1
|
Schöpe PC, Torke S, Kobelt D, Kortüm B, Treese C, Dumbani M, Güllü N, Walther W, Stein U. MACC1 revisited - an in-depth review of a master of metastasis. Biomark Res 2024; 12:146. [PMID: 39580452 PMCID: PMC11585957 DOI: 10.1186/s40364-024-00689-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024] Open
Abstract
Cancer metastasis remains the most lethal characteristic of tumors mediating the majority of cancer-related deaths. Identifying key molecules responsible for metastasis, understanding their biological functions and therapeutically targeting these molecules is therefore of tremendous value. Metastasis Associated in Colon Cancer 1 (MACC1), a gene first described in 2009, is such a key driver of metastatic processes, initiating cellular proliferation, migration, invasion, and metastasis in vitro and in vivo. Since its discovery, the value of MACC1 as a prognostic biomarker has been confirmed in over 20 cancer entities. Additionally, several therapeutic strategies targeting MACC1 and its pro-metastatic functions have been developed. In this review, we will provide a comprehensive overview on MACC1, from its clinical relevance, towards its structure and role in signaling cascades as well as molecular networks. We will highlight specific biological consequences of MACC1 expression, such as an increase in stem cell properties, its immune-modulatory effects and induced therapy resistance. Lastly, we will explore various strategies interfering with MACC1 expression and/or its functions. Conclusively, this review underlines the importance of understanding the role of individual molecules in mediating metastasis.
Collapse
Affiliation(s)
- Paul Curtis Schöpe
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Sebastian Torke
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Dennis Kobelt
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Benedikt Kortüm
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Christoph Treese
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Malti Dumbani
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Nazli Güllü
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Wolfgang Walther
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Ulrike Stein
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.
- German Cancer Consortium (DKTK), Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
2
|
Siegel F, Schmidt H, Juneja M, Smith J, Herrmann P, Kobelt D, Sharma K, Fichtner I, Walther W, Dittmar G, Volkmer R, Rathjen FG, Schlag PM, Stein U. GIPC1 regulates MACC1-driven metastasis. Front Oncol 2023; 13:1280977. [PMID: 38144523 PMCID: PMC10748395 DOI: 10.3389/fonc.2023.1280977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/14/2023] [Indexed: 12/26/2023] Open
Abstract
Background Identification of cancer metastasis-relevant molecular networks is desired to provide the basis for understanding and developing intervention strategies. Here we address the role of GIPC1 in the process of MACC1-driven metastasis. MACC1 is a prognostic indicator for patient metastasis formation and metastasis-free survival. MACC1 controls gene transcription, promotes motility, invasion and proliferation of colon cancer cells in vitro, and causes tumor growth and metastasis in mice. Methods By using yeast-two-hybrid assay, mass spectrometry, co-immunoprecipitation and peptide array we analyzed GIPC1 protein binding partners, by using the MACC1 gene promoter and chromatin immunoprecipitation and electrophoretic mobility shift assay we probed for GIPC1 as transcription factor. We employed GIPC1/MACC1-manipulated cell lines for in vitro and in vivo analyses, and we probed the GIPC1/MACC1 impact using human primary colorectal cancer (CRC) tissue. Results We identified MACC1 and its paralogue SH3BP4 as protein binding partners of the protein GIPC1, and we also demonstrated the binding of GIPC1 as transcription factor to the MACC1 promoter (TSS to -60 bp). GIPC1 knockdown reduced endogenous, but not CMV promoter-driven MACC1 expression, and diminished MACC1-induced cell migration and invasion. GIPC1 suppression reduced tumor growth and metastasis in mice intrasplenically transplanted with MACC1-overexpressing CRC cells. In human primary CRC specimens, GIPC1 correlates with MACC1 expression and is of prognostic value for metastasis formation and metastasis-free survival. Combination of MACC1 and GIPC1 expression improved patient survival prognosis, whereas SH3BP4 expression did not show any prognostic value. Conclusions We identified an important, dual function of GIPC1 - as protein interaction partner and as transcription factor of MACC1 - for tumor progression and cancer metastasis.
Collapse
Affiliation(s)
- Franziska Siegel
- Department Translational Oncology of Solid Tumors, Experimental and Clinical Research Institute, Charité Universitätsmedizin Berlin, and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Hannes Schmidt
- Department Developmental Neurobiology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Manisha Juneja
- Department Translational Oncology of Solid Tumors, Experimental and Clinical Research Institute, Charité Universitätsmedizin Berlin, and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Janice Smith
- Department Translational Oncology of Solid Tumors, Experimental and Clinical Research Institute, Charité Universitätsmedizin Berlin, and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Pia Herrmann
- Department Translational Oncology of Solid Tumors, Experimental and Clinical Research Institute, Charité Universitätsmedizin Berlin, and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Dennis Kobelt
- Department Translational Oncology of Solid Tumors, Experimental and Clinical Research Institute, Charité Universitätsmedizin Berlin, and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- German Cancer Consortium, Heidelberg, Germany
| | - Kamal Sharma
- Department Developmental Neurobiology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Iduna Fichtner
- Experimental Pharmacology and Oncology, GmbH, Berlin, Germany
| | - Wolfgang Walther
- Department Translational Oncology of Solid Tumors, Experimental and Clinical Research Institute, Charité Universitätsmedizin Berlin, and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Gunnar Dittmar
- Department Mass Spectrometry, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Rudolf Volkmer
- Institute for Medicinal Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Fritz G. Rathjen
- Department Developmental Neurobiology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | | | - Ulrike Stein
- Department Translational Oncology of Solid Tumors, Experimental and Clinical Research Institute, Charité Universitätsmedizin Berlin, and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- German Cancer Consortium, Heidelberg, Germany
| |
Collapse
|
3
|
Zheng G, Zhu Y, Xu L, Chen S, Zhang X, Li W, Chen W, Zhou Y, Gu W. LncRNA MACC1-AS1 associates with DDX5 to modulate MACC1 transcription in breast cancer cells. iScience 2023; 26:107642. [PMID: 37664587 PMCID: PMC10474461 DOI: 10.1016/j.isci.2023.107642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/31/2023] [Accepted: 08/11/2023] [Indexed: 09/05/2023] Open
Abstract
MACC1 is a master oncogene involved in multiple aspects of cancer metastasis in a broad variety of tumors. However, the molecular mechanism by which MACC1 transcription is regulated remains unclear. Here, we show that in breast cancer cells, lncRNA MACC1-AS1 serves as a cis-factor to up-regulate MACC1 transcription and this regulation increases the cell proliferation potential. Mechanistically, MACC1-AS1 forms a complex with DEAD-Box helicase 5 (DDX5) and simultaneously interacts with the distal region of the MACC1 promoter. The interaction allows its associated DDX5 to spatially contact the MACC1 core promoter and shift from MACC1-AS1 to the core promoter. Moreover, binding of DDX5 to the core promoter results in local recruitment of the transcription factor SP-1, thus enhancing MACC1 transcription. Our findings reveal a molecular mechanism by which MACC1-AS1 cis-regulates MACC1 transcription by interacting with the distal promoter region and delivering DDX5 to the core-promoter of the gene.
Collapse
Affiliation(s)
- Guiyu Zheng
- Department of Pathophysiology, Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province 515041, China
| | - Yanmei Zhu
- Department of Pathophysiology, Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province 515041, China
| | - Liqun Xu
- Department of Pathophysiology, Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province 515041, China
| | - Shaoying Chen
- Department of Pathophysiology, Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province 515041, China
| | - Xiaona Zhang
- Department of Pathophysiology, Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province 515041, China
| | - Wei Li
- Department of Pathophysiology, Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province 515041, China
| | - Weibin Chen
- Department of Pathophysiology, Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province 515041, China
| | - Yanchun Zhou
- Department of Pathophysiology, Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province 515041, China
| | - Wei Gu
- Department of Pathophysiology, Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province 515041, China
| |
Collapse
|
4
|
He Z, Tang D. Perioperative predictors of outcome of hepatectomy for HBV-related hepatocellular carcinoma. Front Oncol 2023; 13:1230164. [PMID: 37519791 PMCID: PMC10373594 DOI: 10.3389/fonc.2023.1230164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023] Open
Abstract
Hepatitis B virus (HBV) is identified as a major risk factor for hepatocellular carcinoma (HCC), resulting in so-called hepatitis B virus-related hepatocellular carcinoma (HBV-related HCC). Hepatectomy for HCC is acknowledged as an efficient treatment strategy, especially for early HCC. Furthermore, patients with advanced HCC can still obtain survival benefits through surgical treatment combined with neoadjuvant therapy, adjuvant therapy, transcatheter arterial chemoembolization, and radiofrequency ablation. Therefore, preoperative and postoperative predictors of HBV-related HCC have crucial indicative functions for the follow-up treatment of patients with feasible hepatectomy. This review covers a variety of research results on preoperative and postoperative predictors of hepatectomy for HBV-related HCC over the past decade and in previous landmark studies. The relevant contents of Hepatitis C virus-related HCC, non-HBV non-HCV HCC, and the artificial intelligence application in this field are briefly addressed in the extended content. Through the integration of this review, a large number of preoperative and postoperative factors can predict the prognosis of HBV-related HCC, while most of the predictors have no standardized thresholds. According to the characteristics, detection methods, and application of predictors, the predictors can be divided into the following categories: 1. serological and hematological predictors, 2. genetic, pathological predictors, 3. imaging predictors, 4. other predictors, 5. analysis models and indexes. Similar results appear in HCV-related HCC, non-HBV non-HCV HCC. Predictions based on AI and big biological data are actively being applied. A reasonable prediction model should be established based on the economic, health, and other levels in specific countries and regions.
Collapse
|
5
|
Cheng MZ, Yang BB, Zhan ZT, Lin SM, Fang ZP, Gao Y, Zhou WJ. MACC1 and Gasdermin-E (GSDME) regulate the resistance of colorectal cancer cells to irinotecan. Biochem Biophys Res Commun 2023; 671:236-245. [PMID: 37307707 DOI: 10.1016/j.bbrc.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/01/2023] [Indexed: 06/14/2023]
Abstract
Metastasis-associated in colon cancer 1 (MACC1) is an oncogene associated with the progression and metastasis of many solid cancer entities. High expression of MACC1 is found in colorectal cancer (CRC) tissues. So far, the role of MACC1 in CRC cell pyroptosis and resistance to irinotecan is unclear. The cleavage of Gasdermin-E (GSDME) is the main executors of activated pyroptosis. We found that GSDME enhanced CRC cell pyroptosis and reduced their resistance to irinotecan, while MACC1 inhibited the cleavage of GSDME and CRC cell pyroptosis, promoted CRC cell proliferation, and enhanced the resistance of CRC cells to irinotecan. Therefore, CRC cells with high MACC1 expression and low GSDME expression had higher resistance to irinotecan, while CRC cells with low MACC1 expression and high GSDME expression had lower resistance to irinotecan. Consistently, by analyzing CRC patients who received FOLFIRI (Fluorouracil + Irinotecan + Leucovorin) in combination with chemotherapy in the GEO database, we found that CRC patients with low MACC1 expression and high GSDME expression had higher survival rate. Our study suggests that the expression of MACC1 and GSDME can be used as detection markers to divide CRC patients into irinotecan resistant and sensitive groups, helping to determine the treatment strategy of patients.
Collapse
Affiliation(s)
- Ming-Zhen Cheng
- State Key Laboratory of Organ Failure Research, Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Department of Gastrointestinal and Hernia Surgery, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi, 341000, China
| | - Bo-Bo Yang
- State Key Laboratory of Organ Failure Research, Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Department of Gastrointestinal and Hernia Surgery, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi, 341000, China
| | - Ze-Tao Zhan
- State Key Laboratory of Organ Failure Research, Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Department of Gastrointestinal and Hernia Surgery, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi, 341000, China
| | - Si-Min Lin
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, China
| | - Zhe-Ping Fang
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, 317000, China
| | - Yi Gao
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial, Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Wei-Jie Zhou
- State Key Laboratory of Organ Failure Research, Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial, Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China; Department of Gastrointestinal and Hernia Surgery, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi, 341000, China.
| |
Collapse
|
6
|
MACC1 as a Potential Target for the Treatment and Prevention of Breast Cancer. BIOLOGY 2023; 12:biology12030455. [PMID: 36979146 PMCID: PMC10045309 DOI: 10.3390/biology12030455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Metastasis associated in colon cancer 1 (MACC1) is an oncogene first identified in colon cancer. MACC1 has been identified in more than 20 different types of solid cancers. It is a key prognostic biomarker in clinical practice and is involved in recurrence, metastasis, and survival in many types of human cancers. MACC1 is significantly associated with the primary tumor, lymph node metastasis, distant metastasis classification, and clinical staging in patients with breast cancer (BC), and MACC1 overexpression is associated with reduced recurrence-free survival (RFS) and worse overall survival (OS) in patients. In addition, MACC1 is involved in BC progression in multiple ways. MACC1 promotes the immune escape of BC cells by affecting the infiltration of immune cells in the tumor microenvironment. Since the FGD5AS1/miR-497/MACC1 axis inhibits the apoptotic pathway in radiation-resistant BC tissues and cell lines, the MACC1 gene may play an important role in BC resistance to radiation. Since MACC1 is involved in numerous biological processes inside and outside BC cells, it is a key player in the tumor microenvironment. Focusing on MACC1, this article briefly discusses its biological effects, emphasizes its molecular mechanisms and pathways of action, and describes its use in the treatment and prevention of breast cancer.
Collapse
|
7
|
Schöpe PC, Zinnow V, Ishfaq MA, Smith J, Herrmann P, Shoemaker RH, Walther W, Stein U. Cantharidin and Its Analogue Norcantharidin Inhibit Metastasis-Inducing Genes S100A4 and MACC1. Int J Mol Sci 2023; 24:ijms24021179. [PMID: 36674695 PMCID: PMC9866560 DOI: 10.3390/ijms24021179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent and second deadliest cancer worldwide. In addition, metastasis directly causes up to 90% of all CRC deaths, highlighting the metastatic burden of the disease. Biomarkers such as S100A4 and MACC1 aid in identifying patients with a high risk of metastasis formation. High expression of S100A4 or MACC1 and to a greater extent the combination of both biomarkers is a predictor for metastasis and poor patient survival in CRC. MACC1 is a tumor-initiating and metastasis-promoting oncogene, whereas S100A4 has not been shown to initiate tumor formation but can, nevertheless, promote malignant tumor growth and metastasis formation. Cantharidin is a natural drug extracted from various blister beetle species, and its demethylated analogue norcantharidin has been shown in several studies to have an anti-cancer and anti-metastatic effect in different cancer entities such as CRC, breast cancer, and lung cancer. The impact of the natural compound cantharidin and norcantharidin on S100A4 and MACC1 gene expression, cancer cell migration, motility, and colony formation in vitro was tested. Here, for the first time, we have demonstrated that cantharidin and norcantharidin are transcriptional inhibitors of S100A4 and MACC1 mRNA expression, protein expression, and motility in CRC cells. Our results clearly indicate that cantharidin and, to a lesser extent, its analogue norcantharidin are promising compounds for efficient anti-metastatic therapy targeting the metastasis-inducing genes S100A4 and MACC1 for personalized medicine for cancer patients.
Collapse
Affiliation(s)
- Paul Curtis Schöpe
- Experimental and Clinical Research Center, Charité—Universitätsmedizin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Viktoria Zinnow
- Experimental and Clinical Research Center, Charité—Universitätsmedizin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Muhammad Ahtisham Ishfaq
- Experimental and Clinical Research Center, Charité—Universitätsmedizin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Janice Smith
- Experimental and Clinical Research Center, Charité—Universitätsmedizin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Pia Herrmann
- Experimental and Clinical Research Center, Charité—Universitätsmedizin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Robert H. Shoemaker
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD 20892, USA
| | - Wolfgang Walther
- Experimental and Clinical Research Center, Charité—Universitätsmedizin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
- German Cancer Consortium (DKTK Partnersite Berlin), Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Ulrike Stein
- Experimental and Clinical Research Center, Charité—Universitätsmedizin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
- German Cancer Consortium (DKTK Partnersite Berlin), Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-30-9406-3432
| |
Collapse
|
8
|
Kortüm B, Radhakrishnan H, Zincke F, Sachse C, Burock S, Keilholz U, Dahlmann M, Walther W, Dittmar G, Kobelt D, Stein U. Combinatorial treatment with statins and niclosamide prevents CRC dissemination by unhinging the MACC1-β-catenin-S100A4 axis of metastasis. Oncogene 2022; 41:4446-4458. [PMID: 36008464 PMCID: PMC9507965 DOI: 10.1038/s41388-022-02407-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/29/2022]
Abstract
Colorectal cancer (CRC) is the second-most common malignant disease worldwide, and metastasis is the main culprit of CRC-related death. Metachronous metastases remain to be an unpredictable, unpreventable, and fatal complication, and tracing the molecular chain of events that lead to metastasis would provide mechanistically linked biomarkers for the maintenance of remission in CRC patients after curative treatment. We hypothesized, that Metastasis-associated in colorectal cancer-1 (MACC1) induces a secretory phenotype to enforce metastasis in a paracrine manner, and found, that the cell-free culture medium of MACC1-expressing CRC cells induces migration. Stable isotope labeling by amino acids in cell culture mass spectrometry (SILAC-MS) of the medium revealed, that S100A4 is significantly enriched in the MACC1-specific secretome. Remarkably, both biomarkers correlate in expression data of independent cohorts as well as within CRC tumor sections. Furthermore, combined elevated transcript levels of the metastasis genes MACC1 and S100A4 in primary tumors and in blood plasma robustly identifies CRC patients at high risk for poor metastasis-free (MFS) and overall survival (OS). Mechanistically, MACC1 strengthens the interaction of β-catenin with TCF4, thus inducing S100A4 synthesis transcriptionally, resulting in elevated secretion to enforce cell motility and metastasis. In cell motility assays, S100A4 was indispensable for MACC1-induced migration, as shown via knock-out and pharmacological inhibition of S100A4. The direct transcriptional and functional relationship of MACC1 and S100A4 was probed by combined targeting with repositioned drugs. In fact, the MACC1-β-catenin-S100A4 axis by statins (MACC1) and niclosamide (S100A4) synergized in inhibiting cancer cell motility in vitro and metastasis in vivo. The MACC1-β-catenin-S100A4 signaling axis is causal for CRC metastasis. Selectively repositioned drugs synergize in restricting MACC1/S100A4-driven metastasis with cross-entity potential.
Collapse
Affiliation(s)
- Benedikt Kortüm
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Harikrishnan Radhakrishnan
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Fabian Zincke
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | | | - Susen Burock
- Charité University Hospital Berlin Centre 10 Charite Comprehensive Cancer Center, Berlin, Germany
| | - Ulrich Keilholz
- Charité University Hospital Berlin Centre 10 Charite Comprehensive Cancer Center, Berlin, Germany
| | - Mathias Dahlmann
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Wolfgang Walther
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Gunnar Dittmar
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Dennis Kobelt
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Ulrike Stein
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany. .,German Cancer Consortium (DKTK), Heidelberg, Germany.
| |
Collapse
|
9
|
Zhang Z, Jia H, Wang Y, Du B, Zhong J. Association of MACC1 expression with lymphatic metastasis in colorectal cancer: A nested case-control study. PLoS One 2021; 16:e0255489. [PMID: 34343214 PMCID: PMC8330891 DOI: 10.1371/journal.pone.0255489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 07/16/2021] [Indexed: 12/24/2022] Open
Abstract
MACC1 gene is a newly discovered gene and plays an important role in the metastasis of colorectal cancer (CRC). The objective of this study was to investigate whether MACC1 is an independent factor associated with lymphatic metastasis in CRC patients. We analyzed the association between MACC1 expression and lymphatic metastasis in a nested case-control study including 99 cases and 198 matched controls in CRC patients, assessed from August 2001 to March 2015. Cases were defined as lymphatic metastasis and non-lymphatic metastasis according to AJCC TNM stages; for each case, two age-matched control without lymphatic and distant metastasis was randomly selected from the study participants. Demographic, variables about metastasis and MACC1 expression were collected. In multivariate analysis, the OR (95% CI) of MACC1 expression was 1.5 (1.1 to 2.0) in patients with lymphatic metastasis versus non-lymphatic metastasis after adjusting all variables. After adjustment for all variables and age stratification, MACC1 expression was found to be an independent risk factor for lymph node metastasis in the middle-aged group (OR 2.1, 95%CI 1.1–4.0). A nonlinear relationship between MACC1 expression and 64–75 age group was observed. The probability of metastasis slightly increased with the MACC1 level lower than turning point 1.4. At the same time, the probability of lymphatic metastasis was obviously increased even after adjusting all variables when MACC1 level higher than 1.4 (OR 11.2, 95% CI 1.5–81.5; p = 0.017) in the middle age group. The expression of MACC1 was not associated with lymphatic metastasis in populations younger than 64 or older than 75. The results demonstrates that increased MACC1 level in 64–75 age group might be associated with lymphatic metastasis in CRC patients.
Collapse
Affiliation(s)
- Zheying Zhang
- Department of Pathology, Xinxiang Medical University, Xinxiang, 453003, P.R. China
| | - Huijie Jia
- Department of Pathology, Xinxiang Medical University, Xinxiang, 453003, P.R. China
| | - Yuhang Wang
- Department of Pathology, Xinxiang Medical University, Xinxiang, 453003, P.R. China
| | - Baoshun Du
- Second Department of Neurosurgery, Xinxiang Central Hospital, Xinxiang, 453003, P.R. China
| | - Jiateng Zhong
- Department of Pathology, Xinxiang Medical University, Xinxiang, 453003, P.R. China
- * E-mail:
| |
Collapse
|
10
|
Kobelt D, Perez-Hernandez D, Fleuter C, Dahlmann M, Zincke F, Smith J, Migotti R, Popp O, Burock S, Walther W, Dittmar G, Mertins P, Stein U. The newly identified MEK1 tyrosine phosphorylation target MACC1 is druggable by approved MEK1 inhibitors to restrict colorectal cancer metastasis. Oncogene 2021; 40:5286-5301. [PMID: 34247190 PMCID: PMC8390371 DOI: 10.1038/s41388-021-01917-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 02/06/2023]
Abstract
Cancer metastasis causes >90% of cancer deaths and remains a major treatment challenge. Here we deciphered the impact of tyrosine phosphorylation of MACC1, a causative driver for cancer metastasis, for cancer cell signaling and novel interventions to restrict cancer metastasis. We identified MACC1 as new MEK1 substrate. MEK1 directly phosphorylates MACC1, leading to accelerated and increased ERK1 activation. Mutating in silico predicted hierarchical MACC1 tyrosine phosphorylation sites abrogates MACC1-induced migration, invasion, and MET expression, a transcriptional MACC1 target. Targeting MEK1 by RNAi or clinically applicable MEK1 inhibitors AZD6244 and GSK1120212 reduces MACC1 tyrosine phosphorylation and restricts MACC1-induced metastasis formation in mice. Although MEK1 levels, contrary to MACC1, are not of prognostic relevance for CRC patients, MEK1 expression was found indispensable for MACC1-induced metastasis. This study identifies MACC1 as new MEK1 substrate for tyrosine phosphorylation decisively impacting cell motility, tumor growth, and metastasis. Thus, MAP kinase signaling is not linear leading to ERK activation, but branches at the level of MEK1. This fundamental finding opens new therapeutic options for targeting the MEK1/MACC1 axis as novel vulnerability in patients at high risk for metastasis. This might be extended from CRC to further solid tumor entities.
Collapse
Affiliation(s)
- Dennis Kobelt
- Translational Oncology of Solid Tumors, Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Daniel Perez-Hernandez
- Mass Spectrometry Core Unit, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Proteome and Genome Research Laboratory, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Claudia Fleuter
- Translational Oncology of Solid Tumors, Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Mathias Dahlmann
- Translational Oncology of Solid Tumors, Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Fabian Zincke
- Translational Oncology of Solid Tumors, Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Janice Smith
- Translational Oncology of Solid Tumors, Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Rebekka Migotti
- Mass Spectrometry Core Unit, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Oliver Popp
- Mass Spectrometry Core Unit, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Susen Burock
- Charité Comprehensive Cancer Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Wolfgang Walther
- Translational Oncology of Solid Tumors, Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Gunnar Dittmar
- Mass Spectrometry Core Unit, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Proteome and Genome Research Laboratory, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Philipp Mertins
- Mass Spectrometry Core Unit, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Ulrike Stein
- Translational Oncology of Solid Tumors, Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
- German Cancer Consortium (DKTK), Heidelberg, Germany.
| |
Collapse
|
11
|
Imbastari F, Dahlmann M, Sporbert A, Mattioli CC, Mari T, Scholz F, Timm L, Twamley S, Migotti R, Walther W, Dittmar G, Rehm A, Stein U. MACC1 regulates clathrin-mediated endocytosis and receptor recycling of transferrin receptor and EGFR in colorectal cancer. Cell Mol Life Sci 2021; 78:3525-3542. [PMID: 33469705 PMCID: PMC8038998 DOI: 10.1007/s00018-020-03734-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 11/16/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022]
Abstract
Metastasis Associated in Colon Cancer 1 (MACC1) is a novel prognostic, predictive and causal biomarker for tumor progression and metastasis in many cancer types, including colorectal cancer. Besides its clinical value, little is known about its molecular function. Its similarity to SH3BP4, involved in regulating uptake and recycling of transmembrane receptors, suggests a role of MACC1 in endocytosis. By exploring the MACC1 interactome, we identified the clathrin-mediated endocytosis (CME)-associated proteins CLTC, DNM2 and AP-2 as MACC1 binding partners. We unveiled a MACC1-dependent routing of internalized transferrin receptor towards recycling. Elevated MACC1 expression caused also the activation and internalization of EGFR, a higher rate of receptor recycling, as well as earlier and stronger receptor activation and downstream signaling. These effects are limited by deletion of CME-related protein interaction sites in MACC1. Thus, MACC1 regulates CME and receptor recycling, causing increased growth factor-mediated downstream signaling and cell proliferation. This novel mechanism unveils potential therapeutic intervention points restricting MACC1-driven metastasis.
Collapse
Affiliation(s)
- Francesca Imbastari
- Translational Oncology of Solid Tumors, Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine Berlin in the Helmholtz-Association, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Mathias Dahlmann
- Translational Oncology of Solid Tumors, Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine Berlin in the Helmholtz-Association, Robert-Rössle-Straße 10, 13125, Berlin, Germany. .,German Cancer Consortium (DKTK), Heidelberg, Germany.
| | - Anje Sporbert
- Advanced Light Microscopy, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Camilla Ciolli Mattioli
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Tommaso Mari
- Proteome Dynamics, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Florian Scholz
- Tumor Immunology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Lena Timm
- Translational Oncology of Solid Tumors, Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine Berlin in the Helmholtz-Association, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Shailey Twamley
- Translational Oncology of Solid Tumors, Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine Berlin in the Helmholtz-Association, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | | | - Wolfgang Walther
- Translational Oncology of Solid Tumors, Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine Berlin in the Helmholtz-Association, Robert-Rössle-Straße 10, 13125, Berlin, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Gunnar Dittmar
- Proteomics of Cellular Signaling, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Armin Rehm
- Tumor Immunology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Ulrike Stein
- Translational Oncology of Solid Tumors, Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine Berlin in the Helmholtz-Association, Robert-Rössle-Straße 10, 13125, Berlin, Germany. .,German Cancer Consortium (DKTK), Heidelberg, Germany.
| |
Collapse
|
12
|
Nair RM, Prabhu V, Manukonda R, Mishra DK, Kaliki S, Vemuganti GK. Overexpression of metastasis-associated in colon cancer 1 in retinoblastoma. Tumour Biol 2020; 42:1010428320975973. [PMID: 33245030 DOI: 10.1177/1010428320975973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
INTRODUCTION Metastasis-associated in colon cancer 1 (MACC1), one of the prognostic markers for colonic and other tumours was noted to be overexpressed in retinoblastoma (Rb) Y79 cancer stem cells. This prompted us to evaluate its expression in primary Rb tumour and serum samples with clinicopathologic correlation. The interacting partner, c-MET was also evaluated in primary tumour tissues to explore the activation of MACC1 signaling. METHODOLOGY This study was done following institutional review board approval from participating institutes. Semiquantitative gene expression for MACC1 was evaluated using formalin-fixed paraffin-embedded sections and unfixed tumour samples from primary Rb cases (n = 44). Immunolocalization for MACC1 was assessed in primary Rb tumours (n = 22), bone marrow aspirates with metastasis (n = 3), and c-MET expression was also assessed in Rb tumours (n = 17). Serum MACC1 levels were analysed using enzyme-linked immunosorbent assay in samples collected from Rb patients undergoing enucleation (n = 31), Rb patients with proven clinical metastasis (n = 3), and compared to appropriate controls. Clinicopathologic correlation of MACC1 expression was analysed using the medical records with specific reference to histologic risk factors (HRF) for metastasis and differentiation. RESULTS High expression of MACC1 gene was noted in all the tumour samples (n = 44), more so in cases with versus without HRF (p < 0.0001). In cases with HRF, MACC1 and c-MET showed diffuse nuclear and cytoplasmic staining whereas it was predominantly cytoplasmic in cases without HRF. Mean immunoreactivity score of MACC1 and c-MET tissue immunolocalization revealed that cases with HRF showed significantly higher expression compared to cases without HRF (p < 0.05). Unlike the findings in colonic tumours, serum levels of MACC1 were lower in patients compared to normal controls. CONCLUSION Overexpression of MACC1 and c-MET in retinoblastoma tissues, specifically those with risk factors for metastasis, suggests its role in proliferation and possibly in invasion. However, the current data do not support it to be a clinical prognostic marker in retinoblastoma tumours. The inverse serum expression is an intriguing finding, which warrants further studies especially in retinoblastoma.
Collapse
Affiliation(s)
- Rohini M Nair
- School of Medical Sciences, University of Hyderabad, Hyderabad, India.,Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Varsha Prabhu
- School of Medical Sciences, University of Hyderabad, Hyderabad, India
| | - Radhika Manukonda
- School of Medical Sciences, University of Hyderabad, Hyderabad, India
| | - Dilip K Mishra
- Ophthalmic Pathology Laboratory, LV Prasad Eye Institute, Hyderabad, India
| | - Swathi Kaliki
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, India
| | - Geeta K Vemuganti
- School of Medical Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
13
|
Abstract
Metastasis-associated in colon cancer-1 (MACC-1) is a newly identified tumor marker, found to express in various normal and cancerous tissue. This study is conducted to evaluate the serum MACC-1 level as a diagnostic marker for breast cancer (BC). Sixty new BC patients were included in this study. Patients who received neoadjuvant chemotherapy or with metastatic disease were excluded. Eighty patients of benign disease were taken as control group. All the patients were females with the mean age of 46.7 ± 10.6 years in study group and 40.2 ± 8.4 years in control group (p = 0.0001). The mean serum MACC-1 level in BC patients was 3.46 ± 1.3 ng/ml which was significantly higher than control mean serum MACC-1 level (1.90 ± 0.2 ng/ml) (p < 0.0001). On ROC analysis, the AUC was 0.98 (p ≤ 0.0001; 95% CI = 0.97-1.0) i.e., a good predictor for breast cancer. At the cut-off value of 2.12 ng/ml, the sensitivity and the specificity of serum MACC-1 were 96.7% and 92.5%, respectively. This study showed that serum MACC-1 can be a potential biomarker for diagnosis and tumor progression in patients with breast cancer.
Collapse
|
14
|
Examination of the expression levels of MACC1, Filamin A and FBXW7 genes in colorectal cancer patients. North Clin Istanb 2020; 7:1-5. [PMID: 32232196 PMCID: PMC7103745 DOI: 10.14744/nci.2019.26780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/19/2019] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE: Colorectal cancer (CRC) is the third most common type of cancer observed in cancer-related mortality because it has a high metastasis ratio. This study aims to investigate the expression levels of several genes, including metastasis-related colon cancer 1 (MACC1), Filamin A (FLNA), F-box/WD repeat-containing protein 7 (FBXW7), which has an important role in cell signaling, migration and adhesion through the remodeling of the cell skeleton. METHODS: In this study, 21 patients with a precise diagnosis of CRC and 21 controls were included. Gene expressions were examined using the RT-PCR technique. To define the relationship of the genes with metastasis, blood samples were collected from all patients with colon/rectal cancer diagnosis without metastasis at six months before and after the medication with Xelox. RESULTS: Our findings showed that no significant difference was observed in the pre-treatment values compared to the control group, whereas FLNA (p=0.001) expression was observed to be significantly increased following treatment with Xelox. CONCLUSION: To our knowledge, our study is the first study to investigate the effects of Xelox treatment on the expression levels of MACC1, FBXW7 and FLNA genes in non-metastatic colorectal cancer patients in Turkey.
Collapse
|
15
|
Decoding and targeting the molecular basis of MACC1-driven metastatic spread: Lessons from big data mining and clinical-experimental approaches. Semin Cancer Biol 2019; 60:365-379. [PMID: 31430556 DOI: 10.1016/j.semcancer.2019.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/09/2019] [Accepted: 08/09/2019] [Indexed: 12/17/2022]
Abstract
Metastasis remains the key issue impacting cancer patient survival and failure or success of cancer therapies. Metastatic spread is a complex process including dissemination of single cells or collective cell migration, penetration of the blood or lymphatic vessels and seeding at a distant organ site. Hundreds of genes involved in metastasis have been identified in studies across numerous cancer types. Here, we analyzed how the metastasis-associated gene MACC1 cooperates with other genes in metastatic spread and how these coactions could be exploited by combination therapies: We performed (i) a MACC1 correlation analysis across 33 cancer types in the mRNA expression data of TCGA and (ii) a comprehensive literature search on reported MACC1 combinations and regulation mechanisms. The key genes MET, HGF and MMP7 reported together with MACC1 showed significant positive correlations with MACC1 in more than half of the cancer types included in the big data analysis. However, ten other genes also reported together with MACC1 in the literature showed significant positive correlations with MACC1 in only a minority of 5 to 15 cancer types. To uncover transcriptional regulation mechanisms that are activated simultaneously with MACC1, we isolated pan-cancer consensus lists of 1306 positively and 590 negatively MACC1-correlating genes from the TCGA data and analyzed each of these lists for sharing transcription factor binding motifs in the promotor region. In these lists, binding sites for the transcription factors TELF1, ETS2, ETV4, TEAD1, FOXO4, NFE2L1, ELK1, SP1 and NFE2L2 were significantly enriched, but none of them except SP1 was reported in combination with MACC1 in the literature. Thus, while some of the results of the big data analysis were in line with the reported experimental results, hypotheses on new genes involved in MACC1-driven metastasis formation could be generated and warrant experimental validation. Furthermore, the results of the big data analysis can help to prioritize cancer types for experimental studies and testing of combination therapies.
Collapse
|
16
|
Radhakrishnan H, Walther W, Zincke F, Kobelt D, Imbastari F, Erdem M, Kortüm B, Dahlmann M, Stein U. MACC1-the first decade of a key metastasis molecule from gene discovery to clinical translation. Cancer Metastasis Rev 2019; 37:805-820. [PMID: 30607625 DOI: 10.1007/s10555-018-9771-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Deciphering the paths to metastasis and identifying key molecules driving this process is one important issue for understanding and treatment of cancer. Such a key driver molecule is Metastasis Associated in Colon Cancer 1 (MACC1). A decade long research on this evolutionarily conserved molecule with features of a transcription factor as well as an adapter protein for versatile protein-protein interactions has shown that it has manifold properties driving tumors to their metastatic stage. MACC1 transcriptionally regulates genes involved in epithelial-mesenchymal transition (EMT), including those which are able to directly induce metastasis like c-MET, impacts tumor cell migration and invasion, and induces metastasis in solid cancers. MACC1 has proven as a valuable biomarker for prognosis of metastasis formation linked to patient survival and gives promise to also act as a predictive marker for individualized therapies in a broad variety of cancers. This review discusses the many features of MACC1 in the context of the hallmarks of cancer and the potential of this molecule as biomarker and novel therapeutic target for restriction and prevention of metastasis.
Collapse
Affiliation(s)
- Harikrishnan Radhakrishnan
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Wolfgang Walther
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125, Berlin, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center, Heidelberg, Germany
| | - Fabian Zincke
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125, Berlin, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center, Heidelberg, Germany
| | - Dennis Kobelt
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125, Berlin, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center, Heidelberg, Germany
| | - Francesca Imbastari
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Müge Erdem
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Benedikt Kortüm
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Mathias Dahlmann
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125, Berlin, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center, Heidelberg, Germany
| | - Ulrike Stein
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125, Berlin, Germany. .,German Cancer Consortium (DKTK), German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
17
|
Link T, Kuhlmann JD, Kobelt D, Herrmann P, Vassileva YD, Kramer M, Frank K, Göckenjan M, Wimberger P, Stein U. Clinical relevance of circulating MACC1 and S100A4 transcripts for ovarian cancer. Mol Oncol 2019; 13:1268-1279. [PMID: 30927479 PMCID: PMC6487687 DOI: 10.1002/1878-0261.12484] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/29/2019] [Indexed: 12/13/2022] Open
Abstract
Metastasis‐associated in colon cancer 1 (MACC1) and S100 calcium‐binding protein A4 (S100A4) are prominent inducers of tumor progression and metastasis. For the first time, we systematically tracked circulating serum levels of MACC1 and S100A4 transcripts in the course of surgery and chemotherapy and analyzed their clinical relevance for ovarian cancer. MACC1 and S100A4 transcripts were quantified in a total of 318 serum samples from 79 ovarian cancer patients by RT‐qPCR and digital droplet PCR, respectively. MACC1 and S100A4 transcripts were significantly elevated in serum of ovarian cancer patients, compared to healthy controls (P = 0.024; P < 0.001). At primary diagnosis, high levels of MACC1 or S100A4 correlated with advanced FIGO stage (P = 0.042; P = 0.008), predicted suboptimal debulking surgery and indicated shorter progression‐free survival (PFS; P = 0.003; P = 0.001) and overall survival (OS; P = 0.001; P = 0.002). This is the first study in ovarian cancer to propose circulating MACC1 and S100A4 transcripts as potential liquid biopsy markers.
Collapse
Affiliation(s)
- Theresa Link
- Department of Gynecology and Obstetrics, Medical Faculty, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany.,German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan Dominik Kuhlmann
- Department of Gynecology and Obstetrics, Medical Faculty, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany.,German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dennis Kobelt
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlinand Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,German Cancer Consortium (DKTK), Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pia Herrmann
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlinand Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Yana D Vassileva
- Department of Gynecology and Obstetrics, Medical Faculty, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany.,German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Kramer
- Medizinische Klinik und Poliklinik I, Medical Faculty and University Hospital, Technische Universität Dresden, Germany
| | | | - Maren Göckenjan
- Department of Gynecology and Obstetrics, Medical Faculty, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany.,German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pauline Wimberger
- Department of Gynecology and Obstetrics, Medical Faculty, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany.,German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ulrike Stein
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlinand Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,German Cancer Consortium (DKTK), Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
18
|
Prognostic Characteristics of MACC1 Expression in Epithelial Ovarian Cancer. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9207153. [PMID: 30515418 PMCID: PMC6236659 DOI: 10.1155/2018/9207153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/05/2018] [Accepted: 10/16/2018] [Indexed: 02/06/2023]
Abstract
Recent studies have shown that overexpression of metastasis-associated in colon cancer 1 (MACC1) is significantly associated with adverse prognoses of patients with different kinds of cancer. However, the exact survival effect of MACC1 on epithelial ovarian cancer (EOC) patients has not yet been established. Thus, the objective of this study was to explore the prognostic role of MACC1 mRNA in EOC by using Kaplan-Meier (KM) plotter and ONCOMINE database. Our results indicated that MACC1 mRNA high expression was significantly associated with unfavorable overall survival (hazard ratio (HR) = 1.51 (95% confidence interval (CI): 1.21 - 1.88), P = 0.00025) and progression-free survival (HR = 1.53 (95% CI: 1.24 - 1.89), P = 5.8e-05) in EOC patients. We also found that the expression of MACC1 mRNA in EOC was 2.5 times higher than that in normal surface ovarian epithelium, which was statistically significant (P = 2.86e-7). Our results suggest that MACC1 expression might be a biomarker for poor prognosis in individual EOC patients.
Collapse
|
19
|
Zhang Q, Xu P, Lu Y, Dou H. Correlation of MACC1/c-Myc Expression in Endometrial Carcinoma with Clinical/Pathological Features or Prognosis. Med Sci Monit 2018; 24:4738-4744. [PMID: 29984790 PMCID: PMC6069412 DOI: 10.12659/msm.908812] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Endometrial carcinoma (EC) is a type of female reproductive malignant tumor, the incidence of which is generally 20~30%. Multiple factors and genes are involved in the regulation of EC occurrence and progression. This study aimed to measure the expressions of MACC1 and c-Myc in EC patients to analyze their correlation with pathological features of EC. Material/Methods A total of 60 EC patients were recruited in the experimental group, while another cohort of 30 people with endometrial inflammatory hyperplasia was enrolled in the control group. The levels of serum MACC1 and c-Myc were measured by ELISA, and the protein expressions in EC cancer tissues, tumor-adjacent tissues, and controlled endometrial tissues were detected by immunohistochemistry (IHC). The correlation between gene expression and clinical/pathological features was then determined. Results Our data indicate that the level of serum MACC1 and c-Myc in the experimental group was 1.67±0.08 ng/ml and 1.78±0.07 ng/ml, respectively, both of which were significantly higher than that of the control group (p<0.05). However, no significant difference was found among levels of serum MACC1 or c-Myc at different TNM stages (p>0.05). In cancer tissues, the positive rate of MACC1 or c-Myc was 73.3% and 78.3%, respectively, which were significantly higher than that in adjacent or control tissues (p<0.05). MACC1/c-Myc expression was correlated with TNM stage, primary infiltration grade, lymph node metastasis, and distal metastasis (p<0.05). Conclusions MACC1 and c-Myc are highly expressed in serum and tumor tissues of EC patients. Both are correlated with TNM stage, primary infiltration, and lymph node or distal metastasis, which provides a scientific basis for the development of new biomarkers for the diagnosis of endometrial carcinoma.
Collapse
Affiliation(s)
- Qinghua Zhang
- Department of Gynecology, Central Hospital of Zibo in Shandong, Zibo, Shandong, China (mainland)
| | - Ping Xu
- Department of Gynecology, People's Hospital of ZhangQiu in Shandong Province, Zhangqiu, Shandong, China (mainland)
| | - Yanxia Lu
- Department of Gynecology, Third Ward, People's Hospital of Linyi City, Linyi, Shandong, China (mainland)
| | - Hongtao Dou
- Department of Gynecology, Central Hospital of Zibo in Shandong, Zibo, Shandong, China (mainland)
| |
Collapse
|
20
|
Ozturk E, Aksoy SAK, Ugras N, Tunca B, Ceylan S, Tezcan G, Yilmazlar T, Yerci O, Egeli U, Cecener G. Coexistence of MACC1 and NM23-H1 dysregulation and tumor budding promise early prognostic evidence for recurrence risk of early-stage colon cancer. APMIS 2018; 126:99-108. [DOI: 10.1111/apm.12801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 11/15/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Ersin Ozturk
- Department of General Surgery; Medical Faculty; Uludag University; Bursa Turkey
| | - Secil AK Aksoy
- Department of Medical Biology; Medical Faculty; Uludag University; Bursa Turkey
| | - Nesrin Ugras
- Department of Pathology; Medical Faculty; Uludag University; Bursa Turkey
| | - Berrin Tunca
- Department of Medical Biology; Medical Faculty; Uludag University; Bursa Turkey
| | - Serkan Ceylan
- Department of General Surgery; Medical Faculty; Uludag University; Bursa Turkey
| | - Gulcin Tezcan
- Department of Medical Biology; Medical Faculty; Uludag University; Bursa Turkey
- Institute of Fundamental Medicine and Biology; Kazan Federal University; Kazan Tatarstan Russia
| | - Tuncay Yilmazlar
- Department of Medical Biology; Medical Faculty; Uludag University; Bursa Turkey
| | - Omer Yerci
- Department of Medical Biology; Medical Faculty; Uludag University; Bursa Turkey
| | - Unal Egeli
- Department of Medical Biology; Medical Faculty; Uludag University; Bursa Turkey
| | - Gulsah Cecener
- Department of Medical Biology; Medical Faculty; Uludag University; Bursa Turkey
| |
Collapse
|
21
|
Dong G, Wang M, Gu G, Li S, Sun X, Li Z, Cai H, Zhu Z. MACC1 and HGF are associated with survival in patients with gastric cancer. Oncol Lett 2017; 15:3207-3213. [PMID: 29435059 DOI: 10.3892/ol.2017.7710] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 11/02/2017] [Indexed: 02/06/2023] Open
Abstract
Metastasis-associsated in colon cancer 1 (MACC1), a newly identified oncogene, promotes tumor cell proliferation and invasion. In the present study, the expression of MACC1, hepatocyte growth factor (HGF) and its receptor, MET proto-oncogene (c-Met), was investigated in human gastric cancer tissues and adjacent normal tissues by immunohistochemistry. The association between the expression levels of the proteins and the clinicopathological parameters of the tumors were statistically analyzed. Furthermore, lentiviral particles expressing MACC1 were used to infect the hepatic satellite cell (HSC) line LX2. The expression of α-smooth muscle actin (SMA), HGF, matrix metallopeptidase (MMP)-2 and MMP-9 in human HSCs was examined by western blotting and reverse transcription-quantitative polymerase chain reaction. Transwell assays were used to measure the effect of MACC1-infected or non-infected HSCs on the migration and invasion abilities of MKN45 and MKN74 gastric carcinoma cells in vitro. The results demonstrated that positive protein expression of MACC1, HGF and c-Met was significantly higher in human gastric cancer tissues compared with adjacent normal tissues. Positive expression of MACC1 and c-Met in gastric cancer tissues had no correlation with the sex, age, tumor location and peritoneal metastasis of patients, but was significantly correlated with tumor size, depth of tumor invasion, lymph node metastasis, TNM stage, histological differentiation, and overall (5 years) and disease-free survival (5 years). Positive expression of each MACC1, HGF and c-Met protein was demonstrated to be positively correlated with each other in human gastric cancer tissues. Western blotting results confirmed that MACC1 protein was overexpressed in MACC1-overexpressing lentivirus-infected HSCs. Overexpression of MACC1 significantly increased HGF, MMP-2, MMP-9 and α-SMA expression levels in HSCs. Results from the Transwell assays indicated an increase in the number of MKN45 or MKN74 cells migrating towards MACC1-overexpressing HSCs, compared with control HSCs. These findings suggested that MACC1 may regulate the expression of HGF, MMP-2 and MMP-9 in HSCs, and may thus promote migration and invasion of gastric carcinoma cells. MACC1, HGF and c-Met might cooperatively participate in the malignant progression of gastric cancer. In conclusion, MACC1 might serve as a useful molecular target for the diagnosis, treatment and prognosis of gastric cancer.
Collapse
Affiliation(s)
- Guokai Dong
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Man Wang
- Department of Medical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Guangfu Gu
- Department of Medical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Shanshan Li
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Xiaoming Sun
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Zhouru Li
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Hongxing Cai
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Zhengqiu Zhu
- Department of Medical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| |
Collapse
|
22
|
Li H, Chen YX, Wen JG, Zhou HH. Metastasis-associated in colon cancer 1: A promising biomarker for the metastasis and prognosis of colorectal cancer. Oncol Lett 2017; 14:3899-3908. [PMID: 28943898 PMCID: PMC5605967 DOI: 10.3892/ol.2017.6670] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 01/10/2017] [Indexed: 12/26/2022] Open
Abstract
Colorectal cancer (CRC) is the fourth most frequent type of malignancy in the world. Metastasis accounts for >90% mortalities in patients with CRC. The metastasis-associated in colon cancer 1 (MACC1) gene has been identified as a novel biomarker for the prediction of metastasis and disease prognosis, particularly for patients with early-stage disease. Previous clinical studies demonstrated that MACC1 expression and polymorphisms in CRC tissues were indicators of metastasis, and that circulating transcripts in plasma were also significantly associated with the survival of patients. The present review describes the use of MACC1 beyond its utility in the clinic. By elucidating the upstream and downstream signal pathways of MACC1, the well-known mechanisms of MACC1-mediated cell proliferation, invasion, migration and epithelial-mesenchymal transition (EMT) are summarized, as well as the potential signaling pathways. Furthermore, the underlying mechanisms by which the overexpression of MACC1 causes cisplatin resistance are emphasized.
Collapse
Affiliation(s)
- He Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan 410078, P.R. China
| | - Yi-Xin Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan 410078, P.R. China
| | - Jia-Gen Wen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan 410078, P.R. China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan 410078, P.R. China.,Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
23
|
Fan JY, Zhang Y, Guo Q. MACC1 regulatory network in tumor metastasis. Shijie Huaren Xiaohua Zazhi 2017; 25:989-995. [DOI: 10.11569/wcjd.v25.i11.989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The MACC1 gene was firstly identified in colorectal cancer. Recently, abnormal upregulation of MACC1 has been detected in multiple tumors. The expression of MACC1 is shown to be positively associated with tumor metastasis, but negatively with prognosis of patients, and it represents a potential therapeutic target for anti-tumor strategies. MACC1 has increasingly emerged as a key regulator in metastatic processes, and it has been identified to be able to maintain multiple tumor-associated signaling pathways, transactivate oncogenic genes, and regulate epithelial-mesenchymal transition and tumor vascularization. On the other hand, MACC1 is regulated and influenced by non-coding RNAs and SNPs. The present review will summarize the recent progress in understanding the role of the MACC1 regulatory network in tumor metastasis.
Collapse
|
24
|
The potential therapeutic applications and prognostic significance of metastasis-associated in colon cancer-1 (MACC1) in cancers. Contemp Oncol (Pozn) 2016; 20:273-80. [PMID: 27688722 PMCID: PMC5032154 DOI: 10.5114/wo.2016.61846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/20/2015] [Indexed: 12/20/2022] Open
Abstract
The metastasis-associated in colon cancer-1 (MACC1) gene was identified in 2009. Expression of MACC1 was found to be significantly upregulated in primary and metastatic colon carcinomas compared to normal tissues or adenomas. The induction of MACC1 occurs at the crucial step of transition from a benign to a malignant phenotype. The aim of this review was to summarise current results of non-clinical and clinical studies on the role of MACC1 in the carcinogenesis and progression of cancer, as well its potential therapeutic and prognostic significance. The gene encoding the HGF receptor MET is a transcriptional target of MACC1. In addition to promoting the proliferation, invasion, and migration of colon cancer cells in cell culture and tumour growth and metastasis in mouse models, MACC1 also contributes to carcinogenesis and progression of colorectal cancer through the β-catenin signalling pathway and mesenchymal-epithelial transition. MACC1 knockdown with si/sh RNA was investigated in cell lines of different types of cancer. MACC1 is a promising therapeutic target for antitumour and antimetastatic intervention strategies for cancers. Here, it is presented as a potential independent prognostic indicator of reduced overall survival as well as of the occurrence of distant metastasis in patients with different types of cancer.
Collapse
|
25
|
Ding Y, Li X, Hong D, Jiang L, He Y, Fang H. Silence of MACC1 decreases cell migration and invasion in human malignant melanoma through inhibiting the EMT. Biosci Trends 2016; 10:258-64. [PMID: 27488539 DOI: 10.5582/bst.2016.01091] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Metastasis-associated colon cancer 1 (MACC1) has been demonstrated to promote metastasis of several cancers via regulating epithelial-mesenchymal transition (EMT). However, its biological behavior in human malignant melanoma remains unclear. In this study, MACC1 downregulation was established in two melanoma cell lines (A375 and G361 cells) using RNA interference, as confirmed by quantitative real time PCR (qRT-PCR) and Western blot analysis. Subsequently, we investigated the effects of MACC1 silencing on cell mobility, migration and invasion using scratch wound and Transwell assays. Our results indicated that knockdown of MACC1 significantly suppressed cell migration and invasion ability of both melanoma cell lines. Moreover, downregulation of MACC1 upregulated E-cadherin, N-cadherin and Vimentin, as confirmed by qRT-PCR, Western blot and immunofluorescent Staining analysis. These findings suggest MACC1 might serve as a new molecular target for the treatment of melanoma by a novel mechanism underlying the metastasis of melanoma cells.
Collapse
Affiliation(s)
- Yingguo Ding
- Department of Dermatology, The First Affiliated Hospital of Zhejiang University
| | | | | | | | | | | |
Collapse
|
26
|
Ashktorab H, Hermann P, Nouraie M, Shokrani B, Lee E, Haidary T, Brim H, Stein U. Increased MACC1 levels in tissues and blood identify colon adenoma patients at high risk. J Transl Med 2016; 14:215. [PMID: 27439755 PMCID: PMC4955242 DOI: 10.1186/s12967-016-0971-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/11/2016] [Indexed: 12/14/2022] Open
Abstract
Background Colorectal cancer is a preventable disease if caught at early stages. This disease is highly aggressive and has a higher incidence in African Americans. Several biomarkers and mutations of aggressive tumor behavior have been defined such as metastasis-associated in colon cancer 1 (MACC1) that was associated with metastasis in colorectal cancer patients. Here, we aim to assess colon tissue MACC1 protein and circulating MACC1 transcripts in colon preneoplastic and neoplastic African American patients. Methods Patients’ tissue samples (n = 143) have been arranged on three tissue microarrays for normal (n = 26), adenoma (n = 68) and cancer (n = 49) samples. Immunohistochemistry was used to detect MACC1 expression. Blood samples (n = 93) from normal (n = 45), hyperplastic (n = 15) and tubular adenoma (n = 33) patients were used to assess MACC1 transcripts using qRT-PCR. Distribution of continuous variables was tested between different diagnoses with Kruskal–Wallis test. Categorical variables were tested by Chi square test. We assessed the prognostic ability of IHC staining by calculating area under receiver operating characteristics curve (ROC) for adenoma and cancer separately. Differences between groups in terms of MACC1 transcript levels in plasma were calculated by using non-parametric (exact) Wilcoxon-Mann–Whitney tests. We performed all calculations with SPSS, version 21. Results In patient tissues, there was a statistically significant difference in MACC1 expression in normal vs. adenoma samples (p = 0.004) and normal vs. cancer samples (p < 0.001). There was however no major difference in MACC1 expression between adenoma vs. cancer cases or tubular adenomas vs tubulovillous adenomas. The area under the curve for both normal vs. adenoma and normal vs. cancer cases were 70 and 67 %, respectively. MACC1 expression was not correlated to age, gender or anatomical sample location. In patient plasma, MACC1 transcripts in adenoma patients were significantly higher than in plasma from normal patients (p = 0.014). However, the difference between normal and hyperplastic plasma MACC1 transcripts was not statistically significant. Conclusion Metastasis-associated in colon cancer 1 is expressed at early stages of colorectal oncogenesis within the affected colonic tissue in this patient cohort. The plasma transcripts can be used to stratify African American patients at risk for potential malignant colonic lesions.
Collapse
Affiliation(s)
- Hassan Ashktorab
- Department of Medicine and Cancer Center, Howard University, 2041 Georgia Avenue NW, Washington, DC, 20059, USA.
| | - Pia Hermann
- Experimental and Clinical Research Center, Charité University Medicine Berlin and Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Mehdi Nouraie
- Department of Medicine and Cancer Center, Howard University, 2041 Georgia Avenue NW, Washington, DC, 20059, USA
| | - Babak Shokrani
- Department of Pathology, Howard University, 2041 Georgia Avenue NW, Washington, DC, 20059, USA
| | - Edward Lee
- Department of Pathology, Howard University, 2041 Georgia Avenue NW, Washington, DC, 20059, USA
| | - Tahmineh Haidary
- Department of Medicine and Cancer Center, Howard University, 2041 Georgia Avenue NW, Washington, DC, 20059, USA
| | - Hassan Brim
- Department of Pathology, Howard University, 2041 Georgia Avenue NW, Washington, DC, 20059, USA.
| | - Ulrike Stein
- Experimental and Clinical Research Center, Charité University Medicine Berlin and Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125, Berlin, Germany. .,German Cancer Consortium, Im Neuenheimer Feld 280, 69121, Heidelberg, Germany.
| |
Collapse
|
27
|
Xia J, Wang H, Huang H, Sun L, Dong S, Huang N, Shi M, Bin J, Liao Y, Liao W. Elevated Orai1 and STIM1 expressions upregulate MACC1 expression to promote tumor cell proliferation, metabolism, migration, and invasion in human gastric cancer. Cancer Lett 2016; 381:31-40. [PMID: 27431311 DOI: 10.1016/j.canlet.2016.07.014] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/24/2016] [Accepted: 07/13/2016] [Indexed: 01/09/2023]
Abstract
ORAI calcium release-activated calcium modulator 1 (Orai1)- and stromal interacting molecule 1 (STIM1)-mediated store-operated Ca(2+) entry (SOCE) have been increasingly implicated in tumor progression; however, its role in gastric cancer (GC) is not well elucidated. We aimed to determine whether SOCE influences GC prognosis and elucidate the underlying mechanisms. Orai1 and STIM1 expressions were higher in GC tissues compared to adjacent non-tumor tissues according to RT-PCR and western blotting. Higher Orai1 and/or STIM1 expression was associated with more advanced disease, more frequent recurrence, and higher mortality rates in our study of 327 GC patients. The disease-free survival rates of Stage I-III patients and the overall survival rates of Stage IV patients were significantly worse when the tumors had high Orai1 and/or STIM1 expressions. Orai1 and/or STIM1 knockdown caused significantly reduced tumor growth and metastasis in athymic mice. Orai1 and/or STIM1 knockdown lowered the proliferation, metabolism, migration, and invasion of two GC cell lines. Also, Orai1 and/or STIM1 knockdown changed the markers of the cell cycle and epithelial-mesenchymal transition (EMT). These effects were reversed by metastasis-associated in colon cancer-1 (MACC1) overexpression. In summary, the composite molecules of SOCE suggest a poor prognosis for GC by promoting tumor cell proliferation, metabolism, migration, and invasion by targeting MACC1.
Collapse
Affiliation(s)
- Jianling Xia
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hongqiang Wang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Oncology, Zhoushan Hospital, Zhoushan 316000, China
| | - Hongxiang Huang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Li Sun
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Shaoting Dong
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Na Huang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Min Shi
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jianping Bin
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yulin Liao
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
28
|
Single Nucleotide Polymorphisms as Prognostic and Predictive Factors of Adjuvant Chemotherapy in Colorectal Cancer of Stages I and II. Gastroenterol Res Pract 2016; 2016:2139489. [PMID: 26884752 PMCID: PMC4738739 DOI: 10.1155/2016/2139489] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 11/11/2015] [Indexed: 01/05/2023] Open
Abstract
Colorectal cancer (CRC) is a highly heterogeneous disease regarding the stage at time of diagnosis and there is special attention regarding adjuvant chemotherapy in unselected patients with stage I and stage II. The clinicohistologically based TNM staging system with emphasis on histological evaluation of primary tumor and resected regional lymph nodes remains the standard of staging, but it has restricted sensitivity resulting in false downward stage migration. Molecular characteristics might predispose tumors to a worse prognosis and identification of those enables identifying patients with high risk of disease recurrence. Suitable predictive markers also enable choosing the most appropriate therapy. The current challenge facing adjuvant chemotherapy in stages I and II CRC is choosing patients with the highest risk of disease recurrence who are going to derive most benefit without facing unnecessary adverse effects. Single nucleotide polymorphisms (SNPs) are one of the potential molecular markers that might help us identify patients with unfavorable prognostic factors regarding disease initiation and recurrence and could determine selection of an appropriate chemotherapy regimen in the adjuvant and metastatic setting. In this paper, we discuss SNPs of genes involved in the multistep processes of cancerogenesis, metastasis, and the metabolism of chemotherapy that might prove clinically significant.
Collapse
|
29
|
SPON2, a newly identified target gene of MACC1, drives colorectal cancer metastasis in mice and is prognostic for colorectal cancer patient survival. Oncogene 2015; 35:5942-5952. [PMID: 26686083 DOI: 10.1038/onc.2015.451] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 10/15/2015] [Accepted: 10/19/2015] [Indexed: 12/14/2022]
Abstract
MACC1 (metastasis associated in colon cancer 1) is a prognostic biomarker for tumor progression, metastasis and survival of a variety of solid cancers including colorectal cancer (CRC). Here we aimed to identify the MACC1-induced transcriptome and key players mediating the MACC1-induced effects in CRC. We performed microarray analyses using CRC cells ectopically overexpressing MACC1. We identified more than 1300 genes at least twofold differentially expressed, including the gene SPON2 (Spondin 2) as 90-fold upregulated transcriptional target of MACC1. MACC1-dependent SPON2 expression regulation was validated on mRNA and protein levels in MACC1 high (endogenously or ectopically) and low (endogenously or by knockdown) expressing cells. Chromatin immunoprecipitation analysis demonstrated the binding of MACC1 to the gene promoter of SPON2. In cell culture, ectopic SPON2 overexpression induced cell viability, migration, invasion and colony formation in endogenously MACC1 and SPON2 low expressing cells, whereas SPON2 knockdown reduced proliferative, migratory and invasive abilities in CRC cells with high endogenous MACC1 and SPON2 expression. In intrasplenically transplanted NOD/SCID mice, metastasis induction was analyzed with control or SPON2-overexpressing CRC cells. Tumors with SPON2 overexpression induced liver metastasis (vs control animals without any metastases, P=0.0036). In CRC patients, SPON2 expression was determined in primary tumors (stages I-III), and survival time was analyzed by Kaplan-Meier method. CRC patients with high SPON2 expressing primary tumors demonstrated 8 months shorter metastasis-free survival (MFS) compared with patients with low SPON2 levels (P=0.053). Combining high levels of SPON2 and MACC1 improved the identification of high-risk patients with a 20-month shorter MFS vs patients with low biomarker expression. In summary, SPON2 is a transcriptional target of the metastasis gene MACC1. SPON2 induces cell motility in vitro and CRC metastasis in mice. In patients, SPON2 serves as prognostic indicator for CRC metastasis and survival, and might represent a promising target for therapeutic approaches.
Collapse
|
30
|
Li H, Liao X, Liu Y, Shen Z, Gan X, Li H, Huang Z. The expression of MACC1 and its role in the proliferation and apoptosis of salivary adenoid cystic carcinoma. J Oral Pathol Med 2015; 44:810-7. [PMID: 25640194 DOI: 10.1111/jop.12309] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND The objective of this study was to investigate the relationship between metastasis-associated in colon cancer-1 and patient clinical characteristics. We also examined the role of metastasis-associated in colon cancer-1 in the proliferation and apoptosis in adenoid cystic carcinoma. MATERIAL AND METHODS Metastasis-associated in colon cancer-1 expression was analysed in 65 paraffin-embedded tissue specimens of salivary adenoid cystic carcinoma and 25 adjacent non-cancerous tissues by immunohistochemistry (IHC). We used RNA interference technology to silence metastasis-associated in colon cancer-1 expression in ACCM cells. Cell Counting Kit-8 tests, transwell experiments and flow cytometry were used to test the proliferation, cisplatin resistance, migration, invasion and apoptosis of ACCM cells. RESULTS Metastasis-associated in colon cancer-1 nuclear and cytoplasmic expression in salivary adenoid cystic carcinoma tissue was higher than in the adjacent normal salivary tissue. The expression level was closely associated with tumour histological grading, perineural invasion and surrounding tumour invasion. The downregulation of metastasis-associated in colon cancer-1 expression inhibited proliferation and induced apoptosis in ACCM cells. The knock-down of metastasis-associated in colon cancer-1 expression had no effect on migration, invasion and chemoresistance. CONCLUSIONS Metastasis-associated in colon cancer-1 may have an important role in tumour development in adenoid cystic carcinoma. Metastasis-associated in colon cancer-1 is a potential biomarker for adenoid cystic carcinoma.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Apoptosis/genetics
- Apoptosis/physiology
- Biomarkers, Tumor/biosynthesis
- Biomarkers, Tumor/genetics
- Carcinoma, Adenoid Cystic/drug therapy
- Carcinoma, Adenoid Cystic/metabolism
- Carcinoma, Adenoid Cystic/pathology
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Movement/physiology
- Cell Proliferation/drug effects
- Cell Proliferation/physiology
- Cisplatin/pharmacology
- Down-Regulation/drug effects
- Drug Resistance, Neoplasm
- Female
- Follow-Up Studies
- Humans
- Lymphatic Metastasis
- Male
- Middle Aged
- Paraffin Embedding
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/genetics
- Salivary Gland Neoplasms/drug therapy
- Salivary Gland Neoplasms/metabolism
- Salivary Gland Neoplasms/pathology
- Trans-Activators
- Transcription Factors/biosynthesis
- Transcription Factors/genetics
- Transfection
- Young Adult
Collapse
Affiliation(s)
- Haifeng Li
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoying Liao
- Department of stomatology, The Frist Affiliated hospital, GuangDong Pharmaceutical University, Guangzhou, China
| | - Yeqing Liu
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhuojian Shen
- Department of Cardio-Thoracic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiangfeng Gan
- Department of Cardio-Thoracic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haigang Li
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhiquan Huang
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
31
|
Molecular targets and pathways involved in liver metastasis of colorectal cancer. Clin Exp Metastasis 2015; 32:623-35. [DOI: 10.1007/s10585-015-9732-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 06/17/2015] [Indexed: 02/08/2023]
|
32
|
Sueta A, Yamamoto Y, Yamamoto-Ibusuki M, Hayashi M, Takeshita T, Yamamoto S, Omoto Y, Iwase H. Differential role of MACC1 expression and its regulation of the HGF/c‑Met pathway between breast and colorectal cancer. Int J Oncol 2015; 46:2143-53. [PMID: 25738887 DOI: 10.3892/ijo.2015.2907] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/21/2015] [Indexed: 11/06/2022] Open
Abstract
The newly identified gene, metastasis‑associated in colon cancer 1 (MACC1), is suggested to be a transcriptional regulator of c‑Met, leading to cancer progression in colorectal cancer. To date however, little is known of the role of MACC1 in breast cancer. In a series of 300 breast cancer patients, we analyzed the association of MACC1 mRNA and protein expression with breast cancer survival using Cox proportional hazard models. In an in vitro study, we evaluated activities of c‑Met protein after transfection with a MACC1‑harboring plasmid as well as the binding ability of MACC1 to the c‑Met promoter using a chromatin immunoprecipitation (ChIP) assay. In survival analyses, reduced MACC1 expression was associated with patient mortality. MACC1 expression was an independent prognostic factor in multivariate analysis. In the cell lines tested, MACC1 expression was much higher in colorectal than in breast cancer cells. After cells were transfected with MACC1, c‑Met expression was not induced in MCF7 cells, whereas corresponding c‑Met expression was upregulated in SW480 cells. Further, SW480 cells transfected with MACC1 showed enhanced migratory ability, whereas in MDA‑MB‑231 cells, transfection of MACC1 had no impact on this ability. In ChIP assay, the binding of MACC1 to the c‑Met promoter was suggested in SW480 cells, but not in MCF7 cells. In conclusion, our findings provide some novel insights into the role of MACC1 in breast cancer, indicating that it plays different roles in breast and several other cancers. There is a possibility that MACC1 does not modulate the transcriptional role of c‑Met signaling in breast cancer.
Collapse
Affiliation(s)
- Aiko Sueta
- Department of Breast and Endocrine Surgery, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860‑8556, Japan
| | - Yutaka Yamamoto
- Department of Breast and Endocrine Surgery, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860‑8556, Japan
| | - Mutsuko Yamamoto-Ibusuki
- Department of Breast and Endocrine Surgery, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860‑8556, Japan
| | - Mitsuhiro Hayashi
- Department of Breast and Endocrine Surgery, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860‑8556, Japan
| | - Takashi Takeshita
- Department of Breast and Endocrine Surgery, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860‑8556, Japan
| | - Satoko Yamamoto
- Department of Breast and Endocrine Surgery, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860‑8556, Japan
| | - Yoko Omoto
- Department of Breast and Endocrine Surgery, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860‑8556, Japan
| | - Hirotaka Iwase
- Department of Breast and Endocrine Surgery, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860‑8556, Japan
| |
Collapse
|
33
|
Li H, Zhang H, Zhao S, Shi Y, Yao J, Zhang Y, Guo H, Liu X. Overexpression of MACC1 and the association with hepatocyte growth factor/c-Met in epithelial ovarian cancer. Oncol Lett 2015; 9:1989-1996. [PMID: 26137000 DOI: 10.3892/ol.2015.2984] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 08/01/2014] [Indexed: 01/23/2023] Open
Abstract
Metastasis-associated in colon cancer-1 (MACC1) is a gene that has been newly identified by a genome-wide search for differentially expressed genes in human colon cancer tissues, metastases and normal tissues. MACC1 exerts an important role in colon cancer metastasis through upregulation of the c-Met proto-oncogene. The tyrosine kinase receptor encoded by the c-Met oncogene exhibits the unusual property of mediating the invasive growth of epithelial cells upon binding with the hepatocyte growth factor (HGF). MACC1 has been investigated with regard to colon carcinoma and MACC1 expression is associated with metastasis in various types of human cancer. However, the value of MACC1 as a potential biomarker for ovarian cancer remains unknown, although the c-Met/HGF receptor has been shown to be overexpressed in epithelial ovarian cancer tissues. To investigate the role of MACC1 in epithelial ovarian tumors, the expression levels of MACC1 mRNA in ovarian tumor specimens were analyzed together with the prognostic significance. MACC1 protein expression was also detected in the epithelial ovarian tissue specimens, and the effects of MACC1 overexpression on ovarian cancer migration, invasion and prognosis were evaluated. Due to the close association between MACC1 and c-Met expression levels in colon cancer, the expression levels of HGF/c-Met in the ovarian specimens were also examined to determine whether such a correlation is also present in epithelial ovarian cancer. A total of 92 epithelial ovarian tissue samples were used to assess the expression levels of MACC1 mRNA and protein using reverse transcription-polymerase chain reaction and immunohistochemical methods, respectively. The serum levels of MACC1 protein expression in patients with epithelial ovarian cancer were detected by enzyme-linked immunosorbent assay. The results indicated that MACC1 may be important in the malignant progression of epithelial ovarian tumors, in particular for early stage patients. Thus, MACC1 may become a predictor of prognosis and a therapeutic target in the treatment of ovarian tumors. The combined detection of MACC1 and HGF/c-Met is therefore important in assessing the prognosis of patients with malignant epithelial ovarian tumors.
Collapse
Affiliation(s)
- Hongyu Li
- Department of Gynecological Oncology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Hui Zhang
- Department of Gynecological Oncology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Shujun Zhao
- Department of Gynecological Oncology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yun Shi
- Department of Gynecological Oncology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Junge Yao
- Department of Gynecological Oncology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yanyan Zhang
- Department of Gynecological Oncology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Huanhuan Guo
- Department of Gynecological Oncology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xingsuo Liu
- Department of Gynecological Oncology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
34
|
Burock S, Herrmann P, Wendler I, Niederstrasser M, Wernecke KD, Stein U. Circulating metastasis associated in colon cancer 1 transcripts in gastric cancer patient plasma as diagnostic and prognostic biomarker. World J Gastroenterol 2015; 21:333-341. [PMID: 25574109 PMCID: PMC4284353 DOI: 10.3748/wjg.v21.i1.333] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/05/2014] [Accepted: 07/22/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the diagnostic and prognostic value of circulating Metastasis Associated in Colon Cancer 1 (MACC1) transcripts in plasma of gastric cancer patients.
METHODS: We provide for the first time a blood-based assay for transcript quantification of the metastasis inducer MACC1 in a prospective study of gastric cancer patient plasma. MACC1 is a strong prognostic biomarker for tumor progression and metastasis in a variety of solid cancers. We conducted a study to define the diagnostic and prognostic power of MACC1 transcripts using 76 plasma samples from gastric cancer patients, either newly diagnosed with gastric cancer, newly diagnosed with metachronous metastasis of gastric cancer, as well as follow-up patients. Findings were controlled by using plasma samples from 54 tumor-free volunteers. Plasma was separated, RNA was isolated, and levels of MACC1 as well as S100A4 transcripts were determined by quantitative RT-PCR.
RESULTS: Based on the levels of circulating MACC1 transcripts in plasma we significantly discriminated tumor-free volunteers and gastric cancer patients (P < 0.001). Levels of circulating MACC1 transcripts were increased in gastric cancer patients of each disease stage, compared to tumor-free volunteers: patients with tumors without metastasis (P = 0.005), with synchronous metastasis (P = 0.002), with metachronous metastasis (P = 0.005), and patients during follow-up (P = 0.021). Sensitivity was 0.68 (95%CI: 0.45-0.85) and specificity was 0.89 (95%CI: 0.77-0.95), respectively. Importantly, gastric cancer patients with high circulating MACC1 transcript levels in plasma demonstrated significantly shorter survival when compared with patients demonstrating low MACC1 levels (P = 0.0015). Furthermore, gastric cancer patients with high circulating transcript levels of MACC1 as well as of S100A4 in plasma demonstrated significantly shorter survival when compared with patients demonstrating low levels of both biomarkers or with only one biomarker elevated (P = 0.001).
CONCLUSION: Levels of circulating MACC1 transcripts in plasma of gastric cancer patients are of diagnostic value and are prognostic for patient survival in a prospective study.
Collapse
|
35
|
Circulating MACC1 as a novel diagnostic and prognostic biomarker for nonsmall cell lung cancer. J Cancer Res Clin Oncol 2014; 141:1353-61. [PMID: 25544672 DOI: 10.1007/s00432-014-1903-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 12/21/2014] [Indexed: 01/10/2023]
Abstract
PURPOSE Metastasis-associated in colon cancer-1 (MACC1) is a newly identified gene that plays an important role in cancer progression and metastasis. MACC1 has important functions in the differentiation, invasion, and metastasis of nonsmall cell lung cancer (NSCLC). However, the value of circulating MACC1 as a potential diagnostic and prognostic biomarker for NSCLC remains unknown. METHODS Plasma MACC1 mRNA levels were examined in 272 patients with NSCLC, 61 with benign lung disease, and 80 healthy volunteers using reverse transcription quantitative real-time polymerase chain reaction. RESULTS MACC1 was more highly expressed in NSCLC patients than in patients with benign disease (P < 0.001) or in healthy volunteers (P < 0.001). High MACC1 expression was significantly associated with NSCLC stage (P = 0.013) and lymph node metastasis (P = 0.016). The area under the receiver operating characteristic curve was 0.766, and the optimal cutoff value was 0.105, providing a sensitivity of 71.4 % and a specificity of 89.1 %. The diagnostic capability of circulating MACC1 mRNA was higher than that of carcinoembryonic antigen (P = 0.025) or cytokeratin-19 (P = 0.010). Furthermore, high MACC1 expression was associated with poor overall survival (OS) and disease-free survival (DFS) and predicted poor survival in NSCLC patients. Consequently, MACC1 mRNA was an independent prognostic factor of OS and DFS. CONCLUSION We concluded that circulating MACC1 mRNA represents a potential noninvasive, diagnostic and prognostic marker for NSCLC.
Collapse
|
36
|
Metastasis-associated in colon cancer 1 is a novel survival-related biomarker for human patients with renal pelvis carcinoma. PLoS One 2014; 9:e100161. [PMID: 24949951 PMCID: PMC4064998 DOI: 10.1371/journal.pone.0100161] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 05/22/2014] [Indexed: 12/23/2022] Open
Abstract
Metastasis-associated in colon cancer 1 (MACC1) has recently been identified as a novel independent prognostic indicator for metastasis occurrence, overall survival and cancer-free survival for patients with colon cancer and other solid tumors. In this study, we investigated the role of MACC1 in the development and progression of renal pelvis carcinoma, a form of upper tract urothelial carcinomas. MACC1 protein has been found in the cytoplasm as well as in the nucleus of the transitional epithelial cells of the normal renal pelvis in immunohistochemical (IHC) assays. Quantitative IHC examinations revealed that MACC1 abnormal abundance in cancerous tissues might represent a biological indicator clinically suggestive of tumor malignancy in the renal pelvis. Furthermore, investigation of the association of MACC1 protein levels with clinicopathological parameters in this study has suggested a correlation of MACC1 expression with tumor-node-metastasis stage and histopathological grade of patients with renal pelvis carcinoma, with elevated MACC1 protein levels frequently associated with higher aggressiveness of the disease. Moreover, both disease-free survival and overall survival for the patients in the high MACC1 expression group were significantly lower than those in the low expression group. Multivariate analysis with a Cox proportional-hazards model suggested that MACC1 is indeed an independent prognostic indicator of overall survival and cancer-free survival for patients with renal pelvis carcinoma. Thus, MACC1 may represent a promising prognostic biomarker candidate, as well as a potential therapeutic target for this disease.
Collapse
|
37
|
Kohn KW, Zeeberg BM, Reinhold WC, Pommier Y. Gene expression correlations in human cancer cell lines define molecular interaction networks for epithelial phenotype. PLoS One 2014; 9:e99269. [PMID: 24940735 PMCID: PMC4062414 DOI: 10.1371/journal.pone.0099269] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/01/2014] [Indexed: 12/12/2022] Open
Abstract
Using gene expression data to enhance our knowledge of control networks relevant to cancer biology and therapy is a challenging but urgent task. Based on the premise that genes that are expressed together in a variety of cell types are likely to functions together, we derived mutually correlated genes that function together in various processes in epithelial-like tumor cells. Expression-correlated genes were derived from data for the NCI-60 human tumor cell lines, as well as data from the Broad Institute's CCLE cell lines. NCI-60 cell lines that selectively expressed a mutually correlated subset of tight junction genes served as a signature for epithelial-like cancer cells. Those signature cell lines served as a seed to derive other correlated genes, many of which had various other epithelial-related functions. Literature survey yielded molecular interaction and function information about those genes, from which molecular interaction maps were assembled. Many of the genes had epithelial functions unrelated to tight junctions, demonstrating that new function categories were elicited. The most highly correlated genes were implicated in the following epithelial functions: interactions at tight junctions (CLDN7, CLDN4, CLDN3, MARVELD3, MARVELD2, TJP3, CGN, CRB3, LLGL2, EPCAM, LNX1); interactions at adherens junctions (CDH1, ADAP1, CAMSAP3); interactions at desmosomes (PPL, PKP3, JUP); transcription regulation of cell-cell junction complexes (GRHL1 and 2); epithelial RNA splicing regulators (ESRP1 and 2); epithelial vesicle traffic (RAB25, EPN3, GRHL2, EHF, ADAP1, MYO5B); epithelial Ca(+2) signaling (ATP2C2, S100A14, BSPRY); terminal differentiation of epithelial cells (OVOL1 and 2, ST14, PRSS8, SPINT1 and 2); maintenance of apico-basal polarity (RAB25, LLGL2, EPN3). The findings provide a foundation for future studies to elucidate the functions of regulatory networks specific to epithelial-like cancer cells and to probe for anti-cancer drug targets.
Collapse
Affiliation(s)
- Kurt W. Kohn
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
- * E-mail:
| | - Barry M. Zeeberg
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - William C. Reinhold
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| |
Collapse
|
38
|
Cui Z, Tang J, Chen J, Wang Z. Hsa-miR-574-5p negatively regulates MACC-1 expression to suppress colorectal cancer liver metastasis. Cancer Cell Int 2014; 14:47. [PMID: 24936152 PMCID: PMC4059478 DOI: 10.1186/1475-2867-14-47] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 05/22/2014] [Indexed: 01/20/2023] Open
Abstract
Objective The aim of this study was to investigate the relationship of MACC-1 (metastasis-associated in colon cancer 1) and microRNA (miRNA) hsa-miR-574-5p and the function of hsa-miR-574-5p in colorectal cancer liver metastasis. Methods Liver-metastatic nude mice model was constructed by injecting two human colorectal cancer cell lines (SW1116 and HCT116) labeled with green fluorescent protein (GFP) through spleen, and liver metastasis incidences were evaluated. We identified miRNAs that might regulate MACC-1 expression by bioinformatics analysis and further investigated the relationship of MACC-1 and hsa-miR-574-5p by luciferase reporter assay, quantitative RT-PCR and western blot. The effect of hsa-miR-574-5p on colony formation, cell invasion and cell spheroid formation was investigated by antisense transfected HCT116 cells and miRNA mimic transfected SW1116 cells. Results The volume of liver metastasis induced by SW1116 cells (25.0 ± 4.4%) was significantly higher than that induced by HCT116 cells. Bioinformatics analysis showed hsa-miR-574-5p negatively regulated MACC-1 and then their interaction was demonstrated at mRNA and protein level. The direct relation between them was confirmed by luciferase reporter assay. And the knockdown of has-miR-574-5p demonstrated increased colony formation, cell invasion and cell spheroid formation in HCT116 cells, compared to control group (P < 0.05). Reverse results were obtained in mimic transfected SW1116 cells. Conclusion Our work firstly demonstrated that hsa-miR-574-5p negatively regulated MACC-1 expression in colorectal cancer cells. It was partly elucidated that hsa-miR-574-5p played a suppressive role in colorectal cancer liver metastasis by negatively directing MACC-1 expression, offering a novel therapeutic approach for colorectal cancer liver metastasis.
Collapse
Affiliation(s)
- Zhe Cui
- Department of General Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Tang
- Department of General Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jinxian Chen
- Department of General Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zheng Wang
- Department of General Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
39
|
Muendlein A, Hubalek M, Geller-Rhomberg S, Gasser K, Winder T, Drexel H, Decker T, Mueller-Holzner E, Chamson M, Marth C, Lang AH. Significant survival impact of MACC1 polymorphisms in HER2 positive breast cancer patients. Eur J Cancer 2014; 50:2134-41. [PMID: 24910416 DOI: 10.1016/j.ejca.2014.05.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 04/10/2014] [Accepted: 05/09/2014] [Indexed: 12/19/2022]
Abstract
BACKGROUND Deregulation of hepatocyte growth factor (HGF)/mesenchymal-epithelial transition factor (MET) signalling has been associated with poor clinical outcome in breast cancer and other cancers. The recently discovered metastasis-associated in colon cancer-1 (MACC1) gene is a key regulator of the HGF/MET pathway. Potential links between genetic variants of the MACC1 gene and survival in breast cancer patients are unknown. In the present study, we therefore aimed to investigate the influence of MACC1 polymorphisms on event-free and overall survival in patients with human epidermal growth factor 2 (HER2)-positive breast cancer. METHODS The present study included 164 consecutive white patients with HER2-positive breast cancer. Three MACC1 polymorphisms, rs1990172, rs975263 and rs3735615, already associated with cancer prognosis or with potential functional effects, were genotyped by the 5' nuclease assay. RESULTS Multivariate Cox regression analysis adjusted for age and tumour stage showed increased risk for progression or death for carriers of the rare allele (G-allele) of single nucleotide polymorphism (SNP) rs1990172 (hazard ratios (HR) = 2.26; p = 0.004 and HR = 3.13; p = 0.001 for event-free survival and overall survival, respectively). In addition, we were able to demonstrate an adverse effect on cancer prognosis for carriers of the rare allele (T-allele) of SNP rs975263 (HR = 2.17; p = 0.007 and HR = 2.80; p = 0.003 for event-free survival and overall survival, respectively). The rare allele (C-allele) of SNP rs3735615 showed a significant protective impact on event-free survival as well as overall survival (HR = 0.25; p = 0.001, and HR = 0.16; p = 0.001, respectively). CONCLUSIONS This study provides first evidence that MACC1 polymorphisms are associated with clinical outcome for HER2-positive breast cancer patients. Further studies are warranted to validate these findings.
Collapse
Affiliation(s)
- Axel Muendlein
- Vorarlberg Institute for Vascular Investigation and Treatment, 6800 Feldkirch, Austria; Private University of the Principality of Liechtenstein, 9495 Triesen, Liechtenstein
| | - Michael Hubalek
- Department of Obstetrics and Gynecology, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Simone Geller-Rhomberg
- Vorarlberg Institute for Vascular Investigation and Treatment, 6800 Feldkirch, Austria; Private University of the Principality of Liechtenstein, 9495 Triesen, Liechtenstein
| | - Klaus Gasser
- Vorarlberg Institute for Vascular Investigation and Treatment, 6800 Feldkirch, Austria; Department of Medicine and Cardiology, Academic Teaching Hospital Feldkirch, 6800 Feldkirch, Austria; Private University of the Principality of Liechtenstein, 9495 Triesen, Liechtenstein
| | - Thomas Winder
- Vorarlberg Institute for Vascular Investigation and Treatment, 6800 Feldkirch, Austria; Department of Medicine and Cardiology, Academic Teaching Hospital Feldkirch, 6800 Feldkirch, Austria; Private University of the Principality of Liechtenstein, 9495 Triesen, Liechtenstein
| | - Heinz Drexel
- Vorarlberg Institute for Vascular Investigation and Treatment, 6800 Feldkirch, Austria; Department of Medicine and Cardiology, Academic Teaching Hospital Feldkirch, 6800 Feldkirch, Austria; Private University of the Principality of Liechtenstein, 9495 Triesen, Liechtenstein
| | - Thomas Decker
- Studienzentrum Onkologie Ravensburg, 88212 Ravensburg, Germany
| | | | - Martina Chamson
- Department of Obstetrics and Gynecology, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Christian Marth
- Department of Obstetrics and Gynecology, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Alois H Lang
- Vorarlberg Institute for Vascular Investigation and Treatment, 6800 Feldkirch, Austria; Department of Medicine and Cardiology, Academic Teaching Hospital Feldkirch, 6800 Feldkirch, Austria.
| |
Collapse
|
40
|
The Evolving Use of Prognostic Factors After Resection of Colorectal Liver Metastases. CURRENT COLORECTAL CANCER REPORTS 2014. [DOI: 10.1007/s11888-014-0220-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
41
|
Sheng XJ, Li Z, Sun M, Wang ZH, Zhou DM, Li JQ, Zhao Q, Sun XF, Liu QC. MACC1 induces metastasis in ovarian carcinoma by upregulating hepatocyte growth factor receptor c-MET. Oncol Lett 2014; 8:891-897. [PMID: 25009663 PMCID: PMC4081430 DOI: 10.3892/ol.2014.2184] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 04/29/2014] [Indexed: 12/22/2022] Open
Abstract
Metastasis-associated in colon cancer 1 (MACC1) is a newly identified gene that has been shown to promote tumor cell invasion and metastasis. The present study investigated the effect of MACC1 downregulation on the biological characteristics of the ovarian cancer OVCAR3 cell line. In this study, MACC1 expression was blocked using the RNA interference technique. The downregulation of MACC1 mRNA and protein expression was confirmed using quantitative polymerase chain reaction and western blot analysis. The proliferative activity and adhesion rate of the cells were detected using cell counting kit-8 and a cell adhesion assay, while cell invasion was determined using a Matrigel invasion assay and migration capacity was observed using migration and wound-healing assays. A tube formation assay was also used to examine the angiogenic capacity of cells, and a luciferase assay was performed to assess whether MACC1 binds to the c-MET gene. The MACC1 mRNA and protein expression levels were significantly downregulated using sequence-specific small interfering RNA (siRNA). The inhibition of MACC1 expression markedly decreased the invasive, metastatic and angiogenic capacities of the cells, but only slightly inhibited growth and adhesion. In addition, a putative MACC1-binding site was identified in the 3′-untranslated region of c-MET. MACC1-siRNA was also found to significantly reduce the expression of the c-MET protein and a luciferase reporter assay confirmed that c-MET was the target gene of MACC1. These results demonstrated that the attenuation of MACC1 suppresses cell invasion and migration and that MACC1 may regulate cell metastasis through targeting the expression of c-MET. Inhibition of the function of MACC1 may represent a new strategy for treating ovarian cancer.
Collapse
Affiliation(s)
- Xiu-Jie Sheng
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Zhen Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Man Sun
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Zhi-Hui Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Dong-Mei Zhou
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Jian-Qi Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Qin Zhao
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Xiao-Fang Sun
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, Guangdong 510150, P.R. China
| | - Qi-Cai Liu
- Experimental Medical Research Center of Guangzhou Medical University, Guangzhou, Guangdong 510182, P.R. China
| |
Collapse
|
42
|
Walker AS, Johnson EK, Maykel JA, Stojadinovic A, Nissan A, Brucher B, Champagne BJ, Steele SR. Future directions for the early detection of colorectal cancer recurrence. J Cancer 2014; 5:272-80. [PMID: 24790655 PMCID: PMC3982040 DOI: 10.7150/jca.8871] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Surgical resection remains a mainstay of treatment and is highly effective for localized colorectal cancer. However, ~30-40% of patients develop recurrence following surgery and 40-50% of recurrences are apparent within the first few years after initial surgical resection. Several variables factor into the ultimate outcome of these patients, including the extent of disease, tumor biology, and patient co-morbidities. Additionally, the time from initial treatment to the development of recurrence is strongly associated with overall survival, particularly in patients who recur within one year of their surgical resection. Current post-resection surveillance strategies involve physical examination, laboratory, endoscopic and imaging studies utilizing various high and low-intensity protocols. Ultimately, the goal is to detect recurrence as early as possible, and ideally in the asymptomatic localized phase, to allow initiation of treatment that may still result in cure. While current strategies have been effective, several efforts are evolving to improve our ability to identify recurrent disease at its earliest phase. Our aim with this article is to briefly review the options available and, more importantly, examine emerging and future options to assist in the early detection of colon and rectal cancer recurrence.
Collapse
Affiliation(s)
- Avery S Walker
- 1. Department of Surgery, Madigan Army Medical Center, 9040 Fitzsimmons Dr., Fort Lewis, WA, USA
| | - Eric K Johnson
- 1. Department of Surgery, Madigan Army Medical Center, 9040 Fitzsimmons Dr., Fort Lewis, WA, USA
| | - Justin A Maykel
- 2. University of Massachusetts Memorial Medical Center, Worcester, MA, USA
| | - Alex Stojadinovic
- 3. Department of Surgery, Division of Surgical Oncology, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Aviram Nissan
- 4. Department of Surgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | - Bradley J Champagne
- 6. University Hospitals, Case Western Reserve University, Cleveland, Ohio, USA
| | - Scott R Steele
- 1. Department of Surgery, Madigan Army Medical Center, 9040 Fitzsimmons Dr., Fort Lewis, WA, USA
| |
Collapse
|
43
|
Wang Z, Li Z, Wu C, Wang Y, Xia Y, Chen L, Zhu Q, Chen Y. MACC1 overexpression predicts a poor prognosis for non-small cell lung cancer. Med Oncol 2013; 31:790. [PMID: 24310811 DOI: 10.1007/s12032-013-0790-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 11/24/2013] [Indexed: 12/31/2022]
Abstract
The expression of metastasis-associated in colon cancer-1 (MACC1) in non-small cell lung cancer (NSCLC) and its association with pathological characteristics and prognosis for NSCLC patients were investigated retrospectively. The expression of MACC1 was evaluated through immunohistochemical staining of tissue microarrays from 180 samples of resected lung cancer tissues and adjacent normal lung tissues. MACC1 protein and mRNA expression were also examined from lung cancer cell lines with different metastatic potentials, 28 pairs of samples of resected fresh non-small cell lung cancer tissues, and adjacent normal lung tissues. Immunohistochemical staining of tissue microarrays showed that MACC1 was located in the cytoplasm. In addition, the expression of MACC1 protein in NSCLC was significantly higher compared to adjacent normal tissues (P < 0.001). The expression of MACC1 was positively associated with differentiation grade (P = 0.020), postoperative pathological TNM stage (P = 0.033), and lymph node metastasis (P = 0.028). Disease-free survival (DFS) and overall survival (OS) for the high MACC1 expression group were lower than the low expression group; univariate and multivariate regression analyses showed that MACC1 was an independent prognostic indicator for DFS (HR 3.124, P = 0.01) and OS (HR 2.905, P = 0.01) in NSCLC patients. The expression of MACC1 protein and mRNA was also upregulated in highly metastatic human lung cancer. In conclusion, the overexpression of MACC1 protein and mRNA may represent a potentially useful biomarker for the prognosis of NSCLC patients and might be involved in progression of NSCLC.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Nanjing, 210029, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Hagemann C, Fuchs S, Monoranu CM, Herrmann P, Smith J, Hohmann T, Grabiec U, Kessler AF, Dehghani F, Löhr M, Ernestus RI, Vince GH, Stein U. Impact of MACC1 on human malignant glioma progression and patients' unfavorable prognosis. Neuro Oncol 2013; 15:1696-709. [PMID: 24220141 DOI: 10.1093/neuonc/not136] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Metastasis-associated in colon cancer 1 (MACC1) has been established as an independent prognostic indicator of metastasis formation and metastasis-free survival for patients with colon cancer and other solid tumors. However, no data are available concerning MACC1 expression in human astrocytic tumors. Glioblastoma multiforme (GBM) is the most prevalent primary brain tumor of adulthood, and due to its invasive and rapid growth, patients have unfavorable prognoses. Although these tumors rarely metastasize, their invasive and migratory behavior is similar to those of metastatic cells of tumors of different origin. Thus, we hypothesized that MACC1 may be involved in progression of human gliomas. METHODS We performed real-time measurements of proliferation and migration in MACC1-transfected GBM cell lines (U138, U251) and evaluated tumor formation in organotypic hippocampal slice cultures of mice. Semiquantitative and quantitative real-time reverse transcription PCR analyses were performed for MACC1 and for its transcriptional target c-Met in human astrocytoma of World Health Organization grade II (low-grade astrocytoma) and GBM biopsies. Data were validated by MACC1 immunohistochemistry in independent matched samples of low-grade astrocytoma and GBM. RESULTS MACC1 increases the proliferative, migratory, and tumor-formation abilities of GBM cells. The c-Met inhibitor crizotinib reduced MACC1-induced migration and tumor formation in organotypic hippocampal slice cultures of mice. Analyzing patients' biopsies, MACC1 expression increased concomitantly with increasing World Health Organization grade. Moreover, MACC1 expression levels allowed discrimination of dormant and recurrent low-grade astrocytomas and of primary and secondary GBM. Strong MACC1 expression correlated with reduced patient survival. CONCLUSIONS MACC1 may represent a promising biomarker for prognostication and a new target for treatment of human gliomas.
Collapse
Affiliation(s)
- Carsten Hagemann
- Corresponding Author: Ulrike Stein, PhD, Experimental and Clinical Research Center, Charité University Medicine Berlin and the Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Ren B, Zakharov V, Yang Q, McMahon L, Yu J, Cao W. MACC1 is related to colorectal cancer initiation and early-stage invasive growth. Am J Clin Pathol 2013; 140:701-7. [PMID: 24124150 DOI: 10.1309/ajcprh1h5rwwsxrb] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
OBJECTIVES To investigate metastasis associated in colon cancer 1 (MACC1) and MET expression in colorectal adenoma, Tis, early-stage invasive (T1 and T2), and advanced adenocarcinoma with liver metastasis using immunohistochemistry. METHODS Ninety-three paraffin-embedded colorectal tumor specimens were immunohistochemically analyzed for MACC1 and MET protein expression. RESULTS MACC1 expression was upregulated in the transition from adenoma to Tis; its expression was further elevated during tumor progression from Tis to early invasive carcinoma. MET expression was constant from adenoma to Tis and to T1 but significantly increased as tumor progression to T2. Both MACC1 and MET expression were enhanced in advanced carcinoma with liver metastasis. CONCLUSIONS Stepwise elevation of MACC1 expression in key points of colorectal cancer development suggests that MACC1 may contribute to cancer initiation and early invasive growth. High expression of both MACC1 and MET may relate to distant metastasis.
Collapse
Affiliation(s)
- Bing Ren
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY
| | - Vladislav Zakharov
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY
| | - Qi Yang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY
| | - Loralee McMahon
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY
| | - JiangZhou Yu
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY
| | - Wenqing Cao
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
46
|
Overexpression of MACC1 protein and its clinical implications in patients with glioma. Tumour Biol 2013; 35:815-9. [PMID: 23982875 DOI: 10.1007/s13277-013-1112-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 08/12/2013] [Indexed: 10/26/2022] Open
Abstract
Metastasis associated in colon cancer 1 (MACC1) has been regarded as a novel potential therapeutic target for multiple cancers. However, the impact of MACC1 in glioma remains unclear. The aim of this study was to analyze the correlation of MACC1 expression with the clinicopathological features of glioma. MACC1 mRNA and protein expression levels in human glioma tissues were detected by quantitative real-time polymerase chain reaction and immunohistochemistry assays, respectively. MACC1 mRNA and protein expression were both significantly higher in glioma tissues than in corresponding noncancerous brain tissues (both P < 0.001). In addition, statistical analysis suggested that high MACC1 expression was significantly correlated with advanced pathological grade (P = 0.004) and that patients with high expression of MACC1 protein exhibited a poorer prognosis than those with low MACC1 expression. Furthermore, Cox multivariate analysis showed that MACC1 overexpression was an independent prognostic factor for predicting the overall survival of glioma patients. In conclusion, expression of MACC1 in glioma could be adopted as a candidate biomarker for the diagnosis of clinical stage and for assessing prognosis, indicating for the first time that MACC1 may play an important role in the tumor development and progression in glioma. MACC1 might be considered as a novel therapeutic target against this cancer.
Collapse
|
47
|
MACC1 mRNA levels predict cancer recurrence after resection of colorectal cancer liver metastases. Ann Surg 2013; 257:1089-95. [PMID: 23665971 DOI: 10.1097/sla.0b013e31828f96bc] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Upon colon cancer metastasis resection in liver, disease outcome is heterogeneous, ranging from indolent to very aggressive, with early recurrence. The aim of this study is to investigate the capability of metastasis associated in colon cancer 1 (MACC1) levels measured in liver metastasis specimens to predict further recurrence of the disease. METHODS Gene expression and gene dosage of MACC1, hepatocyte growth factor (HGF), and hepatocyte growth factor receptor (MET) were assessed using quantitative realtime polymerase chain reaction on a cohort of 64 liver metastasis samples from patients with complete follow-up of 36 months and detailed clinical annotation. The most relevant mutations associated to prognosis in colorectal cancer, KRAS, and PIK3CA were assessed on the same specimens with Sanger sequencing. RESULTS Receiver operating characteristic (ROC) analysis revealed that MACC1 mRNA abundance is a good indicator of metastatic recurrence (AUC = 0.65, P < 0.05), whereas no such results were obtained with MET and HGF, nor with gene dosage. Generation of MACC1-based risk classes was capable of successfully separating patients into poor and good prognosis subgroups [hazard ratio (HR) = 5.236, 95% confidence interval (CI) = 1.2068-22.715, P < 0.05]. Also KRAS mutation was significantly associated with higher risk of recurrence (HR = 2.07, 95% CI = 1.048-4.09, P < 0.05). Cox regression multivariate analysis supported the independence of MACC1, but not KRAS, from known prognostic clinical information (Node Size HR = 3.155, 95% CI = 1.4418-6.905, P < 0.001, Preoperative carcinoembryonic antigen HR = 2.359, 95% CI = 1.0203-5.452, P < 0.05, MACC1 HR = 7.2739, 95% CI = 1.6584-31.905, P < 0.01). CONCLUSIONS MACC1, a new easily detectable biomarker in cancer, is an independent prognostic factor of recurrence after liver resection of colorectal cancer metastasis.
Collapse
|
48
|
Abstract
INTRODUCTION The metastatic dissemination of primary tumors is directly linked to patient survival in many tumor entities. The previously undescribed gene metastasis-associated in colon cancer 1 (MACC1) was discovered by genome-wide analyses in colorectal cancer (CRC) tissues. MACC1 is a tumor stage-independent predictor for CRC metastasis linked to metastasis-free survival. AREAS COVERED In this review, the discovery of MACC1 is briefly presented. In the following, the overwhelming confirmation of these data is provided supporting MACC1 as a new remarkable biomarker for disease prognosis and prediction of therapy response for CRC and also for a variety of additional forms of solid cancers. Lastly, the potential clinical utility of MACC1 as a target for prevention or restriction of tumor progression and metastasis is envisioned. EXPERT OPINION MACC1 has been identified as a prognostic biomarker in a variety of solid cancers. MACC1 correlated with tumor formation and progression, development of metastases and patient survival representing a decisive driver for tumorigenesis and metastasis. MACC1 was also demonstrated to be of predictive value for therapy response. MACC1 is a promising therapeutic target for anti-tumor and anti-metastatic intervention strategies of solid cancers. Its clinical utility, however, must be demonstrated in clinical trials.
Collapse
Affiliation(s)
- Ulrike Stein
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück-Center for Molecular Medicine, Berlin , Germany.
| |
Collapse
|
49
|
Ma J, Ma J, Meng Q, Zhao ZS, Xu WJ. Prognostic value and clinical pathology of MACC-1 and c-MET expression in gastric carcinoma. Pathol Oncol Res 2013; 19:821-32. [PMID: 23812675 DOI: 10.1007/s12253-013-9650-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 05/02/2013] [Indexed: 01/03/2023]
Abstract
This study was to assess the expression of MACC-1 and c-MET in gastric cancer, and to correlate this expression with clinicohistological parameters and patient prognosis. Total RNA was extracted from cancer tissue and adjacent normal mucosa from frozen biopsy specimens of 30 patients with gastric cancer, and MACC-1 expression was assessed by RT-PCR. MACC-1 and c-MET protein expression were also assessed in paraffin-embedded tissues obtained from 436 tumor mucosa and 92 normal mucosa specimens by immunohistochemistry. The correlation between MACC-1 and c-MET expression and clinicopathological factors (age, sex, histology, tumor depth, lymph node status and vessel invasion) were also evaluated. RT-PCR analysis revealed that MACC-1 expression was significantly higher in cancerous mucosa compared with normal tissue. Immunohistochemical analysis indicated that MACC-1 and c-MET were moderately or strongly expressed in gastric cancer tissue, whereas expression was weak or absent in non-cancer tissue. Expression of MACC-1 or c-MET was significantly associated with larger tumor size, deeper tumor invasion, presence of lymph node metastasis, lymphatic involvement, venous invasion, distant metastasis and advanced clinical stage. However, only MACC-1 exhibited significantly greater expression in carcinomas from the higher age group. The intensity of MACC-1 and c-MET expression was also positively correlated. Survival analysis of the 436 gastric cancer patients revealed that patients in clinical stages I, II and III exhibiting lower MACC-1 and c-MET expression had a higher 5-year survival rate compared with patients expressing high levels of these proteins. Multivariate analysis revealed that MACC-1 and c-MET may be independent prognostic indexes of gastric carcinoma (P < 0.01). Our findings confirm that MACC-1 and c-MET expression is strongly related to gastric cancer stage and degree of malignancy, and is inversely correlated to patient prognosis. Thus, MACC-1 and c-MET may interact to promote tumorigenesis and their expression may be used as independent prognostic markers in gastric cancer.
Collapse
Affiliation(s)
- Jie Ma
- Department of Pathology, Zhejiang Provincal People's Hospital, Hangzhou, Zhejiang, People's Republic of China
| | | | | | | | | |
Collapse
|
50
|
Promoter identification and transcriptional regulation of the metastasis gene MACC1 in colorectal cancer. Mol Oncol 2013; 7:929-43. [PMID: 23800415 DOI: 10.1016/j.molonc.2013.05.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 05/28/2013] [Accepted: 05/28/2013] [Indexed: 02/08/2023] Open
Abstract
MACC1, Metastasis associated in colon cancer 1, is a newly identified prognostic biomarker for colorectal cancer metastasis and patient survival, when determined in the primary tumor or patient blood. MACC1 induces cell motility and proliferation in cell culture and metastasis in mouse models. MACC1 acts as a transcriptional regulator of the receptor tyrosine kinase gene Met via binding to its promoter. However, no information about the promoter of the MACC1 gene and its transcriptional regulation has been reported so far. Here we report the identification of the MACC1 promoter using a promoter luciferase construct that directs transcription of MACC1. To gain insights into the essential domains within this promoter region, we constructed 5' truncated deletion constructs. Our results show that the region from -426 to -18 constitutes the core promoter and harbors functional motifs for the binding of AP-1, Sp1, and C/EBP transcription factors as validated by site directed mutagenesis study. Using electrophoretic mobility shift assay and chromatin immunoprecipitation assay, we demonstrated the physical interaction of these transcription factors to a minimal essential MACC1 core promoter sequence. Knock down of these transcription factors using RNAi strategy reduced MACC1 expression (P < 0.001), and resulted in decrease of cell migration (P < 0.01) which could be specifically rescued by ectopic overexpression of MACC1. In human colorectal tumors, expression levels of c-Jun and Sp1 correlated significantly to MACC1 (P = 0.0007 and P = 0.02, respectively). Importantly, levels of c-Jun and Sp1 also showed significant correlation to development of metachronous metastases (P = 0.01 and P = 0.001, respectively). This is the first study identifying the MACC1 promoter and its transcriptional regulation by AP-1 and Sp1. Knowledge of the transcriptional regulation of the MACC1 gene will implicate in enhanced understanding of its role in cancer progression and metastasis.
Collapse
|