1
|
Akinyemi AO, Simpson KE, Oyelere SF, Nur M, Ngule CM, Owoyemi BCD, Ayarick VA, Oyelami FF, Obaleye O, Esoe DP, Liu X, Li Z. Unveiling the dark side of glucose-regulated protein 78 (GRP78) in cancers and other human pathology: a systematic review. Mol Med 2023; 29:112. [PMID: 37605113 PMCID: PMC10464436 DOI: 10.1186/s10020-023-00706-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/26/2023] [Indexed: 08/23/2023] Open
Abstract
Glucose-Regulated Protein 78 (GRP78) is a chaperone protein that is predominantly expressed in the lumen of the endoplasmic reticulum. GRP78 plays a crucial role in protein folding by assisting in the assembly of misfolded proteins. Under cellular stress conditions, GRP78 can translocate to the cell surface (csGRP78) were it interacts with different ligands to initiate various intracellular pathways. The expression of csGRP78 has been associated with tumor initiation and progression of multiple cancer types. This review provides a comprehensive analysis of the existing evidence on the roles of GRP78 in various types of cancer and other human pathology. Additionally, the review discusses the current understanding of the mechanisms underlying GRP78's involvement in tumorigenesis and cancer advancement. Furthermore, we highlight recent innovative approaches employed in downregulating GRP78 expression in cancers as a potential therapeutic target.
Collapse
Affiliation(s)
| | | | | | - Maria Nur
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, USA
| | | | | | | | - Felix Femi Oyelami
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, USA
| | | | - Dave-Preston Esoe
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, USA
| | - Xiaoqi Liu
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, USA
- Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, USA
| | - Zhiguo Li
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, USA.
| |
Collapse
|
2
|
Ajoolabady A, Wang S, Kroemer G, Klionsky DJ, Uversky VN, Sowers JR, Aslkhodapasandhokmabad H, Bi Y, Ge J, Ren J. ER Stress in Cardiometabolic Diseases: From Molecular Mechanisms to Therapeutics. Endocr Rev 2021; 42:839-871. [PMID: 33693711 DOI: 10.1210/endrev/bnab006] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Indexed: 02/08/2023]
Abstract
The endoplasmic reticulum (ER) hosts linear polypeptides and fosters natural folding of proteins through ER-residing chaperones and enzymes. Failure of the ER to align and compose proper protein architecture leads to accumulation of misfolded/unfolded proteins in the ER lumen, which disturbs ER homeostasis to provoke ER stress. Presence of ER stress initiates the cytoprotective unfolded protein response (UPR) to restore ER homeostasis or instigates a rather maladaptive UPR to promote cell death. Although a wide array of cellular processes such as persistent autophagy, dysregulated mitophagy, and secretion of proinflammatory cytokines may contribute to the onset and progression of cardiometabolic diseases, it is well perceived that ER stress also evokes the onset and development of cardiometabolic diseases, particularly cardiovascular diseases (CVDs), diabetes mellitus, obesity, and chronic kidney disease (CKD). Meanwhile, these pathological conditions further aggravate ER stress, creating a rather vicious cycle. Here in this review, we aimed at summarizing and updating the available information on ER stress in CVDs, diabetes mellitus, obesity, and CKD, hoping to offer novel insights for the management of these cardiometabolic comorbidities through regulation of ER stress.
Collapse
Affiliation(s)
- Amir Ajoolabady
- University of Wyoming College of Health Sciences, Laramie, Wyoming 82071, USA
| | - Shuyi Wang
- University of Wyoming College of Health Sciences, Laramie, Wyoming 82071, USA
- School of Medicine Shanghai University, Shanghai 200444, China
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, USA
| | - James R Sowers
- Dalton and Diabetes and Cardiovascular Center, University of Missouri Columbia, Columbia, Missouri 65212, USA
| | | | - Yaguang Bi
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Jun Ren
- University of Wyoming College of Health Sciences, Laramie, Wyoming 82071, USA
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai 200032, China
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
3
|
Liu Y, Hu R, Shen H, Mo Q, Wang X, Zhang G, Li S, Liang G, Hou N, Luo J. Endophilin A2-mediated alleviation of endoplasmic reticulum stress-induced cardiac injury involves the suppression of ERO1α/IP 3R signaling pathway. Int J Biol Sci 2021; 17:3672-3688. [PMID: 34512174 PMCID: PMC8416715 DOI: 10.7150/ijbs.60110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/11/2021] [Indexed: 01/14/2023] Open
Abstract
Cardiac injury upon myocardial infarction (MI) is the leading cause of heart failure. The present study aims to investigate the role of EndoA2 in ischemia-induced cardiomyocyte apoptosis and cardiac injury. In vivo, we established an MI mouse model by ligating the left anterior descending (LAD) coronary artery, and intramyocardial injection of adenoviral EndoA2 (Ad-EndoA2) was used to overexpress EndoA2. In vitro, we used the siRNA and Ad-EndoA2 transfection strategies. Here, we reported that EndoA2 expression was remarkably elevated in the infarct border zone of MI mouse hearts and neonatal rat cardiomyocytes (NRCMs) stimulated with oxygen and glucose deprivation (OGD) which mimicked ischemia. We showed that intramyocardial injection of Ad-EndoA2 attenuated cardiomyocyte apoptosis and reduced endoplasmic reticulum (ER) stress in response to MI injury. Using siRNA for knockdown and Ad-EndoA2 for overexpression, we validated that knockdown of EndoA2 in NRCMs exacerbated OGD-induced NRCM apoptosis, whereas overexpression of EndoA2 attenuates OGD-induced cardiomyocyte apoptosis. Mechanistically, knockdown of EndoA2 activated ER stress response, which increases ER oxidoreductase 1α (ERO1α) and inositol 1, 4, 5-trisphosphate receptor (IP3R) activity, thus led to increased intracellular Ca2+ accumulation, followed by elevated calcineurin activity and nuclear factor of activated T-cells (NFAT) dephosphorylation. Pretreatment with the IP3R inhibitor 2-Aminoethoxydiphenylborate (2-APB) attenuated intracellular Ca2+ accumulation, and pretreatment with the Ca2+ chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) or the calcineurin inhibitor Cyclosporin A (CsA) inhibited EndoA2-knockdown-induced NRCM apoptosis. Overexpression of EndoA2 led to the opposite effects by suppressing ER-stress-mediated ERO1α/IP3R signaling pathway. This study demonstrated that EndoA2 protected cardiac function in response to MI via attenuating ER-stress-mediated ERO1α/IP3R signaling pathway. Targeting EndoA2 is a potential therapeutic strategy for the prevention of postinfarction-induced cardiac injury and heart failure.
Collapse
Affiliation(s)
- Yun Liu
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P.R. China
| | - Ruixiang Hu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Jinan University, Guangzhou 510630, P.R. China
| | - Huanjia Shen
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P.R. China
| | - Qinxin Mo
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P.R. China
| | - Xinqiuyue Wang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P.R. China
| | - Guiping Zhang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P.R. China
| | - Sujuan Li
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P.R. China
| | - Guanfeng Liang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P.R. China
| | - Ning Hou
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P.R. China
| | - Jiandong Luo
- Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, P.R. China
| |
Collapse
|
4
|
Fakhri S, Nouri Z, Moradi SZ, Akkol EK, Piri S, Sobarzo-Sánchez E, Farzaei MH, Echeverría J. Targeting Multiple Signal Transduction Pathways of SARS-CoV-2: Approaches to COVID-19 Therapeutic Candidates. Molecules 2021; 26:2917. [PMID: 34068970 PMCID: PMC8156180 DOI: 10.3390/molecules26102917] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/30/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023] Open
Abstract
Due to the complicated pathogenic pathways of coronavirus disease 2019 (COVID-19), related medicinal therapies have remained a clinical challenge. COVID-19 highlights the urgent need to develop mechanistic pathogenic pathways and effective agents for preventing/treating future epidemics. As a result, the destructive pathways of COVID-19 are in the line with clinical symptoms induced by severe acute coronary syndrome (SARS), including lung failure and pneumonia. Accordingly, revealing the exact signaling pathways, including inflammation, oxidative stress, apoptosis, and autophagy, as well as relative representative mediators such as tumor necrosis factor-α (TNF-α), nuclear factor erythroid 2-related factor 2 (Nrf2), Bax/caspases, and Beclin/LC3, respectively, will pave the road for combating COVID-19. Prevailing host factors and multiple steps of SARS-CoV-2 attachment/entry, replication, and assembly/release would be hopeful strategies against COVID-19. This is a comprehensive review of the destructive signaling pathways and host-pathogen interaction of SARS-CoV-2, as well as related therapeutic targets and treatment strategies, including potential natural products-based candidates.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; (S.F.); (S.Z.M.); (S.P.)
| | - Zeinab Nouri
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran;
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; (S.F.); (S.Z.M.); (S.P.)
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler, Ankara 06330, Turkey;
| | - Sana Piri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; (S.F.); (S.Z.M.); (S.P.)
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Mohammad Hosein Farzaei
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
| |
Collapse
|
5
|
Wu J, Gao ZY, Cui DM, Li HH, Zeng JW. All-trans retinoic acid increases ARPE-19 cell apoptosis via activation of reactive oxygen species and endoplasmic reticulum stress pathways. Int J Ophthalmol 2020; 13:1345-1350. [PMID: 32953569 DOI: 10.18240/ijo.2020.09.01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023] Open
Abstract
AIM To explore the apoptosis of ARPE-19 cells after the treatment with different doses of all-trans-retinoic acid (ATRA). METHODS ARPE-19 cells were used in the in-vitro experiment. Flow cytometry assay was employed to evaluate the level of reactive oxygen species (ROS) and apoptosis. The effects of ATRA (concentrations from 2.5 to 20 µmol/L) on the expression of endoplasmic reticulum stress (ERS) markers in vitro were evaluated by Western blot and real-time quantitative polymerase chain reaction (qRT-PCR) assays. The contribution of ROS and ERS-induced apoptosis in vitro was determined by using N-acetyl-L-cysteine (NAC) and Salubrinal, an antagonist of NAC and ERS, respectively. RESULTS Flow cytometry showed that ATRA significantly increased ARPE-19 cell apoptosis and ROS levels in each group (F=86.39, P<0.001; F=116.839, P<0.001). Western blot and qRT-PCR revealed that levels of CHOP and BIP were elevated in a concentration-dependent pattern after the cells were incubated with ATRA (2.5-20 µmol/L). The upregulation of VEGF-A and CHOP induced by ATRA could be inhibited by NAC (antioxidant) and Salubrinal (ERS inhibitor) in vitro. CONCLUSION ATRA induces the apoptosis of ARPE-19 cells via activated ROS and ERS signaling pathways.
Collapse
Affiliation(s)
- Juan Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Zhen-Ya Gao
- Xuchang University, School of Medicine, Xuchang 461000, Henan Province, China
| | - Dong-Mei Cui
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Hong-Hui Li
- Chengdu Aier Eye Hospital, Chengdu 610000, Sichuan Province, China
| | - Jun-Wen Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| |
Collapse
|
6
|
Ardic S, Yilmaz S, Demir S, Dogramaci S, Altuntas G, Imamoglu M, Mentese A, Turedi S. Endoplasmic reticulum stress markers are of no value in predicting cardiopulmonary resuscitation success and survival in out-of hospital cardiac arrest: A nested case-control study. Turk J Emerg Med 2019; 19:58-63. [PMID: 31065605 PMCID: PMC6495064 DOI: 10.1016/j.tjem.2018.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/30/2018] [Accepted: 12/05/2018] [Indexed: 12/12/2022] Open
Abstract
Objectives The purpose of this study was to determine the value of the endoplasmic reticulum (ER) stress markers glucose-regulated protein 78 (GRP78), C/EBP homologous protein (CHOP) and PERK in predicting the success of cardiopulmonary resuscitation (CPR) or post-CPR survival. Materials and Methods Non-traumatic out-of-hospital CA patients were included in this prospective, nested case-control study. Standard CPR and post-resuscitative care were applied. Levels of ER stress markers were measured at presentation and were investigated to determine whether they might constitute a marker predicting return of spontaneous circulation (ROSC) or sustained ROSC, and of 24-h, and 1 and 3-month survival. Results Fifty-two out of 99 non-traumatic CA patients were enrolled. ROSC was determined at a level of 25%, sustained ROSC at 23%, 24-h survival at 7%, and 1- and 3-month survival at 4.6%. No difference was determined in terms of ER stress markers between patients with and without ROSC or sustained ROSC. Only PERK levels were higher in surviving patients than non-surviving subjects in terms of 24-h survival (p = 0.01). Otherwise, no stress markers differed between surviving and non-surviving patients at any survival time point. Conclusion ER stress markers are of no value in determining establishment of ROSC or sustained ROSC, success of CPR, or survival. Only PERK levels may be valuable in terms of 24-h survival.
Collapse
Affiliation(s)
- Senol Ardic
- University of Health Science, Faculty of Medicine, Department of Emergency Medicine, Trabzon, Turkey
| | - Sertac Yilmaz
- University of Health Science, Faculty of Medicine, Department of Emergency Medicine, Trabzon, Turkey
| | - Selim Demir
- Karadeniz Technical University, Faculty of of Health Sciences, Department of Nutrition and Dietetics, Trabzon, Turkey
| | - Seniz Dogramaci
- Karadeniz Technical University, Faculty of Medicine, Department of Biochemistry, Trabzon, Turkey
| | - Gurkan Altuntas
- University of Health Science, Faculty of Medicine, Department of Emergency Medicine, Trabzon, Turkey
| | - Melih Imamoglu
- University of Health Science, Faculty of Medicine, Department of Emergency Medicine, Trabzon, Turkey
| | - Ahmet Mentese
- Karadeniz Technical University, Vocational School of Health Sciences, Program of Medical Laboratory Techniques, Trabzon, Turkey
| | - Suleyman Turedi
- Karadeniz Technical University, Faculty of Medicine, Department of Emergency Medicine, Trabzon, Turkey
| |
Collapse
|
7
|
Wu LX, Xu YY, Yang ZJ, Feng Q. Hydroxytyrosol and olive leaf extract exert cardioprotective effects by inhibiting GRP78 and CHOP expression. J Biomed Res 2018; 32:371-379. [PMID: 29760296 PMCID: PMC6163112 DOI: 10.7555/jbr.32.20170111] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Myocardial infarction triggers massive biochemical changes, even cardiac cell death. Endoplasmic reticulum stress is involved in the pathology of myocardial infarction-mediated apoptosis. In the present study, myocardial cell line H9c2 cells were treated with cobalt chloride (CoCl2) to induce hypoxia. Isoproterenol was used for two successive days to induce myocardial infarction in SD rats. The cardioprotective effect of olive leaf extract (OLE) and its main constituent hydroxytyrosol and the underlying mechanisms were evaluated. The results showed that hydroxytyrosol markedly protected H9c2 cells against CoCl2-induced apoptosis. Hydroxytyrosol could reduce the mRNA and protein expression of GRP78 and CHOP induced by CoCl2in vitro. In vivo, the decreased ejection fraction and fractional shortening, increased heart weight/body ratio, the formation of infarction, disordered cardiac muscle fibers and infiltration of inflammatory cells induced by isoproterenol could be significantly ameliorated by pretreatment with OLE for a month. Similarly, OLE could also reverse the increase of GRP78 and CHOP expression induced by isoproterenol. Therefore, OLE and hydroxytyrosol exert a cardioprotective effect through endoplasmic reticulum stress, which could be a new target for the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Li-Xing Wu
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yu-Yu Xu
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Zhi-Jian Yang
- Department of Cardiology, Jiangsu Province Hospital, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Qing Feng
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
8
|
Wang X, Xu L, Gillette TG, Jiang X, Wang ZV. The unfolded protein response in ischemic heart disease. J Mol Cell Cardiol 2018; 117:19-25. [PMID: 29470977 DOI: 10.1016/j.yjmcc.2018.02.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/10/2018] [Accepted: 02/17/2018] [Indexed: 12/28/2022]
Abstract
Ischemic heart disease is a severe stress condition that causes extensive pathological alterations and triggers cardiac cell death. Accumulating evidence suggests that the unfolded protein response (UPR) is strongly induced by myocardial ischemia. The UPR is an evolutionarily conserved cellular response to cope with protein-folding stress, from yeast to mammals. Endoplasmic reticulum (ER) transmembrane sensors detect the accumulation of unfolded proteins and stimulate a signaling network to accommodate unfolded and misfolded proteins. Distinct mechanisms participate in the activation of three major signal pathways, viz. protein kinase RNA-like ER kinase, inositol-requiring protein 1, and activating transcription factor 6, to transiently suppress protein translation, enhance protein folding capacity of the ER, and augment ER-associated degradation to refold denatured proteins and restore cellular homeostasis. However, if the stress is severe and persistent, the UPR elicits inflammatory and apoptotic pathways to eliminate terminally affected cells. The ER is therefore recognized as a vitally important organelle that determines cell survival or death. Recent studies indicate the UPR plays critical roles in the pathophysiology of ischemic heart disease. The three signaling branches may elicit distinct but overlapping effects in cardiac response to ischemia. Here, we outline the findings and discuss the mechanisms of action and therapeutic potentials of the UPR in the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Xiaoding Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lin Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Thomas G Gillette
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xuejun Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Zhao V Wang
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
9
|
Li XM, Liu J, Pan FF, Shi DD, Wen ZG, Yang PL. Quercetin and aconitine synergistically induces the human cervical carcinoma HeLa cell apoptosis via endoplasmic reticulum (ER) stress pathway. PLoS One 2018; 13:e0191062. [PMID: 29324796 PMCID: PMC5764366 DOI: 10.1371/journal.pone.0191062] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/26/2017] [Indexed: 12/28/2022] Open
Abstract
Up till now, studies have not been conducted on how the combination of Quercetin (Q), Aconitine (A) and apoptosis induction affects human cervical carcinoma HeLa cells. The result of our findings shows that the combination of Q and A (QA) is capable of synergistically inhibiting the proliferation of HeLa cells in a number of concentrations. QA synergistically inhibits the proliferation of MDR1 gene in the HeLa cells. It is concluded based on our result that QA induces apoptosis and ER stress just as QA-induced ER stress pathway may mediate apoptosis by upregulating mRNA expression levels of eIF2α, ATF4, IRE1, XBP1, ATF6, PERK and CHOP in the HeLa cells. The up-regulating of mRNA expression level of GRP78 and activation of UPR are a molecular basis of QA-induced ER stress.
Collapse
Affiliation(s)
- Xiu-Mei Li
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Liu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fang-Fang Pan
- Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Dong-Dong Shi
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhi-Guo Wen
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Pei-Long Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
10
|
Louessard M, Bardou I, Lemarchand E, Thiebaut AM, Parcq J, Leprince J, Terrisse A, Carraro V, Fafournoux P, Bruhat A, Orset C, Vivien D, Ali C, Roussel BD. Activation of cell surface GRP78 decreases endoplasmic reticulum stress and neuronal death. Cell Death Differ 2017. [PMID: 28644439 DOI: 10.1038/cdd.2017.35] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The unfolded protein response (UPR) is an endoplasmic reticulum (ER) -related stress conserved pathway that aims to protect cells from being overwhelmed. However, when prolonged, UPR activation converts to a death signal, which relies on its PERK-eIF2α branch. Overactivation of the UPR has been implicated in many neurological diseases, including cerebral ischaemia. Here, by using an in vivo thromboembolic model of stroke on transgenic ER stress-reporter mice and neuronal in vitro models of ischaemia, we demonstrate that ischaemic stress leads to the deleterious activation of the PERK branch of the UPR. Moreover, we show that the serine protease tissue-type plasminogen activator (tPA) can bind to cell surface Grp78 (78 kD glucose-regulated protein), leading to a decrease of the PERK pathway activation, thus a decrease of the deleterious factor CHOP, and finally promotes neuroprotection. Altogether, this work highlights a new role and a therapeutic potential of the chaperone protein Grp78 as a membrane receptor of tPA capable to prevent from ER stress overactivation.
Collapse
Affiliation(s)
- Morgane Louessard
- Normandie Univ, UNICAEN, INSERM, Physiopathology and Imaging of Neurological Disorders, Caen, France
| | - Isabelle Bardou
- Normandie Univ, UNICAEN, INSERM, Physiopathology and Imaging of Neurological Disorders, Caen, France
| | - Eloïse Lemarchand
- Normandie Univ, UNICAEN, INSERM, Physiopathology and Imaging of Neurological Disorders, Caen, France
| | - Audrey M Thiebaut
- Normandie Univ, UNICAEN, INSERM, Physiopathology and Imaging of Neurological Disorders, Caen, France
| | - Jérôme Parcq
- Normandie Univ, UNICAEN, INSERM, Physiopathology and Imaging of Neurological Disorders, Caen, France
| | - Jérôme Leprince
- Normandie Univ, UNIROUEN, INSERM, Laboratoire Différenciation et Communication Neuronale et Neuroendocrine, Plate-forme de Recherche en Imagerie Cellulaire de Normandie (PRIMACEN), Rouen, France
| | - Anne Terrisse
- INRA, UMR 1019 Nutrition Humaine, Centre de Clermont-Ferrand-Theix, Saint Genès Champanelle, France
| | - Valérie Carraro
- INRA, UMR 1019 Nutrition Humaine, Centre de Clermont-Ferrand-Theix, Saint Genès Champanelle, France
| | - Pierre Fafournoux
- INRA, UMR 1019 Nutrition Humaine, Centre de Clermont-Ferrand-Theix, Saint Genès Champanelle, France
| | - Alain Bruhat
- INRA, UMR 1019 Nutrition Humaine, Centre de Clermont-Ferrand-Theix, Saint Genès Champanelle, France
| | - Cyrille Orset
- Normandie Univ, UNICAEN, INSERM, Physiopathology and Imaging of Neurological Disorders, Caen, France
| | - Denis Vivien
- Normandie Univ, UNICAEN, INSERM, Physiopathology and Imaging of Neurological Disorders, Caen, France.,Clinical Research Department, Medical Center, University Caen Normandy, Centre Hospitalo-Universitaire Caen Côte de Nacre, Caen, France
| | - Carine Ali
- Normandie Univ, UNICAEN, INSERM, Physiopathology and Imaging of Neurological Disorders, Caen, France
| | - Benoit D Roussel
- Normandie Univ, UNICAEN, INSERM, Physiopathology and Imaging of Neurological Disorders, Caen, France
| |
Collapse
|
11
|
Abstract
Mesenchymal stem cells (MSC) are ideal materials for stem cell-based therapy. As MSCs reside in hypoxic microenvironments (low oxygen tension of 1% to 7%), several studies have focused on the beneficial effects of hypoxic preconditioning on MSC survival; however, the mechanisms underlying such effects remain unclear. This study aimed to uncover the potential mechanism involving 78-kDa glucose-regulated protein (GRP78) to explain the enhanced MSC bioactivity and survival in hindlimb ischemia. Under hypoxia (2% O₂), the expression of GRP78 was significantly increased via hypoxia-inducible factor (HIF)-1α. Hypoxia-induced GRP78 promoted the proliferation and migration potential of MSCs through the HIF-1α-GRP78-Akt signal axis. In a murine hind-limb ischemia model, hypoxic preconditioning enhanced the survival and proliferation of transplanted MSCs through suppression of the cell death signal pathway and augmentation of angiogenic cytokine secretion. These effects were regulated by GRP78. Our findings indicate that hypoxic preconditioning promotes survival, proliferation, and angiogenic cytokine secretion of MSCs via the HIF-1α-GRP78-Akt signal pathway, suggesting that hypoxia-preconditioned MSCs might provide a therapeutic strategy for MSC-based therapies and that GRP78 represents a potential target for the development of functional MSCs.
Collapse
|
12
|
Li Z, Wu F, Zhang X, Chai Y, Chen D, Yang Y, Xu K, Yin J, Li R, Shi H, Wang Z, Li X, Xiao J, Zhang H. Valproate Attenuates Endoplasmic Reticulum Stress-Induced Apoptosis in SH-SY5Y Cells via the AKT/GSK3β Signaling Pathway. Int J Mol Sci 2017; 18:ijms18020315. [PMID: 28208696 PMCID: PMC5343851 DOI: 10.3390/ijms18020315] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/12/2017] [Accepted: 01/27/2017] [Indexed: 12/22/2022] Open
Abstract
Endoplasmic reticulum (ER) stress-induced apoptosis plays an important role in a range of neurological disorders, such as neurodegenerative diseases, spinal cord injury, and diabetic neuropathy. Valproate (VPA), a typical antiepileptic drug, is commonly used in the treatment of bipolar disorder and epilepsy. Recently, VPA has been reported to exert neurotrophic effects and promote neurite outgrowth, but its molecular mechanism is still unclear. In the present study, we investigated whether VPA inhibited ER stress and promoted neuroprotection and neuronal restoration in SH-SY5Y cells and in primary rat cortical neurons, respectively, upon exposure to thapsigargin (TG). In SH-SY5Y cells, cell viability was detected by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay, and the expression of ER stress-related apoptotic proteins such as glucose‑regulated protein (GRP78), C/EBP homologous protein (CHOP), and cleaved caspase-12/-3 were analyzed with Western blot analyses and immunofluorescence assays. To explore the pathway involved in VPA-induced cell proliferation, we also examined p-AKT, GSK3β, p-JNK and MMP-9. Moreover, to detect the effect of VPA in primary cortical neurons, immunofluorescence staining of β-III tubulin and Anti-NeuN was analyzed in primary cultured neurons exposed to TG. Our results demonstrated that VPA administration improved cell viability in cells exposed to TG. In addition, VPA increased the levels of GRP78 and p-AKT and decreased the levels of ATF6, XBP-1, GSK3β, p-JNK and MMP-9. Furthermore, the levels of the ER stress-induced apoptosis response proteins CHOP, cleaved caspase-12 and cleaved caspase-3 were inhibited by VPA treatment. Meanwhile, VPA administration also increased the ratio of Bcl-2/Bax. Moreover, VPA can maintain neurite outgrowth of primary cortical neurons. Collectively, the neurotrophic effect of VPA is related to the inhibition of ER stress-induced apoptosis in SH-SY5Y cells and the maintenance of neuronal growth. Collectively, our results suggested a new approach for the therapeutic function of VPA in neurological disorders and neuroprotection.
Collapse
Affiliation(s)
- Zhengmao Li
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Fenzan Wu
- Science and Education division, Cixi People's Hospital, Wenzhou Medical University, Ningbo 315300, China.
| | - Xie Zhang
- Ningbo Medical Treatment Center, Li Huili Hospital, Ningbo 315000, China.
| | - Yi Chai
- Department of neurosurgery, The second Affiliated Hospital, Nanchang University, Nanchang 330006, China.
| | - Daqing Chen
- Emergency Department, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China.
| | - Yuetao Yang
- Emergency Department, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China.
| | - Kebin Xu
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Jiayu Yin
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Rui Li
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Hongxue Shi
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Zhouguang Wang
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Xiaokun Li
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
- Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China.
| | - Jian Xiao
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Hongyu Zhang
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
13
|
Gu YJ, Li HD, Zhao L, Zhao S, He WB, Rui L, Su C, Zheng HC, Su RJ. GRP78 confers the resistance to 5-FU by activating the c-Src/LSF/TS axis in hepatocellular carcinoma. Oncotarget 2016; 6:33658-74. [PMID: 26378040 PMCID: PMC4741793 DOI: 10.18632/oncotarget.5603] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 08/26/2015] [Indexed: 11/25/2022] Open
Abstract
5-FU is a common first-line chemotherapeutic drug for the treatment of hepatocellular carcinoma. However the development of acquired resistance to 5-FU confines its clinical usages. Although this phenomenon has been the subject of intense investigation, the exact mechanism of acquired resistance to 5-FU remains elusive. Here, we report that over-expression of GRP78 contributes to acquired resistance to 5-FU in HCC by up-regulating the c-Src/LSF/TS axis. Moreover, we found that the resistance to 5-FU conferred by GRP78 is mediated by its ATPase domain. The ATPase domain differentially increased the expression of LSF, TS and promoted the phosphorylation of ERK and Akt. We further identified that GRP78 interacts physically with c-Src through its ATPase domain and promotes the phosphorylation of c-Src, which in turn increases the expression of LSF in the nucleus. Together, GRP78 confers the resistance to 5-FU by up-regulating the c-Src/LSF/TS axis via its ATPase domain.
Collapse
Affiliation(s)
- Yan-jiao Gu
- Pathology Department, The First Affiliated Hospital of Liaoning Medical College, Jinzhou, China
| | - Hong-dan Li
- Central Laboratory, Liaoning Medical College, Jinzhou, China
| | - Liang Zhao
- Central Laboratory, Liaoning Medical College, Jinzhou, China
| | - Song Zhao
- Pharmacy Department, Liaoning Medical College, Jinzhou, China
| | - Wu-bin He
- Pathology Department, The First Affiliated Hospital of Liaoning Medical College, Jinzhou, China
| | - Li Rui
- Pathology Department, The First Affiliated Hospital of Liaoning Medical College, Jinzhou, China
| | - Chang Su
- Veterinary Medicine Department, Liaoning Medical College, Jinzhou, China
| | - Hua-chuan Zheng
- Cancer Research Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province and Laboratory Animal Center, The First Affiliated Hospital of Liaoning Medical College, Jinzhou, China
| | - Rong-jian Su
- Central Laboratory, Liaoning Medical College, Jinzhou, China
| |
Collapse
|
14
|
Zhou X, Wei Y, Qiu S, Xu Y, Zhang T, Zhang S. Propofol Decreases Endoplasmic Reticulum Stress-Mediated Apoptosis in Retinal Pigment Epithelial Cells. PLoS One 2016; 11:e0157590. [PMID: 27311010 PMCID: PMC4910991 DOI: 10.1371/journal.pone.0157590] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/01/2016] [Indexed: 12/27/2022] Open
Abstract
Age-related macular degeneration (AMD) is the major cause of loss of sight globally. There is currently no effective treatment available. Retinal pigment epithelial (RPE) cells are an important part of the outer blood-retina barrier and their death is a determinant of AMD. Propofol, a common clinically used intravenous anesthetic agent, has been shown to act as an efficacious neuroprotective agent with antioxidative and anti-inflammatory properties in vivo and in vitro. However, little is known about its effects on RPE cells. The purpose of our research was to investigate whether propofol could protect RPE cells from apoptosis through endoplasmic reticulum (ER) stress–dependent pathways. To this end, prior to stimulation with thapsigargin (TG), ARPE-19 cells were pretreated with varying concentrations of propofol. A protective effect of propofol in TG-treated ARPE-9 was apparent, TUNEL and flow cytometric assays showed decreased apoptosis. We further demonstrated that propofol pretreatment attenuated or inhibited the effects caused by TG, such as upregulation of Bax, BiP, C/EBP homologous protein (CHOP), active caspase 12, and cleaved caspase 3, and downregulation of Bcl2. It also decreased the TG-induced levels of ER stress–related molecules such as p-PERK, p-eIF2α, and ATF4. Furthermore, it downregulated the expression of nuclear factor κB (NF-κB). This study elucidated novel propofol-induced cellular mechanisms for antiapoptotic activities in RPE cells undergoing ER stress and demonstrated the potential value of using propofol in the treatment of AMD.
Collapse
Affiliation(s)
- Xuezhi Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yantao Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Suo Qiu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yue Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ting Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shaochong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
- * E-mail:
| |
Collapse
|
15
|
Xiong Z, Jiang R, Li X, Liu Y, Guo F. Different Roles of GRP78 on Cell Proliferation and Apoptosis in Cartilage Development. Int J Mol Sci 2015; 16:21153-76. [PMID: 26370957 PMCID: PMC4613247 DOI: 10.3390/ijms160921153] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/10/2015] [Accepted: 08/11/2015] [Indexed: 11/16/2022] Open
Abstract
Eukaryotic cells possess several mechanisms to adapt to endoplasmic reticulum (ER) stress and thereby survive. ER stress activates a set of signaling pathways collectively termed as the unfolded protein response (UPR). We previously reported that Bone morphogenetic protein 2 (BMP2) mediates mild ER stress and activates UPR signal molecules in chondrogenesis. The mammalian UPR protects the cell against the stress of misfolded proteins in the endoplasmic reticulum. Failure to adapt to ER stress causes the UPR to trigger apoptosis. Glucose regulated protein 78 (GRP78), as an important molecular chaperone in UPR signaling pathways, is responsible for binding to misfolded or unfolded protein during ER stress. However the influence on GRP78 in BMP2-induced chondrocyte differentiation has not yet been elucidated and the molecular mechanism underlyng these processes remain unexplored. Herein we demonstrate that overexpression of GRP78 enhanced cell proliferation in chondrocyte development with G1 phase advance, S phase increasing and G2-M phase transition. Furthermore, overexpression of GRP78 inhibited ER stress-mediated apoptosis and then reduced apoptosis in chondrogenesis induced by BMP2, as assayed by cleaved caspase3, caspase12, C/EBP homologous protein (CHOP/DDIT3/GADD153), p-JNK (phosphorylated c-Jun N-terminal kinase) expression during the course of chondrocyte differentiation by Western blot. In addition, flow cytometry (FCM) assay, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end-labeling (TUNEL) assay and immune-histochemistry analysis also proved this result in vitro and in vivo. It was demonstrated that GRP78 knockdown via siRNA activated the ER stress-specific caspase cascade in developing chondrocyte tissue. Collectively, these findings reveal a novel critical role of GRP78 in regulating ER stress-mediated apoptosis in cartilage development and the molecular mechanisms involved.
Collapse
Affiliation(s)
- Zhangyuan Xiong
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China.
| | - Rong Jiang
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China.
| | - Xiangzhu Li
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China.
| | - Yanna Liu
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China.
| | - Fengjin Guo
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
16
|
Lycopene Protects against Hypoxia/Reoxygenation Injury by Alleviating ER Stress Induced Apoptosis in Neonatal Mouse Cardiomyocytes. PLoS One 2015; 10:e0136443. [PMID: 26291709 PMCID: PMC4546295 DOI: 10.1371/journal.pone.0136443] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 08/03/2015] [Indexed: 12/12/2022] Open
Abstract
Endoplasmic reticulum (ER) stress induced apoptosis plays a pivotal role in myocardial ischemia/reperfusion (I/R)-injury. Inhibiting ER stress is a major therapeutic target/strategy in treating cardiovascular diseases. Our previous studies revealed that lycopene exhibits great pharmacological potential in protecting against the I/R-injury in vitro and vivo, but whether attenuation of ER stress (and) or ER stress-induced apoptosis contributes to the effects remains unclear. In the present study, using neonatal mouse cardiomyocytes to establish an in vitro model of hypoxia/reoxygenation (H/R) to mimic myocardium I/R in vivo, we aimed to explore the hypothesis that lycopene could alleviate the ER stress and ER stress-induced apoptosis in H/R-injury. We observed that lycopene alleviated the H/R injury as revealed by improving cell viability and reducing apoptosis, suppressed reactive oxygen species (ROS) generation and improved the phosphorylated AMPK expression, attenuated ER stress as evidenced by decreasing the expression of GRP78, ATF6 mRNA, sXbp-1 mRNA, eIF2α mRNA and eIF2α phosphorylation, alleviated ER stress-induced apoptosis as manifested by reducing CHOP/GADD153 expression, the ratio of Bax/Bcl-2, caspase-12 and caspase-3 activity in H/R-treated cardiomyocytes. Thapsigargin (TG) is a potent ER stress inducer and used to elicit ER stress of cardiomyocytes. Our results showed that lycopene was able to prevent TG-induced ER stress as reflected by attenuating the protein expression of GRP78 and CHOP/GADD153 compared to TG group, significantly improve TG-caused a loss of cell viability and decrease apoptosis in TG-treated cardiomyocytes. These results suggest that the protective effects of lycopene on H/R-injury are, at least in part, through alleviating ER stress and ER stress-induced apoptosis in neonatal mouse cardiomyocytes.
Collapse
|
17
|
Hardy B, Raiter A. GRP78 expression beyond cellular stress: A biomarker for tumor manipulation. World J Immunol 2015; 5:78-85. [DOI: 10.5411/wji.v5.i2.78] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 01/14/2015] [Accepted: 06/08/2015] [Indexed: 02/05/2023] Open
Abstract
Physiological stress takes place in the endoplasmic reticulum (ER) of cells where activation and up-regulation of genes and proteins are primarily induced to enhance pro-survival mechanisms such as the unfolded protein response (UPR). A dominant protein in the UPR response is the heat shock GRP78 protein. Although GRP78 is primarily located in the ER, under certain conditions it is transported to the cell surface, where it acts as a receptor inducing pathways of cell signaling such as proliferation or apoptosis. In the prolonged chronic stress transportation of the GRP78 from the ER to the cell membrane is a major event where in addition to the presentation of the GRP78 as a receptor to various ligands, it also marks the cells that will proceed to apoptotic pathways. In the normal cell that under stress acquires cell surface GRP78 and in the tumor cell that already presents cell surface GRP78, cell surface GRP78 is an apoptotic flag. The internalization of GRP78 from the cell surface in normal cells by ligands such as peptides will enhance cell survival and alleviate cardiovascular ischemic diseases. The absence of cell surface GRP78 in the tumor cells portends proliferative and metastatic tumors. Pharmacological induction of cell surface GRP78 will induce the process of apoptosis and might be used as a therapeutic modality for cancer treatment.
Collapse
|
18
|
Shu Y, Hao T, Yao F, Qian Y, Wang Y, Yang B, Li J, Wang C. RoY peptide-modified chitosan-based hydrogel to improve angiogenesis and cardiac repair under hypoxia. ACS APPLIED MATERIALS & INTERFACES 2015; 7:6505-6517. [PMID: 25756853 DOI: 10.1021/acsami.5b01234] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Myocardial infarction (MI) still represents the "Number One Killer" in the world. The lack of functional vasculature of the infracted myocardium under hypoxia is one of the main problems for cardiac repair. In this study, a thermosensitive chitosan chloride-RoY (CSCl-RoY) hydrogel was developed to improve angiogenesis under hypoxia after MI. First, RoY peptides were conjugated onto the CSCl chain via amide linkages, and our data show that the conjugation of RoY peptide to CSCl does not interfere with the temperature sensitivity. Then, the effect of CSCl-RoY hydrogels on vascularization in vitro under hypoxia was investigated using human umbilical vein endothelial cells (HUVECs). Results show that CSCl-RoY hydrogels can promote the survival, proliferation, migration and tube formation of HUVECs under hypoxia compared with CSCl hydrogel. Further investigations suggest that CSCl-RoY hydrogels can modulate the expression of membrane surface GRP78 receptor of HUVECs under hypoxia and then activate Akt and ERK1/2 signaling pathways related to cell survival/proliferation, thereby enhancing angiogenic activity of HUVECs under hypoxia. To assess its therapeutic properties in vivo, a MI model was induced in rats by the left anterior descending artery ligation. CSCl or CSCl-RoY hydrogels were injected into the border of infracted hearts. The results demonstrate that the introduction of RoY peptide can not only improve angiogenesis at MI region but also improve the cardiac functions. Overall, we conclude that the CSCl-RoY may represent an ideal scaffold material for injectable cardiac tissue engineering.
Collapse
Affiliation(s)
- Yao Shu
- †Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, No. 27, Taiping Road, Beijing 100850, China
- ∥Department of Stomatology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing 100071, China
| | - Tong Hao
- †Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, No. 27, Taiping Road, Beijing 100850, China
| | - Fanglian Yao
- §Department of Polymer Science and Key Laboratory of Systems Bioengineering of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yufeng Qian
- ⊥Department of Chemistry and Biochemistry, University of Texas at Austin, 2500 Speedway, Austin, Texas 78712, United States
| | - Yan Wang
- †Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, No. 27, Taiping Road, Beijing 100850, China
| | - Boguang Yang
- †Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, No. 27, Taiping Road, Beijing 100850, China
- §Department of Polymer Science and Key Laboratory of Systems Bioengineering of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Junjie Li
- †Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, No. 27, Taiping Road, Beijing 100850, China
| | - Changyong Wang
- †Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, No. 27, Taiping Road, Beijing 100850, China
| |
Collapse
|
19
|
Leung HW, Moerkamp AT, Padmanabhan J, Ng SW, Goumans MJ, Choo A. mAb C19 targets a novel surface marker for the isolation of human cardiac progenitor cells from human heart tissue and differentiated hESCs. J Mol Cell Cardiol 2015; 82:228-37. [PMID: 25820071 DOI: 10.1016/j.yjmcc.2015.02.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/11/2015] [Accepted: 02/20/2015] [Indexed: 12/24/2022]
Abstract
AIMS Cardiac progenitor cells (CPCs) have been isolated from adult and developing hearts using an anti-mouse Sca-1 antibody. However, the absence of a human Sca-1 homologue has hampered the clinical application of the CPCs. Therefore, we generated novel monoclonal antibodies (mAbs) specifically raised against surface markers expressed by resident human CPCs. Here, we explored the suitability of one of these mAbs, mAb C19, for the identification, isolation and characterization of CPCs from fetal heart tissue and differentiating cultures of human embryonic stem cells (hESCs). METHODS & RESULTS Using whole-cell immunization, mAbs were raised against Sca-1+ CPCs and screened for reactivity to various CPC lines by flow cytometry. mAb C19 was found to be specific for Sca-1+ CPCs, with high cell surface binding capabilities. mAb C19 stained small stem-like cells in cardiac tissue sections. Moreover, during differentiation of hESCs towards cardiomyocytes, a transient population of cells with mAb C19 reactivity was identified and isolated using magnetic-activated cell sorting. Their cell fate was tracked and found to improve cardiomyocyte purity from hESC-derived cultures. mAb C19+ CPCs, from both hESC differentiation and fetal heart tissues, were maintained and expanded in culture, while retaining their CPC-like characteristics and their ability to further differentiate into cardiomyocytes by stimulation with TGFβ1. Finally, gene expression profiling of these mAb C19+ CPCs suggested a highly angiogenic nature, which was further validated by cell-based angiogenesis assays. CONCLUSION mAb C19 is a new surface marker for the isolation of multipotent CPCs from both human heart tissues and differentiating hESCs.
Collapse
Affiliation(s)
- Hau Wan Leung
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Asja T Moerkamp
- Department of Molecular Cell Biology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Jayanthi Padmanabhan
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Sze-Wai Ng
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Marie-José Goumans
- Department of Molecular Cell Biology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Andre Choo
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore; Department of Bioengineering, National University of Singapore, Singapore.
| |
Collapse
|
20
|
Avila MF, Cabezas R, Torrente D, Gonzalez J, Morales L, Alvarez L, Capani F, Barreto GE. Novel interactions of GRP78: UPR and estrogen responses in the brain. Cell Biol Int 2013; 37:521-32. [DOI: 10.1002/cbin.10058] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 01/22/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Marco Fidel Avila
- Departamento de Nutrición y Bioquímica; Facultad de Ciencias, Pontificia Universidad Javeriana; Bogotá D.C., Colombia
| | - Ricardo Cabezas
- Departamento de Nutrición y Bioquímica; Facultad de Ciencias, Pontificia Universidad Javeriana; Bogotá D.C., Colombia
| | - Daniel Torrente
- Departamento de Nutrición y Bioquímica; Facultad de Ciencias, Pontificia Universidad Javeriana; Bogotá D.C., Colombia
| | - Janneth Gonzalez
- Departamento de Nutrición y Bioquímica; Facultad de Ciencias, Pontificia Universidad Javeriana; Bogotá D.C., Colombia
| | - Ludis Morales
- Departamento de Nutrición y Bioquímica; Facultad de Ciencias, Pontificia Universidad Javeriana; Bogotá D.C., Colombia
| | - Lisandro Alvarez
- Laboratorio de Citoarquitectura y Plasticidad Neuronal, Instituto de Investigaciones Cardiológicas Prof. Dr. Alberto C. Taquini (ININCA), Facultad de Medicina, UBA-CONICET; Marcelo T. de Alvear 2270, C1122AAJ Buenos Aires; Argentina
| | - Francisco Capani
- Laboratorio de Citoarquitectura y Plasticidad Neuronal, Instituto de Investigaciones Cardiológicas Prof. Dr. Alberto C. Taquini (ININCA), Facultad de Medicina, UBA-CONICET; Marcelo T. de Alvear 2270, C1122AAJ Buenos Aires; Argentina
| | - George E. Barreto
- Departamento de Nutrición y Bioquímica; Facultad de Ciencias, Pontificia Universidad Javeriana; Bogotá D.C., Colombia
| |
Collapse
|
21
|
Miao YR, Eckhardt BL, Cao Y, Pasqualini R, Argani P, Arap W, Ramsay RG, Anderson RL. Inhibition of established micrometastases by targeted drug delivery via cell surface-associated GRP78. Clin Cancer Res 2013; 19:2107-16. [PMID: 23470966 DOI: 10.1158/1078-0432.ccr-12-2991] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE The major cause of morbidity in breast cancer is development of metastatic disease, for which few effective therapies exist. Because tumor cell dissemination is often an early event in breast cancer progression and can occur before diagnosis, new therapies need to focus on targeting established metastatic disease in secondary organs. We report an effective therapy based on targeting cell surface-localized glucose-regulated protein 78 (GRP78). GRP78 is expressed normally in the endoplasmic reticulum, but many tumors and disseminated tumor cells are subjected to environmental stresses and exhibit elevated levels of GRP78, some of which are localized at the plasma membrane. EXPERIMENTAL DESIGN AND RESULTS Here, we show that matched primary tumors and metastases from patients who died from advanced breast cancer also express high levels of GRP78. We used a peptidomimetic targeting strategy that uses a known GRP78-binding peptide fused to a proapoptotic moiety [designated bone metastasis targeting peptide 78 (BMTP78)] and show that it can selectively kill breast cancer cells that express surface-localized GRP78. Furthermore, in preclinical metastasis models, we show that administration of BMTP78 can inhibit primary tumor growth as well as prolong overall survival by reducing the extent of outgrowth of established lung and bone micrometastases. CONCLUSIONS The data presented here provide strong evidence that it is possible to induce cell death in established micrometastases by peptide-mediated targeting of cell surface-localized GRP in advanced breast cancers. The significance to patients with advanced breast cancer of a therapy that can reduce established metastatic disease should not be underestimated.
Collapse
Affiliation(s)
- Yu Rebecca Miao
- Metastasis Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, Australia
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Miharada K, Karlsson G, Rehn M, Rörby E, Siva K, Cammenga J, Karlsson S. Hematopoietic stem cells are regulated by Cripto, as an intermediary of HIF-1α in the hypoxic bone marrow niche. Ann N Y Acad Sci 2012; 1266:55-62. [PMID: 22901256 DOI: 10.1111/j.1749-6632.2012.06564.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cripto has been known as an embryonic stem (ES)- or tumor-related soluble/cell membrane protein. In this study, we demonstrated that Cripto has a role as an important regulatory factor for hematopoietic stem cells (HSCs). Recombinant Cripto sustained the reconstitution ability of HSCs in vitro. Flow cytometry analysis uncovered that GRP78, one of the candidate receptors for Cripto, was expressed on a subset of HSCs and could distinguish dormant/myeloid-biased HSCs and active/lymphoid-biased HSCs. Cripto is expressed in hypoxic endosteal niche cells where GRP78(+) HSCs mainly reside. Proteomics analysis revealed that Cripto-GRP78 binding stimulates glycolytic metabolism-related proteins and results in lower mitochondrial potential in HSCs. Furthermore, conditional knockout mice for HIF-1α, a master regulator of hypoxic responses, showed reduced Cripto expression and decreased GRP78(+) HSCs in the endosteal niche area. Thus, Cripto-GRP78 is a novel HSC regulatory signal mainly working in the hypoxic niche.
Collapse
Affiliation(s)
- Kenichi Miharada
- Department for Molecular Medicine and Gene Therapy, Lund Strategic Center for Stem Cell Biology, Lund University, Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
23
|
Hardy B, Raiter A, Yakimov M, Vilkin A, Niv Y. Colon cancer cells expressing cell surface GRP78 as a marker for reduced tumorigenicity. Cell Oncol (Dordr) 2012; 35:345-54. [PMID: 22945507 DOI: 10.1007/s13402-012-0094-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2012] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The glucose regulated heat shock protein 78 (GRP78) is a central regulator of ER (endoplasmic reticulum) stress due to its pro-survival property. Up regulated GRP78 expression in tumor cells has been correlated with aggressive malignancies whereas some reports have predicted an improved prognosis. Over-expression of GRP78 in the ER promotes its localization to the cell surface on several cell types including tumor cells. METHODS In order to elucidate whether GRP78 receptor positive and negative tumor cells manifest different properties in colorectal cancer, we first artificially separated GRP78 positive and negative sub-populations from HM7 and HCT116 cell lines using anti GRP78 antibody coated magnetic beads. RESULTS Only GRP78 negative cells were highly proliferative, induced significant growth in tumor size in nude mice and metastasized to the liver in a human metastatic colorectal carcinoma model in mice. In contrast, GRP78 positive cells manifested reduced proliferation, colony formation, tumor growth and liver metastases. The reduced tumorigenicity of GRP78 positive subpopulation was abrogated by silencing GRP78 expression using siRNA oligomers. In our efforts to induce cell surface GRP78, we subjected the cells to doxorubicin and taxol that increased significantly the percent of GRP78 positive population. Cells pre-incubated with doxorubicin exhibited reduced proliferation and tumor growth in mice. CONCLUSION This study demonstrates the significance of cell surface GRP78 in colon cancer, which may be used as a marker for reduced tumorigenicity.
Collapse
Affiliation(s)
- Britta Hardy
- Felsenstein Medical Research Center, Tel-Aviv University Sackler School of Medicine, Rabin Medical Center, Beilinson Campus, Petach Tikva, 49100, Israel.
| | | | | | | | | |
Collapse
|
24
|
Lakshmanan AP, Harima M, Suzuki K, Soetikno V, Nagata M, Nakamura T, Takahashi T, Sone H, Kawachi H, Watanabe K. The hyperglycemia stimulated myocardial endoplasmic reticulum (ER) stress contributes to diabetic cardiomyopathy in the transgenic non-obese type 2 diabetic rats: a differential role of unfolded protein response (UPR) signaling proteins. Int J Biochem Cell Biol 2012; 45:438-47. [PMID: 23032698 DOI: 10.1016/j.biocel.2012.09.017] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 09/14/2012] [Accepted: 09/24/2012] [Indexed: 12/11/2022]
Abstract
It has been well demonstrated that excessive blood glucose level could be detrimental to the myocardial function through the variety of mechanisms, of which endoplasmic reticulum stress (ERS) could play an unprecedented role through the activation of unfolded protein response (UPR). Recently, reports are coming out with the evidences that UPR signaling proteins are regulated differentially depend on the experimental conditions and cell types. In addition, ERS has been proposed to be closely associated with the regulation of lipogenesis. Therefore, in this study we tried to find out the expressions of myocardial UPR signaling proteins as well as proteins involved in lipid and glucose metabolism in non-obese type 2 diabetic mellitus (DM) condition using Spontaneous Diabetic Torii (SDT) rat. We have found the significant up-regulation of oxidative, nitrosative and ERS marker proteins in the myocardium of the SDT rats, in comparison to its normal (Sprague-Dawley - SD) rats. In addition, the sub-arm of UPR signaling proteins, such as p-PERK, p-eIF2α, ATF6, CHOP/GADD153, TRAF2, apoptotic signaling proteins, such as BAD, cytochrome C, cleaved caspase-7 and -12, were significantly up-regulated in the SDT rats, in comparison to the SD rats. Interestingly, there were no significant changes in the phosphorylation of IRE-1α, and XBP-1 protein expression. In addition, the proteins involved in lipid and glucose metabolisms, such as PPARα, PPARγ, CPT1, PGC-1α except GLUT4, and the proteins involved in insulin signaling, such as p-Akt and p-PI3K were shown significant attenuation in its expressions in the SDT rats, when compared with the SD rats. Taken together, it is suggested that the activation of PERK and ATF6 pathway are the major determinant rather than the IRE-1α-XBP1 pathway for the ERS-mediated metabolic dysfunction, which might eventually leads to diabetic cardiomyopathy in non-obese type 2 DM.
Collapse
Affiliation(s)
- Arun Prasath Lakshmanan
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata City 956-8603, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Cardiac troponin I reduces hypoxia/reoxygenation-induced myocardial cell injury in vitro. Int J Cardiol 2012; 158:120-2. [DOI: 10.1016/j.ijcard.2012.04.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 02/20/2012] [Accepted: 04/08/2012] [Indexed: 11/20/2022]
|
26
|
Miharada K, Karlsson G, Rehn M, Rörby E, Siva K, Cammenga J, Karlsson S. Cripto regulates hematopoietic stem cells as a hypoxic-niche-related factor through cell surface receptor GRP78. Cell Stem Cell 2012; 9:330-44. [PMID: 21982233 DOI: 10.1016/j.stem.2011.07.016] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 07/14/2011] [Accepted: 07/29/2011] [Indexed: 02/06/2023]
Abstract
Hematopoietic stem cells (HSCs) are maintained in hypoxic niches in endosteal regions of bones. Here we demonstrate that Cripto and its receptor GRP78 are important regulators of HSCs in the niche. Flow cytometry analyses revealed two distinct subpopulations of CD34(-)KSL cells based on the expression of GRP78, and these populations showed different reconstitution potential in transplantation assays. GRP78(+)HSCs mainly reside in the endosteal area, are more hypoxic, and exhibit a lower mitochondrial potential, and their HSC capacity was maintained in vitro by Cripto through induction of higher glycolytic activity. Additionally, HIF-1α KO mice have decreased numbers of GRP78(+)HSCs and reduced expression of Cripto in the endosteal niche. Furthermore, blocking GRP78 induced a movement of HSCs from the endosteal to the central marrow area. These data suggest that Cripto/GRP78 signaling is an important pathway that regulates HSC quiescence and maintains HSCs in hypoxia as an intermediary of HIF-1α.
Collapse
Affiliation(s)
- Kenichi Miharada
- Department for Molecular Medicine and Gene Therapy, Lund Strategic Center for Stem Cell Biology, Lund University, Sweden.
| | | | | | | | | | | | | |
Collapse
|
27
|
Goldenberg-Cohen N, Raiter A, Gaydar V, Dratviman-Storobinsky O, Goldstein T, Weizman A, Hardy B. Peptide-binding GRP78 protects neurons from hypoxia-induced apoptosis. Apoptosis 2012; 17:278-88. [PMID: 22120956 DOI: 10.1007/s10495-011-0678-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Brain ischemia has major consequences leading to the apoptosis of astrocytes and neurons. Glucose-regulated protein 78 (GRP78) known for its role in endoplasmic reticulum stress alleviation was discovered on several cell surfaces acting as a receptor for signaling pathways. We have previously described peptides that bind cell surface GRP78 on endothelial cells to induce angiogenesis. We have also reported that ADoPep1 binds cardiomyocytes to prevent apoptosis of ischemic heart cells. In this study we describe the effect of hypoxia on astrocytes and neurons cell surface GRP78. Under hypoxic conditions, there was an increase of more than fivefold in GRP78 on cell surface of neurons while astrocytes were not affected. The addition of the GRP78 binding peptide, ADoPep1, to neurons decreased the percentage of GRP78 positive cells and did not change the percent of astrocytes. However, a significant increase in early and late apoptosis of both astrocytes and neurons under hypoxia was attenuated in the presence of ADoPep1. Intravitreal administration of ADoPep1 to mice in a model of optic nerve crush significantly reduced retinal cell loss after 21 days compared to the crush-damaged eyes without treatment or by control saline vehicle injection. Histological staining demonstrated reduced GRP78 after ADoPep1 treatment. The mechanism of peptide neuroprotection was demonstrated by the inhibition of hypoxia induced caspase 3/7 activity, cytochrome c release and p38 phosphorylation. This study is the first report on hypoxic neuronal and astrocyte cell surface GRP78 and suggests a potential therapeutic target for neuroprotection.
Collapse
Affiliation(s)
- Nitza Goldenberg-Cohen
- Eye Research Laboratory, Felsenstein Medical Research Center, Tel-Aviv University, School of Medicine, Rabin Medical Center, Beilinson Campus, Petah Tikva, Israel
| | | | | | | | | | | | | |
Collapse
|
28
|
Lee KE, Simon MC. From stem cells to cancer stem cells: HIF takes the stage. Curr Opin Cell Biol 2012; 24:232-5. [PMID: 22296771 DOI: 10.1016/j.ceb.2012.01.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 01/06/2012] [Accepted: 01/11/2012] [Indexed: 12/26/2022]
Abstract
Hypoxia, a condition of insufficient oxygen availability, occurs during normal development as well as tumorigenesis. Cellular responses to hypoxia are primarily mediated by hypoxia-inducible factors (HIFs). Recent studies have revealed that dormant hematopoietic stem cells (HSCs) reside within hypoxic regions of the bone marrow and that HIF is a critical player in HSC homeostasis. The functional significance of HIF in maintaining stemness also applies to cancer stem cells in hematological malignancies. These findings indicate that better understanding of the mechanisms underlying HIF functions in stem cells should permit the development of new therapies for tissue regeneration and cancer.
Collapse
Affiliation(s)
- Kyoung Eun Lee
- Abramson Family Cancer Research Institute, Philadelphia, PA 19104, USA
| | | |
Collapse
|
29
|
Quentin T, Steinmetz M, Poppe A, Thoms S. Metformin differentially activates ER stress signaling pathways without inducing apoptosis. Dis Model Mech 2011; 5:259-69. [PMID: 22107872 PMCID: PMC3291647 DOI: 10.1242/dmm.008110] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Endoplasmic reticulum stress signaling (ERSS) plays an important role in the pathogenesis of diabetes and heart disease. The latter is a common comorbidity of diabetes and worsens patient outcome. Results from clinical studies suggest beneficial effects of metformin – a widely used oral drug for the treatment of type 2 diabetes – on the heart of diabetic patients with heart failure. We therefore analyzed the effect of metformin on ERSS in primary rat cardiomyocytes. We found that metformin activates the PERK-ATF4 but not the ATF6 or IRE1-XBP1 branch in ERSS and leads to a strong upregulation of CHOP mRNA and protein. Surprisingly, long-term induction of CHOP by metformin is not accompanied by apoptosis even though CHOP is regarded to be a mediator of ER-stress-induced apoptosis. In conclusion, metformin induces distinct ER stress pathways in cardiomyocytes and our results indicate that CHOP is not necessarily a mediator of apoptosis. Metformin might exert its cardioprotective effect through selective activation of ERSS pathways in the cardiomyocyte.
Collapse
Affiliation(s)
- Thomas Quentin
- Department of Pediatric Cardiology and Pediatric Intensive Care Medicine, University of Göttingen, Göttingen, Germany.
| | | | | | | |
Collapse
|
30
|
Gharib SA, Khalyfa A, Kucia MJ, Dayyat EA, Kim J, Clair HB, Gozal D. Transcriptional landscape of bone marrow-derived very small embryonic-like stem cells during hypoxia. Respir Res 2011; 12:63. [PMID: 21569252 PMCID: PMC3098802 DOI: 10.1186/1465-9921-12-63] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 05/10/2011] [Indexed: 01/15/2023] Open
Abstract
Background Hypoxia is a ubiquitous feature of many lung diseases and elicits cell-specific responses. While the effects of hypoxia on stem cells have been examined under in vitro conditions, the consequences of in vivo oxygen deprivation have not been studied. Methods We investigated the effects of in vivo hypoxia on a recently characterized population of pluripotent stem cells known as very small embryonic-like stem cells (VSELs) by whole-genome expression profiling and measuring peripheral blood stem cell chemokine levels. Results We found that exposure to hypoxia in mice mobilized VSELs from the bone marrow to peripheral blood, and induced a distinct genome-wide transcriptional signature. Applying a computationally-intensive methodology, we identified a hypoxia-induced gene interaction network that was functionally enriched in a diverse array of programs including organ-specific development, stress response, and wound repair. Topographic analysis of the network highlighted a number of densely connected hubs that may represent key controllers of stem cell response during hypoxia and, therefore, serve as putative targets for altering the pathophysiologic consequences of hypoxic burden. Conclusions A brief exposure to hypoxia recruits pluripotent stem cells to the peripheral circulation and actives diverse transcriptional programs that are orchestrated by a selective number of key genes.
Collapse
Affiliation(s)
- Sina A Gharib
- Center for Lung Biology and Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | | | | | | | | | | | | |
Collapse
|