nirp.bcn.8.4.325] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Introduction: The mechanism of putative cytotoxicity of 4-[3-(cyclopentyloxy)-4-methoxyphenyl]-2-pyrrolidone (rolipram), a specific phosphodiesterase-4 (PDE4) inhibitor, on glioblastoma multiforme (GBM) is almost unknown. This study aimed to investigate the role of protein kinase B (Akt) pathway in the cytotoxic effect of rolipram on human GBM U87 MG cell line and Tumor-Initiating Cells (TICs) isolated from patient’s GBM specimen. Methods: TICs were characterized by using flow cytometry and quantitative real-time PCR. The cells were treated with rolipram at inhibitory concentration of 50% (IC50) in the presence or absence of SC79 (4μg/mL), a specific AKT activator, for 48 hours. The cell viability and apoptosis were measured by MTT assay and TUNEL staining, respectively. The relative expression of Phospho-Akt (Ser473), matrix metalloproteinase 2 (MMP2), and vascular endothelial growth factor A (VEGFA) were detected using Western blotting. Results: The findings showed that rolipram could suppress cell viability in both U87MG and TICs, dose-dependently. Interestingly, the rolipram-induced cytotoxicity was significantly reduced in the presence of SC79. Nevertheless, in rolipram-treated cells, the pretreatment with SC79 significantly led to increase in U87 MG cells and TICs apoptosis and decrease in viability of U87 MG cells but not TICs relative to corresponding control. In U87 MG and TICs, rolipram-induced reduction of Phospho-Akt (Ser473) and MMP2 levels were significantly suppressed by SC79. Conclusion: There is a cell type-specific mechanism of anti-proliferative action of rolipram on GBM cells. The reduction of intracellular level of MMP2 but not VEGFA by rolipram is conducted through the inhibition of Akt signal. Rolipram-induced apoptosis is mediated via Akt dependent/independent mechanisms.
Collapse
Affiliation(s)
- Sara Ramezani
- Neuroscience Research Center, Department of Neurology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.,Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoudreza Hadjighassem
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Brain and Spinal Cord Injury Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Vousooghi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Iranian National Center for Addiction Studies, Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Mansour Parvaresh
- Department of Neurosurgery, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farshid Arbabi
- Department of Oncology, Faculty of Medical Sciences, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Naser Amini
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Joghataei
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Promoting tumorigenesis in nasopharyngeal carcinoma, NEDD8 serves as a potential theranostic target. Cell Death Dis 2017; 8:e2834. [PMID: 28569775 PMCID: PMC5520881 DOI: 10.1038/cddis.2017.195] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 12/16/2022]
Abstract
Nasopharyngeal carcinoma (NPC), is one of the most common human malignancies in south China, it has the highest recurrence rate and treatment resistance. The underlying molecular mechanisms of NPC relapse and treatment tolerance are not fully understood. In this study, the effects of NEDD8 and NEDD8-activating enzyme inhibitor (MLN4924) on NPC were studied both in vitro and in vivo. Immunohistochemical staining of 197 NPC tissues revealed an elevated NEDD8 expression as an unfavorable independent factor in overall survival and disease-free survival rates. NEDD8 expression was positively correlated with a high risk of death and positivity of lymph node metastasis. Depleted NEDD8 expression by shRNA and inhibited by specific inhibitor MLN4924 dramatically suppressed cell proliferation, cell apoptosis, cell cycle arrest, while ectopic NEDD8 exhibited opposing effects. NEDD8 affected cancer stem cell phenotypes of NPC as assessed in vitro using the cell number of side population (SP) by flow cytometry analysis, colony formation assay, sphere formation assay, and tumor initiation ability in vivo. Downregulation of NEDD8 enhanced the susceptibility of NPC cells to cisplatin and radiation. Moreover, we found that MLN4924 suppressed c-Jun degradation in human NPC cells. Taken together, this report revealed that NEDD8 may act as a novel prognostic marker and MLN4924 may serve as a promising therapeutic target for patients with NPC.
Collapse
|
29
|
Lai YJ, Tsai JC, Tseng YT, Wu MS, Liu WS, Lam HI, Yu JH, Nozell SE, Benveniste EN. Small G protein Rac GTPases regulate the maintenance of glioblastoma stem-like cells in vitro and in vivo. Oncotarget 2017; 8:18031-18049. [PMID: 28160553 PMCID: PMC5392305 DOI: 10.18632/oncotarget.14949] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 01/03/2017] [Indexed: 12/31/2022] Open
Abstract
Glioblastoma is the most common and aggressive malignant brain tumor in adults. The existence of glioblastoma stem cells (GSCs) or stem-like cells (stemloids) may account for its invasiveness and high recurrence. Rac proteins belong to the Rho small GTPase subfamily which regulates cell movement, proliferation, and survival. To investigate whether Rac proteins can serve as therapeutic targets for glioblastoma, especially for GSCs or stemloids, we examined the potential roles of Rac1, Rac2 and Rac3 on the properties of tumorspheres derived from glioblastoma cell lines. Tumorspheres are thought to be glioblastoma stem-like cells. We showed that Rac proteins promote the STAT3 and ERK activation and enhance cell proliferation and colony formation of glioblastoma stem-like cells. Knockdown of Rac proteins reduces the expression of GSC markers, such as CD133 and Sox2. The in vivo effects of Rac proteins in glioblastoma were further studied in zebrafish and in the mouse xenotransplantation model. Knocking-down Rac proteins abolished the angiogenesis effect induced by the injected tumorspheres in zebrafish model. In the CD133+-U373-tumorsphere xenotransplanted mouse model, suppression of Rac proteins decreased the incidence of tumor formation and inhibited the tumor growth. Moreover, knockdown of Rac proteins reduced the sphere forming efficiency of cells derived from these tumors. In conclusion, not only Rac1 but also Rac2 and 3 are important for glioblastoma tumorigenesis and can serve as the potential therapeutic targets against glioblastoma and its stem-like cells.
Collapse
Affiliation(s)
- Yun-Ju Lai
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Jui-Cheng Tsai
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ying-Ting Tseng
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Meng-Shih Wu
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Wen-Shan Liu
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Hoi-Ian Lam
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Jei-Hwa Yu
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, AL, USA
| | - Susan E. Nozell
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, AL, USA
| | - Etty N. Benveniste
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, AL, USA
| |
Collapse
|
30
|
Bassoy EY, Kasahara A, Chiusolo V, Jacquemin G, Boydell E, Zamorano S, Riccadonna C, Pellegatta S, Hulo N, Dutoit V, Derouazi M, Dietrich PY, Walker PR, Martinvalet D. ER-mitochondria contacts control surface glycan expression and sensitivity to killer lymphocytes in glioma stem-like cells. EMBO J 2017; 36:1493-1512. [PMID: 28283580 DOI: 10.15252/embj.201695429] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 01/27/2017] [Accepted: 01/30/2017] [Indexed: 01/03/2023] Open
Abstract
Glioblastoma is a highly heterogeneous aggressive primary brain tumor, with the glioma stem-like cells (GSC) being more sensitive to cytotoxic lymphocyte-mediated killing than glioma differentiated cells (GDC). However, the mechanism behind this higher sensitivity is unclear. Here, we found that the mitochondrial morphology of GSCs modulates the ER-mitochondria contacts that regulate the surface expression of sialylated glycans and their recognition by cytotoxic T lymphocytes and natural killer cells. GSCs displayed diminished ER-mitochondria contacts compared to GDCs. Forced ER-mitochondria contacts in GSCs increased their cell surface expression of sialylated glycans and reduced their susceptibility to cytotoxic lymphocytes. Therefore, mitochondrial morphology and dynamism dictate the ER-mitochondria contacts in order to regulate the surface expression of certain glycans and thus play a role in GSC recognition and elimination by immune effector cells. Targeting the mitochondrial morphology, dynamism, and contacts with the ER could be an innovative strategy to deplete the cancer stem cell compartment to successfully treat glioblastoma.
Collapse
Affiliation(s)
- Esen Yonca Bassoy
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Atsuko Kasahara
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland.,Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Valentina Chiusolo
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Guillaume Jacquemin
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Emma Boydell
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Sebastian Zamorano
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Cristina Riccadonna
- Department of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Serena Pellegatta
- Department of Molecular Neuro-Oncology, Fondazione I.R.C.C.S. Istituto Neurologico C. Besta, Milan, Italy
| | - Nicolas Hulo
- Biomathematical and Biostatistical Analysis, Institute of Genetics and Genomics University of Geneva, Geneva, Switzerland
| | - Valérie Dutoit
- Department of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Madiha Derouazi
- Department of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Amal Therapeutics, Geneva, Switzerland
| | - Pierre Yves Dietrich
- Department of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Paul R Walker
- Department of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Denis Martinvalet
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| |
Collapse
|
31
|
Rolipram potentiates bevacizumab-induced cell death in human glioblastoma stem-like cells. Life Sci 2017; 173:11-19. [PMID: 28202289 DOI: 10.1016/j.lfs.2017.02.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/06/2017] [Accepted: 02/11/2017] [Indexed: 12/20/2022]
Abstract
AIMS Glioblastoma cancer stem-like cells (GCSCs) promote themselves proliferation by secreting the vascular endothelial growth factor A (VEGFA) in an autocrine manner, positively regulated by phosphodiesterase IV (PDE4). In the current study, we investigated the putative cytotoxic effect of bevacizumab, a VEGFA blocker, alone and in combination with a specific inhibitor of PDE4 called rolipram on GCSCs isolated from human surgical tumor specimen with a focus on PI3K/AKT pathway. MAIN METHODS CD133+/CD15+ GCSCs were characterized by flow cytometry and expanded in a serum-free primary culture system. The cell survival, apoptosis, and protein expression values were measured using MTT assay, TUNEL staining and western blot, successively. Intracellular cAMP and free secreted VEGFA levels were assessed by cAMP enzyme immunoassay and ELISA, respectively. KEY FINDINGS Bevacizumab suppressed GCSCs survival with IC50~6.5μg/ml and enhanced the levels of apoptosis, p53 and cleaved-caspase3 along with a decrease in free VEGFA levels and ERKs activation. However, there was no significant modulation of AKT phosphorylation on serine 473, the intracellular PDE4A, VEGFA and cAMP levels. More cytotoxicity in co-treated cells coupled with a more substantial decline in the free VEGFA levels and a greater increase in the quantities of p53 and cleaved-caspase3 compared to those treated with bevacizumab alone. Co-treatment reduced phospho-AKT, endogenous VEGFA and PDE4A values but elevated cAMP levels. SIGNIFICANCE This study highlighted a booster cytotoxic effect of combined rolipram and bevacizumab treatment on the GCSCs primary culture, suggesting that this approach is warranted in treatment of GBMs overexpressing VEGFA and PDE4A.
Collapse
|
32
|
Osuka S, Van Meir EG. Overcoming therapeutic resistance in glioblastoma: the way forward. J Clin Invest 2017; 127:415-426. [PMID: 28145904 DOI: 10.1172/jci89587] [Citation(s) in RCA: 333] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma is the most common and lethal primary malignant brain tumor in adults. Patients die from recurrent tumors that have become resistant to therapy. New strategies are needed to design future therapies that target resistant cells. Recent genomic studies have unveiled the complexity of tumor heterogeneity in glioblastoma and provide new insights into the genomic landscape of tumor cells that survive and initiate tumor recurrence. Resistant cells also co-opt developmental pathways and display stem-like properties; hence we propose to name them recurrence-initiating stem-like cancer (RISC) cells. Genetic alterations and genomic reprogramming underlie the innate and adaptive resistance of RISC cells, and both need to be targeted to prevent glioblastoma recurrence.
Collapse
|
33
|
Lv L, Jiang Y, Liu X, Wang B, Lv W, Zhao Y, Shi H, Hu Q, Xin H, Xu Q, Gu Z. Enhanced Antiglioblastoma Efficacy of Neovasculature and Glioma Cells Dual Targeted Nanoparticles. Mol Pharm 2016; 13:3506-3517. [DOI: 10.1021/acs.molpharmaceut.6b00523] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lingyan Lv
- Department
of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- Department
of Pharmacy, Zhangjiagang Hospital of Traditional Chinese Medicine, Affiliated Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
| | - Yan Jiang
- Department
of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xin Liu
- Department
of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Baoyan Wang
- Department
of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Wei Lv
- Department
of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yue Zhao
- Department
of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Huihui Shi
- Department
of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Quanyin Hu
- Joint
Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
- Division
of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery,
Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Hongliang Xin
- Department
of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Qunwei Xu
- Department
of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Zhen Gu
- Joint
Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
- Division
of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery,
Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department
of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
34
|
Bassani B, Bartolini D, Pagani A, Principi E, Zollo M, Noonan DM, Albini A, Bruno A. Fenretinide (4-HPR) Targets Caspase-9, ERK 1/2 and the Wnt3a/β-Catenin Pathway in Medulloblastoma Cells and Medulloblastoma Cell Spheroids. PLoS One 2016; 11:e0154111. [PMID: 27367907 PMCID: PMC4930187 DOI: 10.1371/journal.pone.0154111] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/08/2016] [Indexed: 12/11/2022] Open
Abstract
Medulloblastoma (MB), a neuroectodermal tumor arising in the cerebellum, represents the most frequent childhood brain malignancy. Current treatments for MB combine radiation and chemotherapy and are often associated with relevant side effects; novel therapeutic strategies are urgently needed. N-(4-Hydroxyphenyl) retinamide (4-HPR, fenretinide), a synthetic analogue of all-trans retinoic acid, has emerged as a promising and well-tolerated cancer chemopreventive and chemotherapeutic agent for various neoplasms, from breast cancer to neuroblastoma. Here we investigated the effects of 4-HPR on MB cell lines and identified the mechanism of action for a potential use in therapy of MB. Flow cytometry analysis was performed to evaluate 4-HPR induction of apoptosis and oxygen reactive species (ROS) production, as well as cell cycle effects. Functional analysis to determine 4-HPR ability to interfere with MB cell migration and invasion were performed. Western Blot analysis were used to investigate the crucial molecules involved in selected signaling pathways associated with apoptosis (caspase-9 and PARP-1), cell survival (ERK 1/2) and tumor progression (Wnt3a and β-catenin). We show that 4-HPR induces caspase 9-dependent cell death in DAOY and ONS-76 cells, associated with increased ROS generation, suggesting that free radical intermediates might be directly involved. We observed 4-HPR induction of cell cycle arrest in G1/S phase, inactivated β-catenin, and inhibition of MB cell migration and invasion. We also evaluated the ability of 4-HPR to target MB cancer-stem/cancer-initiating cells, using an MB spheroids model, followed by flow cytometry and quantitative real-time PCR. 4-HPR treatment reduced DAOY and ONS-76 spheroid formation, in term of number and size. Decreased expression of the surface markers CD133+ and ABCG2+ as well as Oct-4 and Sox-2 gene expression were observed on BTICs treated with 4-HPR further reducing BITIC invasive activities. Finally, we analyzed 4-HPR ability to inhibit MB tumor cell growth in vivo in nude mice. Taken together, our data suggest that 4-HPR targets both parental and MB tumor stem/initiating cell-like populations. Since 4-HPR exerts low toxicity, it could represent a valid compound in the treatment of human MB.
Collapse
Affiliation(s)
- Barbara Bassani
- Scientific and Technological Pole, IRCCS MultiMedica, Milano, Italy
| | | | - Arianna Pagani
- Scientific and Technological Pole, IRCCS MultiMedica, Milano, Italy
| | - Elisa Principi
- Scientific and Technological Pole, IRCCS MultiMedica, Milano, Italy
| | - Massimo Zollo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- Ceinge Biotecnologie Avanzate, Naples, Italy
| | - Douglas M. Noonan
- Scientific and Technological Pole, IRCCS MultiMedica, Milano, Italy
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Adriana Albini
- Scientific and Technological Pole, IRCCS MultiMedica, Milano, Italy
- * E-mail:
| | - Antonino Bruno
- Scientific and Technological Pole, IRCCS MultiMedica, Milano, Italy
| |
Collapse
|
35
|
Differential propagation of stroma and cancer stem cells dictates tumorigenesis and multipotency. Oncogene 2016; 36:570-584. [PMID: 27345406 PMCID: PMC5290038 DOI: 10.1038/onc.2016.230] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/15/2016] [Accepted: 04/22/2016] [Indexed: 12/15/2022]
Abstract
Glioblastoma Multiforme (GBM) is characterized by high cancer cell heterogeneity and the presence of a complex tumor microenvironment. Those factors are a key obstacle for the treatment of this tumor type. To model the disease in mice, the current strategy is to grow GBM cells in serum-free non-adherent condition, which maintains their tumor-initiating potential. However, the so-generated tumors are histologically different from the one of origin. In this work, we performed high-throughput marker expression analysis and investigated the tumorigenicity of GBM cells enriched under different culture conditions. We identified a marker panel that distinguished tumorigenic sphere cultures from non-tumorigenic serum cultures (high CD56, SOX2, SOX9, and low CD105, CD248, αSMA). Contrary to previous work, we found that 'mixed cell cultures' grown in serum conditions are tumorigenic and express cancer stem cell (CSC) markers. As well, 1% serum plus bFGF and TGF-α preserved the tumorigenicity of sphere cultures and induced epithelial-to-mesenchymal transition gene expression. Furthermore, we identified 12 genes that could replace the 840 genes of The Cancer Genome Atlas (TCGA) used for GBM-subtyping. Our data suggest that the tumorigenicity of GBM cultures depend on cell culture strategies that retain CSCs in culture rather than the presence of serum in the cell culture medium.
Collapse
|
36
|
Glioma Stemlike Cells Enhance the Killing of Glioma Differentiated Cells by Cytotoxic Lymphocytes. PLoS One 2016; 11:e0153433. [PMID: 27073883 PMCID: PMC4830556 DOI: 10.1371/journal.pone.0153433] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/29/2016] [Indexed: 01/16/2023] Open
Abstract
Glioblastoma multiforme, the most aggressive primary brain tumor, is maintained by a subpopulation of glioma cells with self-renewal properties that are able to recapitulate the entire tumor even after surgical resection or chemo-radiotherapy. This typifies the vast heterogeneity of this tumor with the two extremes represented on one end by the glioma stemlike cells (GSC) and on the other by the glioma differentiated cells (GDC). Interestingly, GSC are more sensitive to immune effector cells than the GDC counterpart. However, how GSC impact on the killing on the GDC and vice versa is not clear. Using a newly developed cytotoxicity assay allowing to simultaneously monitor cytotoxic lymphocytes-mediated killing of GSC and GDC, we found that although GSC were always better killed and that their presence enhanced the killing of GDC. In contrast, an excess of GDC had a mild protective effect on the killing of GSC, depending on the CTL type. Overall, our results suggest that during combination therapy, immunotherapy would be the most effective after prior treatment with conventional therapies.
Collapse
|
37
|
miR-92b regulates glioma cells proliferation, migration, invasion, and apoptosis via PTEN/Akt signaling pathway. J Physiol Biochem 2016; 72:201-11. [PMID: 26893028 DOI: 10.1007/s13105-016-0470-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 02/03/2016] [Indexed: 01/15/2023]
Abstract
Glioblastoma (GBM) is a highly invasive malignant primary brain tumor with neoplastic growth. Despite the progresses made in surgery, chemotherapy, and radiation in recent decade, the prognosis of patients with gliomas remains poor and the average survival time of patients suffering from glioblastoma is still short. As a potential therapy strategy, microRNAs have been considered as new targets for possible cancer treatment. In this study, we found that the miR-92b inhibitors (miR-92b-I) could inhibit the proliferation, migration, invasion, and promote the apoptosis of glioma cells. As a predicted target of miR-92b, phosphatase and tensin homolog (PTEN), also elevated at both mRNA and protein levels. Moreover, the Akt phosphorylation was consistently inhibited. The rescue experiment with miR-92b and PTEN double knockdown resulted in partial reversion of miR-92b-I-induced phenotypes. Taken together, our findings indicated that miR-92b-I could restrain the proliferation, invasion, migration, and stimulate apoptosis of glioma cells by targeting PTEN/Akt signaling pathway. Further investigations will focus on antitumor effect of miR‑92b-I in glioma treatment.
Collapse
|
38
|
R132H mutation in IDH1 gene reduces proliferation, cell survival and invasion of human glioma by downregulating Wnt/β-catenin signaling. Int J Biochem Cell Biol 2016; 73:72-81. [PMID: 26860959 DOI: 10.1016/j.biocel.2016.02.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 01/15/2016] [Accepted: 02/05/2016] [Indexed: 12/11/2022]
Abstract
Mutations in the isocitrate dehydrogenase 1 (IDH1) gene commonly occur in gliomas. Remarkably, the R132H mutation in IDH1 (IDH1-R132H) is associated with better prognosis and increased survival than patients lacking this mutation. The molecular mechanism underlying this phenomenon is largely unknown. In this study, we investigated potential cross-talk between IDH1-R132H and Wnt/β-catenin signaling in regulating the cellular properties of human glioma. Although aberrant nuclear accumulation of β-catenin is linked to the malignant progression of gliomas, its association with IDH1 remains unknown. We identified an inverse correlation between IDH1-R132H and the expression and activity of β-catenin in human gliomas. In addition, overexpression of IDH1-R132H in glioblastoma cell lines U87 and U251 led to reduced cell proliferation, migration and invasion, accompanied by increased apoptosis. At the molecular level, we detected a significant reduction in the expression, nuclear accumulation and activity of β-catenin following overexpression of IDH1-R132H. A microarray-based comparison of gene expression indicated that several mediators, effectors and targets of Wnt/β-catenin signaling are downregulated, while negative regulators are upregulated in IDH1-R132H gliomas. Further, overexpression of β-catenin in IDH1-R132H glioma cells restored the cellular phenotype induced by this mutation. Specifically, β-catenin abrogated the decrease in proliferation, invasion and migration, and the increase in apoptosis, triggered by overexpression of IDH1-R132H. Finally, we demonstrate that xenografts of IDH1-R132H overexpressing U87 cells can significantly decrease the growth of tumors in vivo. Altogether, our results strongly suggest that the R132H mutation in IDH1 serves a tumor suppressor function in human glioma by negatively regulating Wnt/β-catenin signaling.
Collapse
|
39
|
Lichti CF, Wildburger NC, Shavkunov AS, Mostovenko E, Liu H, Sulman EP, Nilsson CL. The proteomic landscape of glioma stem-like cells. EUPA OPEN PROTEOMICS 2015. [DOI: 10.1016/j.euprot.2015.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
40
|
Salgado AJ, Sousa JC, Costa BM, Pires AO, Mateus-Pinheiro A, Teixeira FG, Pinto L, Sousa N. Mesenchymal stem cells secretome as a modulator of the neurogenic niche: basic insights and therapeutic opportunities. Front Cell Neurosci 2015. [PMID: 26217178 PMCID: PMC4499760 DOI: 10.3389/fncel.2015.00249] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Neural stem cells (NSCs) and mesenchymal stem cells (MSCs) share few characteristics apart from self-renewal and multipotency. In fact, the neurogenic and osteogenic stem cell niches derive from two distinct embryonary structures; while the later originates from the mesoderm, as all the connective tissues do, the first derives from the ectoderm. Therefore, it is highly unlikely that stem cells isolated from one niche could form terminally differentiated cells from the other. Additionally, these two niches are associated to tissues/systems (e.g., bone and central nervous system) that have markedly different needs and display diverse functions within the human body. Nevertheless they do share common features. For instance, the differentiation of both NSCs and MSCs is intimately associated with the bone morphogenetic protein family. Moreover, both NSCs and MSCs secrete a panel of common growth factors, such as nerve growth factor (NGF), glial derived neurotrophic factor (GDNF), and brain derived neurotrophic factor (BDNF), among others. But it is not the features they share but the interaction between them that seem most important, and worth exploring; namely, it has already been shown that there are mutually beneficially effects when these cell types are co-cultured in vitro. In fact the use of MSCs, and their secretome, become a strong candidate to be used as a therapeutic tool for CNS applications, namely by triggering the endogenous proliferation and differentiation of neural progenitors, among other mechanisms. Quite interestingly it was recently revealed that MSCs could be found in the human brain, in the vicinity of capillaries. In the present review we highlight how MSCs and NSCs in the neurogenic niches interact. Furthermore, we propose directions on this field and explore the future therapeutic possibilities that may arise from the combination/interaction of MSCs and NSCs.
Collapse
Affiliation(s)
- Antonio J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho Braga, Portugal ; ICVS/3B's, PT Government Associate Laboratory Braga/Guimarães, Portugal
| | - Joao C Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho Braga, Portugal ; ICVS/3B's, PT Government Associate Laboratory Braga/Guimarães, Portugal
| | - Bruno M Costa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho Braga, Portugal ; ICVS/3B's, PT Government Associate Laboratory Braga/Guimarães, Portugal
| | - Ana O Pires
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho Braga, Portugal ; ICVS/3B's, PT Government Associate Laboratory Braga/Guimarães, Portugal
| | - António Mateus-Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho Braga, Portugal ; ICVS/3B's, PT Government Associate Laboratory Braga/Guimarães, Portugal
| | - F G Teixeira
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho Braga, Portugal ; ICVS/3B's, PT Government Associate Laboratory Braga/Guimarães, Portugal
| | - Luisa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho Braga, Portugal ; ICVS/3B's, PT Government Associate Laboratory Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho Braga, Portugal ; ICVS/3B's, PT Government Associate Laboratory Braga/Guimarães, Portugal
| |
Collapse
|
41
|
Behnan J, Isakson P, Joel M, Cilio C, Langmoen IA, Vik-Mo EO, Badn W. Recruited brain tumor-derived mesenchymal stem cells contribute to brain tumor progression. Stem Cells 2014; 32:1110-23. [PMID: 24302539 DOI: 10.1002/stem.1614] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 10/04/2013] [Accepted: 10/23/2013] [Indexed: 11/08/2022]
Abstract
The identity of the cells that contribute to brain tumor structure and progression remains unclear. Mesenchymal stem cells (MSCs) have recently been isolated from normal mouse brain. Here, we report the infiltration of MSC-like cells into the GL261 murine glioma model. These brain tumor-derived mesenchymal stem cells (BT-MSCs) are defined with the phenotype (Lin-Sca-1+CD9+CD44+CD166+/-) and have multipotent differentiation capacity. We show that the infiltration of BT-MSCs correlates to tumor progression; furthermore, BT-MSCs increased the proliferation rate of GL261 cells in vitro. For the first time, we report that the majority of GL261 cells expressed mesenchymal phenotype under both adherent and sphere culture conditions in vitro and that the non-MSC population is nontumorigenic in vivo. Although the GL261 cell line expressed mesenchymal phenotype markers in vitro, most BT-MSCs are recruited cells from host origin in both wild-type GL261 inoculated into green fluorescent protein (GFP)-transgenic mice and GL261-GFP cells inoculated into wild-type mice. We show the expression of chemokine receptors CXCR4 and CXCR6 on different recruited cell populations. In vivo, the GL261 cells change marker profile and acquire a phenotype that is more similar to cells growing in sphere culture conditions. Finally, we identify a BT-MSC population in human glioblastoma that is CD44+CD9+CD166+ both in freshly isolated and culture-expanded cells. Our data indicate that cells with MSC-like phenotype infiltrate into the tumor stroma and play an important role in tumor cell growth in vitro and in vivo. Thus, we suggest that targeting BT-MSCs could be a possible strategy for treating glioblastoma patients.
Collapse
Affiliation(s)
- Jinan Behnan
- Vilhelm Magnus Laboratory, Institute for Surgical Research, CAST-Cancer Stem Cell Innovation Center and Norwegian Center for Stem Cell Research, Oslo University Hospital, Oslo, Norway; Glioma Immunotherapy Group, Institute for Clinical Sciences, Department of Neurosurgery, Lund University, Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
42
|
Lai YJ, Li MY, Yang CY, Huang KH, Tsai JC, Wang TW. TRIP6 regulates neural stem cell maintenance in the postnatal mammalian subventricular zone. Dev Dyn 2014; 243:1130-42. [DOI: 10.1002/dvdy.24161] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 06/25/2014] [Accepted: 06/25/2014] [Indexed: 11/06/2022] Open
Affiliation(s)
- Yun-Ju Lai
- Department of Life Science; National Taiwan Normal University; Taipei Taiwan
| | - Ming-Yang Li
- Department of Life Science; National Taiwan Normal University; Taipei Taiwan
| | - Cheng-Yao Yang
- Department of Life Science; National Taiwan Normal University; Taipei Taiwan
| | - Kao-Hua Huang
- Department of Life Science; National Taiwan Normal University; Taipei Taiwan
| | - Jui-Cheng Tsai
- Department of Life Science; National Taiwan Normal University; Taipei Taiwan
| | - Tsu-Wei Wang
- Department of Life Science; National Taiwan Normal University; Taipei Taiwan
- Brain Research Center; National Yang-Ming University; Taipei Taiwan
| |
Collapse
|
43
|
Bian EB, Li J, He XJ, Zong G, Jiang T, Li J, Zhao B. Epigenetic modification in gliomas: role of the histone methyltransferase EZH2. Expert Opin Ther Targets 2014; 18:1197-206. [PMID: 25046371 DOI: 10.1517/14728222.2014.941807] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Gliomas are characterized by increased anaplasia, malignization, proliferation and invasion. They exhibit high resistance to standard treatment with combinations of radiotherapy and chemotherapy. They are currently the most common primary malignancy tumors in the brain that is related to a high mortality rate. Recently, increasing evidence suggests that EZH2 is involved in a number of glioma cell processes, including proliferation, apoptosis, invasion and angiogenesis. AREAS COVERED In this review, we emphasize the role of EZH2 in gliomas. We also address that EZH2 interacting with DNA methylation mediates transcriptional repression of specific genes in gliomas, and the regulation of EZH2 by microRNAs in gliomas. EXPERT OPINION Although the exact role of EZH2 in gliomas has not been fully elucidated, to understand the role of EZH2 proteins in epigenetic modification will provide valuable insights into the causes of gliomas, and pave the way to the potential future applications of EZH2 in the treatment of gliomas.
Collapse
Affiliation(s)
- Er-Bao Bian
- The Second Affiliated Hospital of Anhui Medical University, Department of Neurosurgery , Hefei 230601 , China
| | | | | | | | | | | | | |
Collapse
|
44
|
Charles NA, Holland EC, Gilbertson R, Glass R, Kettenmann H. The brain tumor microenvironment. Glia 2013; 59:1169-80. [PMID: 22379614 DOI: 10.1002/glia.21136] [Citation(s) in RCA: 391] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 12/08/2010] [Indexed: 02/06/2023]
Abstract
High-grade brain tumors are heterogeneous with respect to the composition of bona fide tumor cells and with respect to a range of intermingling parenchymal cells. Glioblastomas harbor multiple cell types, some with increased tumorigenicity and stem cell-like capacity. The stem-like cells maybe the cells of origin for tumor relapse. However, the tumor-associated parenchymal cells such as vascular cells,microglia, peripheral immune cells, and neural precursor cells also play a vital role in controlling the course of pathology.In this review, we describe the multiple interactions of bulk glioma cells and glioma stem cells with parenchymal cell populations and highlight the pathological impact as well as signaling pathways known for these types of cell-cell communication. The tumor-vasculature not only nourishes glioblastomas, but also provides a specialized niche for these stem-like cells. In addition, microglial cells,which can contribute up to 30% of a brain tumor mass,play a role in glioblastoma cell invasion. Moreover, non-neoplastic astrocytes can be converted into a reactive phenotype by the glioma microenvironment and can then secrete a number of factors which influences tumor biology. The young brain may have the capacity to inhibit gliomagenesis by the endogenous neural precursor cells, which secrete tumor suppressive factors. The factors, pathways, and interactions described in this review provide a new prospective on the cell biology of primary brain tumors, which may ultimately generate new treatment modalities. However, our picture of the multiple interactions between parenchymal and tumor cells is still incomplete.
Collapse
Affiliation(s)
- Nikki A Charles
- Brain Tumor Center and Department of Neurosurgery, Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | | | | | | | | |
Collapse
|
45
|
Charles NA, Holland EC, Gilbertson R, Glass R, Kettenmann H. The brain tumor microenvironment. Glia 2013; 60:502-14. [PMID: 22379614 DOI: 10.1002/glia.21264] [Citation(s) in RCA: 285] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
High-grade brain tumors are heterogeneous with respect to the composition of bona fide tumor cells and with respect to a range of intermingling parenchymal cells. Glioblastomas harbor multiple cell types, some with increased tumorigenicity and stem cell-like capacity. The stem-like cells maybe the cells of origin for tumor relapse. However, the tumor-associated parenchymal cells such as vascular cells,microglia, peripheral immune cells, and neural precursor cells also play a vital role in controlling the course of pathology.In this review, we describe the multiple interactions of bulk glioma cells and glioma stem cells with parenchymal cell populations and highlight the pathological impact as well as signaling pathways known for these types of cell-cell communication. The tumor-vasculature not only nourishes glioblastomas, but also provides a specialized niche for these stem-like cells. In addition, microglial cells,which can contribute up to 30% of a brain tumor mass,play a role in glioblastoma cell invasion. Moreover, non-neoplastic astrocytes can be converted into a reactive phenotype by the glioma microenvironment and can then secrete a number of factors which influences tumor biology. The young brain may have the capacity to inhibit gliomagenesis by the endogenous neural precursor cells, which secrete tumor suppressive factors. The factors, pathways, and interactions described in this review provide a new prospective on the cell biology of primary brain tumors, which may ultimately generate new treatment modalities. However, our picture of the multiple interactions between parenchymal and tumor cells is still incomplete.
Collapse
Affiliation(s)
- Nikki A Charles
- Brain Tumor Center and Department of Neurosurgery, Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | | | | | | | | |
Collapse
|
46
|
Piccioni DE, Kesari S. Clinical trials of viral therapy for malignant gliomas. Expert Rev Anticancer Ther 2013; 13:1297-305. [PMID: 24138481 DOI: 10.1586/14737140.2013.851160] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Despite recent scientific advances in the understanding of the biology of malignant gliomas, there has been little change in the overall survival for this devastating disease. New and innovative treatments are under constant investigation. Starting in the 1990s, there was an interest in using viral therapeutics for the treatment of malignant gliomas. Multiple strategies were pursued, including oncolytic viral therapy, enzyme/pro-drug combinations and gene transfer with viral vectors. Multiple Phase I and II trials demonstrated the safety of these techniques, but clinically showed limited efficacy. However, this led to a better understanding of the pitfalls of viral therapy and encouraged the development of new approaches and improved delivery methods. Here we review the prior and ongoing clinical trials of viral therapy for gliomas, and discuss how novel strategies are currently being utilized in clinical trials.
Collapse
Affiliation(s)
- David E Piccioni
- Department of Neurosciences, Moores Cancer Center, Translational Neuro-Oncology Laboratories, 3855 Health Sciences Dr. #0819, UC San Diego, La Jolla, CA, USA
| | | |
Collapse
|
47
|
Abstract
Hypoxia is a significant feature of solid tumor cancers. Hypoxia leads to a more malignant phenotype that is resistant to chemotherapy and radiation, is more invasive and has greater metastatic potential. Hypoxia activates the hypoxia inducible factor (HIF) pathway, which mediates the biological effects of hypoxia in tissues. The HIF complex acts as a transcription factor for many genes that increase tumor survival and proliferation. To date, many HIF pathway inhibitors indirectly affect HIF but there have been no clinically approved direct HIF inhibitors. This can be attributed to the complexity of the HIF pathway, as well as to the challenges of inhibiting protein-protein interactions.
Collapse
|
48
|
Goffart N, Kroonen J, Rogister B. Glioblastoma-initiating cells: relationship with neural stem cells and the micro-environment. Cancers (Basel) 2013; 5:1049-71. [PMID: 24202333 PMCID: PMC3795378 DOI: 10.3390/cancers5031049] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 07/29/2013] [Accepted: 08/01/2013] [Indexed: 01/19/2023] Open
Abstract
Glioblastoma multiforme (GBM, WHO grade IV) is the most common and lethal subtype of primary brain tumor with a median overall survival of 15 months from the time of diagnosis. The presence in GBM of a cancer population displaying neural stem cell (NSC) properties as well as tumor-initiating abilities and resistance to current therapies suggests that these glioblastoma-initiating cells (GICs) play a central role in tumor development and are closely related to NSCs. However, it is nowadays still unclear whether GICs derive from NSCs, neural progenitor cells or differentiated cells such as astrocytes or oligodendrocytes. On the other hand, NSCs are located in specific regions of the adult brain called neurogenic niches that have been shown to control critical stem cell properties, to nourish NSCs and to support their self-renewal. This “seed-and-soil” relationship has also been adapted to cancer stem cell research as GICs also require a specific micro-environment to maintain their “stem cell” properties. In this review, we will discuss the controversies surrounding the origin and the identification of GBM stem cells and highlight the micro-environment impact on their biology.
Collapse
Affiliation(s)
- Nicolas Goffart
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège 4000, Belgium; E-Mail:
| | - Jérôme Kroonen
- Human Genetics, CHU and University of Liège, Liège 4000, Belgium; E-Mail:
- The T&P Bohnenn Laboratory for Neuro-Oncology, Department of Neurology and Neurosurgery, UMC Utrecht, Utrecht 3556, The Netherlands; E-Mail:
| | - Bernard Rogister
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège 4000, Belgium; E-Mail:
- Department of Neurology, CHU and University of Liège, Liège 4000, Belgium
- GIGA-Development, Stem Cells and Regenerative Medicine, University of Liège, Liège 4000, Belgium
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +32-4-366-5950; Fax: +32-4-366-5912
| |
Collapse
|
49
|
Wu MS, Wang GF, Zhao ZQ, Liang Y, Wang HB, Wu MY, Min P, Chen LZ, Feng QS, Bei JX, Zeng YX, Yang D. Smac mimetics in combination with TRAIL selectively target cancer stem cells in nasopharyngeal carcinoma. Mol Cancer Ther 2013; 12:1728-37. [PMID: 23699656 DOI: 10.1158/1535-7163.mct-13-0017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nasopharyngeal carcinoma is a common malignancy in Southern China. After radiotherapy and chemotherapy, a considerable proportion of patients with nasopharyngeal carcinoma suffered tumor relapse and metastasis. Cancer stem cells (CSC) have been shown with resistance against therapies and thus considered as the initiator of recurrence and metastasis in tumors, where the antiapoptotic property of CSCs play an important role. Smac/DIABLO is an inverse regulator for the inhibitors of apoptosis protein family (IAP), which have been involved in apoptosis. Here, the effects of Smac mimetics on the CSCs of nasopharyngeal carcinoma were studied both in vitro and in vivo, using two clones of nasopharyngeal carcinoma cell line CNE2 as models. We found that one of the clones, S18, had CSC-like properties and IAPs were overexpressed. The combination of Smac mimetics and TNF-related apoptosis-inducing ligand (TRAIL) can reduce the percentage of SP cells and inhibit the colony- and sphere-forming abilities of S18 cells, indicating their ability to attenuate the CSCs. Moreover, in a nasopharyngeal carcinoma xenograft model, the administration of Smac mimetics in combination with TRAIL also led to the elimination of nasopharyngeal carcinoma stem cells. Furthermore, the Smac mimetics in combination with TRAIL induced the degradation of cIAP1 and XIAP and thus induced apoptosis in vitro and in vivo. Taken together, our data show that Smac mimetics exerted an antitumor effect on nasopharyngeal carcinoma cancer stem cells, and this combination treatment should be considered as a promising strategy for the treatment of nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Man-Si Wu
- Corresponding Authors: Yi-Xin Zeng, State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Bernhart E, Damm S, Wintersperger A, DeVaney T, Zimmer A, Raynham T, Ireson C, Sattler W. Protein kinase D2 regulates migration and invasion of U87MG glioblastoma cells in vitro. Exp Cell Res 2013; 319:2037-2048. [PMID: 23562655 PMCID: PMC3715702 DOI: 10.1016/j.yexcr.2013.03.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 03/26/2013] [Accepted: 03/27/2013] [Indexed: 11/25/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common malignant brain tumor, which, despite combined modality treatment, reoccurs and is invariably fatal for affected patients. Recently, a member of the serine/threonine protein kinase D (PRKD) family, PRKD2, was shown to be a potent mediator of glioblastoma growth. Here we studied the role of PRKD2 in U87MG glioblastoma cell migration and invasion in response to sphingosine-1-phosphate (S1P), an activator of PRKD2 and a GBM mitogen. Time-lapse microscopy demonstrated that random cell migration was significantly diminished in response to PRKD2 silencing. The pharmacological PRKD family inhibitor CRT0066101 decreased chemotactic migration and invasion across uncoated or matrigel-coated Transwell inserts. Silencing of PRKD2 attenuated migration and invasion of U87MG cells even more effectively. In terms of downstream signaling, CRT0066101 prevented PRKD2 autophosphorylation and inhibited p44/42 MAPK and to a smaller extent p54/46 JNK and p38 MAPK activation. PRKD2 silencing impaired activation of p44/42 MAPK and p54/46 JNK, downregulated nuclear c-Jun protein levels and decreased c-JunS73 phosphorylation without affecting the NFκB pathway. Finally, qPCR array analyses revealed that silencing of PRKD2 downregulates mRNA levels of integrin alpha-2 and -4 (ITGA2 and -4), plasminogen activator urokinase (PLAU), plasminogen activator urokinase receptor (PLAUR), and matrix metallopeptidase 1 (MMP1). Findings of the present study identify PRKD2 as a potential target to interfere with glioblastoma cell migration and invasion, two major determinants contributing to recurrence of glioblastoma after multimodality treatment. Sphingosine-1-phosphate induces glioma cell migration and invasion. Part of the effects is mediated by protein kinase D2 (PRKD2) activation. Inactivation of PRKD2 attenuates glioblastoma cell migration and invasion. Both, RNAi and pharmacological inhibition of PRKD2 inhibits MAPK signaling. PRKD2 regulates transcription of gene products implicated in migration and invasion.
Collapse
Affiliation(s)
- Eva Bernhart
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Sabine Damm
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Andrea Wintersperger
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Trevor DeVaney
- Institute of Biophysics, Medical University of Graz, Austria
| | - Andreas Zimmer
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, Karl-Franzens University, Graz, Austria
| | | | | | - Wolfgang Sattler
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria.
| |
Collapse
|