1
|
Momi S, Gresele P. The Role of Platelets in Atherosclerosis: A Historical Review. Semin Thromb Hemost 2024. [PMID: 39561814 DOI: 10.1055/s-0044-1795097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Atherosclerosis is a chronic, multifactorial inflammatory disorder of large and medium-size arteries, which is the leading cause of cardiovascular mortality and morbidity worldwide. Although platelets in cardiovascular disease have mainly been studied for their crucial role in the thrombotic event triggered by atherosclerotic plaque rupture, over the last two decades it has become clear that platelets participate also in the development of atherosclerosis, owing to their ability to interact with the damaged arterial wall and with leukocytes. Platelets participate in all phases of atherogenesis, from the initial functional damage to endothelial cells to plaque unstabilization. Platelets deposit at atherosclerosis predilection sites before the appearance of manifest lesions to the endothelium and contribute to induce endothelial dysfunction, thus supporting leukocyte adhesion to the vessel wall. In particular, platelets release matrix metalloproteinases, which interact with protease-activated receptor 1 on endothelial cells triggering adhesion molecule expression. Moreover, P-selectin and glycoprotein Ibα expressed on the surface of vessel wall-adhering platelets bind PSGL-1 and β2 integrins on leukocytes, favoring their arrest and transendothelial migration. Platelet-leukocyte interactions promote the formation of radical oxygen species which are strongly involved in the lipid peroxidation associated with atherosclerosis. Platelets themselves actively migrate through the endothelium toward the plaque core where they release chemokines that modify the microenvironment by modulating the function of other inflammatory cells, such as macrophages. While current antiplatelet agents seem unable to prevent the contribution of platelets to atherogenesis, the inhibition of platelet secretion, of the release of MMPs, and of some specific pathways of platelet adhesion to the vessel wall may represent promising future strategies for the prevention of atheroprogression.
Collapse
Affiliation(s)
- Stefania Momi
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Paolo Gresele
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
2
|
Bulnes JF, González L, Velásquez L, Orellana MP, Venturelli PM, Martínez G. Role of inflammation and evidence for the use of colchicine in patients with acute coronary syndrome. Front Cardiovasc Med 2024; 11:1356023. [PMID: 38993522 PMCID: PMC11236697 DOI: 10.3389/fcvm.2024.1356023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/29/2024] [Indexed: 07/13/2024] Open
Abstract
Acute Coronary Syndrome (ACS) significantly contributes to cardiovascular death worldwide. ACS may arise from the disruption of an atherosclerotic plaque, ultimately leading to acute ischemia and myocardial infarction. In the pathogenesis of atherosclerosis, inflammation assumes a pivotal role, not solely in the initiation and complications of atherosclerotic plaque formation, but also in the myocardial response to ischemic insult. Acute inflammatory processes, coupled with time to reperfusion, orchestrate ischemic and reperfusion injuries, dictating infarct magnitude and acute left ventricular (LV) remodeling. Conversely, chronic inflammation, alongside neurohumoral activation, governs persistent LV remodeling. The interplay between chronic LV remodeling and recurrent ischemic episodes delineates the progression of the disease toward heart failure and cardiovascular death. Colchicine exerts anti-inflammatory properties affecting both the myocardium and atherosclerotic plaque by modulating the activity of monocyte/macrophages, neutrophils, and platelets. This modulation can potentially result in a more favorable LV remodeling and forestalls the recurrence of ACS. This narrative review aims to delineate the role of inflammation across the different phases of ACS pathophysiology and describe the mechanistic underpinnings of colchicine, exploring its purported role in modulating each of these stages.
Collapse
Affiliation(s)
- Juan Francisco Bulnes
- División de Enfermedades Cardiovasculares, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Leticia González
- Centro de Imágenes Biomédicas, Departamento de Radiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Leonardo Velásquez
- División de Enfermedades Cardiovasculares, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María Paz Orellana
- División de Enfermedades Cardiovasculares, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paula Muñoz Venturelli
- Centro de Estudios Clínicos, Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Gonzalo Martínez
- División de Enfermedades Cardiovasculares, Pontificia Universidad Católica de Chile, Santiago, Chile
- Heart Research Institute, Sydney, NSW, Australia
| |
Collapse
|
3
|
Pan D, Ladds G, Rahman KM, Pitchford SC. Exploring bias in platelet P2Y 1 signalling: Host defence versus haemostasis. Br J Pharmacol 2024; 181:580-592. [PMID: 37442808 PMCID: PMC10952580 DOI: 10.1111/bph.16191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Platelets are necessary for maintaining haemostasis. Separately, platelets are important for the propagation of inflammation during the host immune response against infection. The activation of platelets also causes inappropriate inflammation in various disease pathologies, often in the absence of changes to haemostasis. The separate functions of platelets during inflammation compared with haemostasis are therefore varied and this will be reflected in distinct pathways of activation. The activation of platelets by the nucleotide adenosine diphosphate (ADP) acting on P2Y1 and P2Y12 receptors is important for the development of platelet thrombi during haemostasis. However, P2Y1 stimulation of platelets is also important during the inflammatory response and paradoxically in scenarios where no changes to haemostasis and platelet aggregation occur. In these events, Rho-GTPase signalling, rather than the canonical phospholipase Cβ (PLCβ) signalling pathway, is necessary. We describe our current understanding of these differences, reflecting on recent advances in knowledge of P2Y1 structure, and the possibility of biased agonism occurring from activation via other endogenous nucleotides compared with ADP. Knowledge arising from these different pathways of P2Y1 stimulation of platelets during inflammation compared with haemostasis may help therapeutic control of platelet function during inflammation or infection, while preserving essential haemostasis. LINKED ARTICLES: This article is part of a themed issue on Platelet purinergic receptor and non-thrombotic disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.4/issuetoc.
Collapse
Affiliation(s)
- Dingxin Pan
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical ScienceKing's College LondonLondonUK
| | - Graham Ladds
- Department of PharmacologyUniversity of CambridgeCambridgeUK
| | - Khondaker Miraz Rahman
- Chemical Biology Group, Institute of Pharmaceutical ScienceKing's College LondonLondonUK
| | - Simon C. Pitchford
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical ScienceKing's College LondonLondonUK
| |
Collapse
|
4
|
Arkless KL, Pan D, Shankar‐Hari M, Amison RT, Page CP, Rahman KM, Pitchford SC. Stimulation of platelet P2Y 1 receptors by different endogenous nucleotides leads to functional selectivity via biased signalling. Br J Pharmacol 2024; 181:564-579. [PMID: 36694432 PMCID: PMC10952403 DOI: 10.1111/bph.16039] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 12/13/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND AND PURPOSE Platelet function during inflammation is dependent on activation by endogenous nucleotides. Non-canonical signalling via the P2Y1 receptor is important for these non-thrombotic functions of platelets. However, apart from ADP, the role of other endogenous nucleotides acting as agonists at P2Y1 receptors is unknown. This study compared the effects of ADP, Ap3A, NAD+ , ADP-ribose, and Up4A on platelet functions contributing to inflammation or haemostasis. EXPERIMENTAL APPROACH Platelets obtained from healthy human volunteers were incubated with ADP, Ap3A, NAD+ , ADP-ribose, or Up4A, with aggregation and fibrinogen binding measured (examples of function during haemostasis) or before exposure to fMLP to measure platelet chemotaxis (an inflammatory function). In silico molecular docking of these nucleotides to the binding pocket of P2Y1 receptors was then assessed. KEY RESULTS Platelet aggregation and binding to fibrinogen induced by ADP was not mimicked by NAD+ , ADP-ribose, and Up4A. However, these endogenous nucleotides induced P2Y1 -dependent platelet chemotaxis, an effect that required RhoA and Rac-1 activity, but not canonical PLC activity. Analysis of molecular docking of the P2Y1 receptor revealed distinct differences of amino acid interactions and depth of fit within the binding pocket for Ap3A, NAD+ , ADP-ribose, or Up4A compared with ADP. CONCLUSION AND IMPLICATIONS Platelet function (aggregation vs motility) can be differentially modulated by biased-agonist activation of P2Y1 receptors. This may be due to the character of the ligand-binding pocket interaction. This has implications for future therapeutic strategies aimed to suppress platelet activation during inflammation without affecting haemostasis as is the requirement of current ant-platelet drugs. LINKED ARTICLES This article is part of a themed issue on Platelet purinergic receptor and non-thrombotic disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.4/issuetoc.
Collapse
Affiliation(s)
- Kate L. Arkless
- Sackler Institute of Pulmonary PharmacologyInstitute of Pharmaceutical Science, King's College LondonLondonUK
| | - Dingxin Pan
- Sackler Institute of Pulmonary PharmacologyInstitute of Pharmaceutical Science, King's College LondonLondonUK
| | - Manu Shankar‐Hari
- School of Immunology and Microbial SciencesKing's College LondonLondonUK
- Centre for Inflammation ResearchThe University of EdinburghEdinburghUK
| | - Richard T. Amison
- Sackler Institute of Pulmonary PharmacologyInstitute of Pharmaceutical Science, King's College LondonLondonUK
| | - Clive P. Page
- Sackler Institute of Pulmonary PharmacologyInstitute of Pharmaceutical Science, King's College LondonLondonUK
| | - Khondaker Miraz Rahman
- Chemical Biology Group, Institute of Pharmaceutical ScienceKing's College LondonLondonUK
| | - Simon C. Pitchford
- Sackler Institute of Pulmonary PharmacologyInstitute of Pharmaceutical Science, King's College LondonLondonUK
| |
Collapse
|
5
|
Zhang J, Li W, Lu H, Lu R, Zhan Y, Meng H. Interactions of periodontal pathogens with platelets in the gingival crevicular fluid of patients with periodontitis. J Clin Periodontol 2022; 49:922-931. [PMID: 35713232 DOI: 10.1111/jcpe.13683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 06/02/2022] [Accepted: 06/12/2022] [Indexed: 11/30/2022]
Abstract
AIM To explore the immunological defensive effects of platelets on periodontal pathogens in the gingival crevicular fluid (GCF). MATERIALS AND METHODS GCF samples were collected from 20 patients with periodontitis and 10 healthy controls. Platelets in the GCF were detected by immunocytochemistry and immunofluorescence. Isolated platelets from healthy volunteers were co-cultured with Porphyromonas gingivalis (Pg) and Fusobacterium nucleatum (Fn). The interactions between platelets and periodontal pathogens were observed by transmission and scanning electron microscopy. The isolated platelets plus neutrophils were co-cultured with Pg or Fn, and the formation of neutrophil extracellular traps (NETs) was evaluated by staining with Sytox Green. RESULTS The platelet level in the GCF was higher in patients with periodontitis than in healthy controls. Platelets interacted with bacteria and neutrophils in the GCF. In vitro, platelets recruited and engulfed periodontal pathogens. In response to periodontal pathogens, neutrophils released web chromatin, and platelets promoted the formation of intensive NETs. CONCLUSIONS Platelets, migrating to the gingival sulcus, may exert direct antibacterial effects or assist neutrophils.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Periodontology, Peking University School and Hospital of Stomatology and National Center of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, People's Republic of China
| | - Wenjing Li
- Department of Periodontology, Peking University School and Hospital of Stomatology and National Center of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, People's Republic of China
| | - Hongye Lu
- The Affiliated Hospital of Stomatology, Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, People's Republic of China
| | - Ruifang Lu
- Department of Periodontology, Peking University School and Hospital of Stomatology and National Center of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, People's Republic of China
| | - Yalin Zhan
- Department of Periodontology, Peking University School and Hospital of Stomatology and National Center of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, People's Republic of China.,First Clinical Division, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| | - Huanxin Meng
- Department of Periodontology, Peking University School and Hospital of Stomatology and National Center of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, People's Republic of China
| |
Collapse
|
6
|
Lu X, Wang Z, Ye D, Feng Y, Liu M, Xu Y, Wang M, Zhang J, Liu J, Zhao M, Xu S, Ye J, Wan J. The Role of CXC Chemokines in Cardiovascular Diseases. Front Pharmacol 2022; 12:765768. [PMID: 35668739 PMCID: PMC9163960 DOI: 10.3389/fphar.2021.765768] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/08/2021] [Indexed: 01/07/2023] Open
Abstract
Cardiovascular disease (CVD) is a class of diseases with high disability and mortality rates. In the elderly population, the incidence of cardiovascular disease is increasing annually. Between 1990 and 2016, the age-standardised prevalence of CVD in China significantly increased by 14.7%, and the number of cardiovascular disease deaths increased from 2.51 million to 3.97 million. Much research has indicated that cardiovascular disease is closely related to inflammation, immunity, injury and repair. Chemokines, which induce directed chemotaxis of reactive cells, are divided into four subfamilies: CXC, CC, CX3C, and XC. As cytokines, CXC chemokines are similarly involved in inflammation, immunity, injury, and repair and play a role in many cardiovascular diseases, such as atherosclerosis, myocardial infarction, cardiac ischaemia-reperfusion injury, hypertension, aortic aneurysm, cardiac fibrosis, postcardiac rejection, and atrial fibrillation. Here, we explored the relationship between the chemokine CXC subset and cardiovascular disease and its mechanism of action with the goal of further understanding the onset of cardiovascular disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Jing Ye
- *Correspondence: Jing Ye, ; Jun Wan,
| | - Jun Wan
- *Correspondence: Jing Ye, ; Jun Wan,
| |
Collapse
|
7
|
Human platelets release TGFBIp in acute myocardial infarction. Heart Vessels 2022; 37:1962-1970. [PMID: 35545686 DOI: 10.1007/s00380-022-02086-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/20/2022] [Indexed: 11/04/2022]
Abstract
Transforming growth factor-β-induced protein (TGFBIp) is released from activated platelets and promotes pro-thrombotic complications like pulmonary embolism. The role of TGFBIp in acute coronary syndrome, especially with a focus on platelets, has not been investigated so far. Using ELISA and immunoblotting, we demonstrate platelet TGFBIp release in patients with myocardial infarction (MI). We investigated TGFBIp-induced platelet adhesion and rolling by flow chamber and chemotactic effects of TGFBIp in transwell experiments. Immunochemistry staining of arterial vessels detected TGFBIp and the platelet-specific protein GPVI in the vessel wall.We demonstrate for the first time that platelet TGFBIp release is significantly increased in MI and correlates with the severity of acute coronary syndromes (STEMI, NSTEMI). After activation with TRAP, platelets release TGFBIp and TGFBIp itself activates platelets. Under flow, TGFBIp-mediated platelet rolling and adherence similarly to collagen. TGFBIp significantly increased platelet transmigration and we demonstrate TGFBIp deposits in the wall of human arteries. In this study, we add novel aspects to the role of TGFBIp in acute coronary syndrome by demonstrating that TGFBIp is partially released from platelets during MI and has activating, pro-adhesive and pro-migratory effects on platelets that could contribute to the disease development of coronary vascular inflammation and MI.
Collapse
|
8
|
Zhang J, Wang X, Lu R, Zou P, Zhan Y, Meng H. Preliminary study on the involvement of platelets in mouse experimental periodontitis. J Dent Sci 2022; 17:1494-1500. [PMID: 36299319 PMCID: PMC9588831 DOI: 10.1016/j.jds.2022.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/24/2022] [Indexed: 11/30/2022] Open
Abstract
Background/purpose Although some studies have taken an interest in the participation of platelets in periodontitis, so far, we know very little about the roles of platelets in periodontitis. The objective of this study is to explore the involvement of platelets in the development of experimental periodontitis in mice. Materials and methods Twenty C57BL/6 male mice were used for this study. Experimental periodontitis models of mice were constructed by ligating for 1, 3, 7, and 14 days, respectively. Morphological changes in the alveolar bone were assessed by micro-computed tomography (Micro-CT). The gingival crevicular fluid samples of ligation sites were collected and stained by immunocytochemistry. Immunohistochemistry was used to detect platelets infiltration in gingival tissues of mice. Results The results of Micro-CT showed that with the extension of ligation time, alveolar bone resorption increased, suggesting that the experimental periodontitis models were established. Immunochemical staining showed that there were almost no platelets in the gingival crevicular fluid of mice ligated for 1 and 3 days. And at 7 and 14 days of ligation, a large number of platelets were present in the gingival crevicular fluid and formed complexes with neutrophils. And with the extension of ligation time, the extent of platelet infiltration increased in mice gingival tissues. Conclusion Platelets were infiltrated increasedly in the gingival sulcus and gingival tissues following the experimental time, and may participate in the development of mouse experimental periodontitis.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, PR China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases, Beijing, PR China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, PR China
| | - Xian'e Wang
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, PR China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases, Beijing, PR China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, PR China
| | - Ruifang Lu
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, PR China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases, Beijing, PR China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, PR China
| | - Peihui Zou
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, PR China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases, Beijing, PR China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, PR China
| | - Yalin Zhan
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, PR China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases, Beijing, PR China
- First Clinical Division, Peking University School and Hospital of Stomatology, Beijing, PR China
- Corresponding author. First Clinical Division, Peking University School and Hospital of Stomatology, 37A Xishiku Street, Xicheng District, Beijing, 100034, PR China.
| | - Huanxin Meng
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, PR China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases, Beijing, PR China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, PR China
- Corresponding author. Department of Periodontology, Peking University School and Hospital of Stomatology, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China.
| |
Collapse
|
9
|
Platelets, a Key Cell in Inflammation and Atherosclerosis Progression. Cells 2022; 11:cells11061014. [PMID: 35326465 PMCID: PMC8947573 DOI: 10.3390/cells11061014] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 12/21/2022] Open
Abstract
Platelets play important roles in thrombosis-dependent obstructive cardiovascular diseases. In addition, it has now become evident that platelets also participate in the earliest stages of atherosclerosis, including the genesis of the atherosclerotic lesion. Moreover, while the link between platelet activity and hemostasis has been well established, the role of platelets as modulators of inflammation has only recently been recognized. Thus, through their secretory activities, platelets can chemically attract a diverse repertoire of cells to inflammatory foci. Although monocytes and lymphocytes act as key cells in the progression of an inflammatory event and play a central role in plaque formation and progression, there is also evidence that platelets can traverse the endothelium, and therefore be a direct mediator in the progression of atherosclerotic plaque. This review provides an overview of platelet interactions and regulation in atherosclerosis.
Collapse
|
10
|
Menter DG, Afshar-Kharghan V, Shen JP, Martch SL, Maitra A, Kopetz S, Honn KV, Sood AK. Of vascular defense, hemostasis, cancer, and platelet biology: an evolutionary perspective. Cancer Metastasis Rev 2022; 41:147-172. [PMID: 35022962 PMCID: PMC8754476 DOI: 10.1007/s10555-022-10019-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/04/2022] [Indexed: 01/08/2023]
Abstract
We have established considerable expertise in studying the role of platelets in cancer biology. From this expertise, we were keen to recognize the numerous venous-, arterial-, microvascular-, and macrovascular thrombotic events and immunologic disorders are caused by severe, acute-respiratory-syndrome coronavirus 2 (SARS-CoV-2) infections. With this offering, we explore the evolutionary connections that place platelets at the center of hemostasis, immunity, and adaptive phylogeny. Coevolutionary changes have also occurred in vertebrate viruses and their vertebrate hosts that reflect their respective evolutionary interactions. As mammals adapted from aquatic to terrestrial life and the heavy blood loss associated with placentalization-based live birth, platelets evolved phylogenetically from thrombocytes toward higher megakaryocyte-blebbing-based production rates and the lack of nuclei. With no nuclei and robust RNA synthesis, this adaptation may have influenced viral replication to become less efficient after virus particles are engulfed. Human platelets express numerous receptors that bind viral particles, which developed from archetypal origins to initiate aggregation and exocytic-release of thrombo-, immuno-, angiogenic-, growth-, and repair-stimulatory granule contents. Whether by direct, evolutionary, selective pressure, or not, these responses may help to contain virus spread, attract immune cells for eradication, and stimulate angiogenesis, growth, and wound repair after viral damage. Because mammalian and marsupial platelets became smaller and more plate-like their biophysical properties improved in function, which facilitated distribution near vessel walls in fluid-shear fields. This adaptation increased the probability that platelets could then interact with and engulf shedding virus particles. Platelets also generate circulating microvesicles that increase membrane surface-area encounters and mark viral targets. In order to match virus-production rates, billions of platelets are generated and turned over per day to continually provide active defenses and adaptation to suppress the spectrum of evolving threats like SARS-CoV-2.
Collapse
Affiliation(s)
- David G Menter
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Vahid Afshar-Kharghan
- Division of Internal Medicine, Benign Hematology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - John Paul Shen
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephanie L Martch
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anirban Maitra
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Scott Kopetz
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kenneth V Honn
- Department of Pathology, Bioactive Lipids Research Program, Wayne State University, 5101 Cass Ave. 430 Chemistry, Detroit, MI, 48202, USA
- Department of Pathology, Wayne State University School of Medicine, 431 Chemistry Bldg, Detroit, MI, 48202, USA
- Cancer Biology Division, Wayne State University School of Medicine, 431 Chemistry Bldg, Detroit, MI, 48202, USA
| | - Anil K Sood
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
11
|
Atypical Roles of the Chemokine Receptor ACKR3/CXCR7 in Platelet Pathophysiology. Cells 2022; 11:cells11020213. [PMID: 35053329 PMCID: PMC8773869 DOI: 10.3390/cells11020213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 12/23/2022] Open
Abstract
The manifold actions of the pro-inflammatory and regenerative chemokine CXCL12/SDF-1α are executed through the canonical GProteinCoupledReceptor CXCR4, and the non-canonical ACKR3/CXCR7. Platelets express CXCR4, ACKR3/CXCR7, and are a vital source of CXCL12/SDF-1α themselves. In recent years, a regulatory impact of the CXCL12-CXCR4-CXCR7 axis on platelet biogenesis, i.e., megakaryopoiesis, thrombotic and thrombo-inflammatory actions have been revealed through experimental and clinical studies. Platelet surface expression of ACKR3/CXCR7 is significantly enhanced following myocardial infarction (MI) in acute coronary syndrome (ACS) patients, and is also associated with improved functional recovery and prognosis. The therapeutic implications of ACKR3/CXCR7 in myocardial regeneration and improved recovery following an ischemic episode, are well documented. Cardiomyocytes, cardiac-fibroblasts, endothelial lining of the blood vessels perfusing the heart, besides infiltrating platelets and monocytes, all express ACKR3/CXCR7. This review recapitulates ligand induced differential trafficking of platelet CXCR4-ACKR3/CXCR7 affecting their surface availability, and in regulating thrombo-inflammatory platelet functions and survival through CXCR4 or ACKR3/CXCR7. It emphasizes the pro-thrombotic influence of CXCL12/SDF-1α exerted through CXCR4, as opposed to the anti-thrombotic impact of ACKR3/CXCR7. Offering an innovative translational perspective, this review also discusses the advantages and challenges of utilizing ACKR3/CXCR7 as a potential anti-thrombotic strategy in platelet-associated cardiovascular disorders, particularly in coronary artery disease (CAD) patients post-MI.
Collapse
|
12
|
Díaz-Flores L, Gutiérrez R, García MP, González-Gómez M, Díaz-Flores L, Gayoso S, Carrasco JL, Álvarez-Argüelles H. Ultrastructural Study of Platelet Behavior and Interrelationship in Sprouting and Intussusceptive Angiogenesis during Arterial Intimal Thickening Formation. Int J Mol Sci 2021; 22:ijms222313001. [PMID: 34884806 PMCID: PMC8657547 DOI: 10.3390/ijms222313001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 12/13/2022] Open
Abstract
Platelets in atherosclerosis, bypass stenosis, and restenosis have been extensively assessed. However, a sequential ultrastructural study of platelets in angiogenesis during the early phases of these lesions has received less attention. Our objective was the study of platelets in angiogenesis and vessel regression during intimal thickening (IT) formation, a precursor process of these occlusive vascular diseases. For this purpose, we used an experimental model of rat occluded arteries and procedures for ultrastructural observation. The results show (a) the absence of platelet adhesion in the de-endothelialized occluded arterial segment isolated from the circulation, (b) that intraarterial myriad platelets contributed from neovessels originated by sprouting angiogenesis from the periarterial microvasculature, (c) the association of platelets with blood components (fibrin, neutrophils, macrophages, and eosinophils) and non-polarized endothelial cells (ECs) forming aggregates (spheroids) in the arterial lumen, (d) the establishment of peg-and-socket junctions between platelets and polarized Ecs during intussusceptive angiogenesis originated from the EC aggregates, with the initial formation of IT, and (e) the aggregation of platelets in regressing neovessels (‘transitory paracrine organoid’) and IT increases. In conclusion, in sprouting and intussusceptive angiogenesis and vessel regression during IT formation, we contribute sequential ultrastructural findings on platelet behavior and relationships, which can be the basis for further studies using other procedures.
Collapse
Affiliation(s)
- Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain; (R.G.); (M.G.-G.); (L.D.-F.J.); (S.G.); (J.L.C.); (H.Á.-A.)
- Correspondence: ; Tel.: +34-922-319317; Fax: +34-922-319279
| | - Ricardo Gutiérrez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain; (R.G.); (M.G.-G.); (L.D.-F.J.); (S.G.); (J.L.C.); (H.Á.-A.)
| | - Maria Pino García
- Department of Pathology, Eurofins Megalab–Hospiten Hospitals, 38100 Tenerife, Spain;
| | - Miriam González-Gómez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain; (R.G.); (M.G.-G.); (L.D.-F.J.); (S.G.); (J.L.C.); (H.Á.-A.)
- Instituto de Tecnologías Biomédicas de Canarias, University of La Laguna, 38071 Tenerife, Spain
| | - Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain; (R.G.); (M.G.-G.); (L.D.-F.J.); (S.G.); (J.L.C.); (H.Á.-A.)
| | - Sara Gayoso
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain; (R.G.); (M.G.-G.); (L.D.-F.J.); (S.G.); (J.L.C.); (H.Á.-A.)
| | - Jose Luis Carrasco
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain; (R.G.); (M.G.-G.); (L.D.-F.J.); (S.G.); (J.L.C.); (H.Á.-A.)
| | - Hugo Álvarez-Argüelles
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain; (R.G.); (M.G.-G.); (L.D.-F.J.); (S.G.); (J.L.C.); (H.Á.-A.)
| |
Collapse
|
13
|
Seifert J, von Eysmondt H, Chatterjee M, Gawaz M, Schäffer TE. Effect of Oxidized LDL on Platelet Shape, Spreading, and Migration Investigated with Deep Learning Platelet Morphometry. Cells 2021; 10:2932. [PMID: 34831155 PMCID: PMC8616354 DOI: 10.3390/cells10112932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/15/2021] [Accepted: 10/22/2021] [Indexed: 12/17/2022] Open
Abstract
Platelets are functionally versatile blood cells involved in thrombosis, hemostasis, atherosclerosis, and immune response. Platelet interaction with the immediate microenvironment in blood, vasculature, and tissues alters platelet morphology. The quantification of platelet morphodynamics by geometrical parameters (morphometry) can provide important insights into how platelets sense and respond to stimulatory cues in their vicinity. However, the extraction of platelet shapes from phase contrast microscopy images by conventional image processing is difficult. Here, we used a convolutional neural network (CNN) to develop a deep-learning-based approach for the unbiased extraction of information on platelet morphodynamics by phase contrast microscopy. We then investigated the effect of normal and oxidized low-density lipoproteins (LDL, oxLDL) on platelet morphodynamics, spreading, and haptotactic migration. Exposure of platelets to oxLDL led to a decreased spreading area and rate on fibrinogen, accompanied by increased formation of filopodia and impaired formation of lamellipodia. Haptotactic platelet migration was affected by both LDL and oxLDL in terms of decreased migration velocity and reduced directional persistence. Our results demonstrate the use of deep learning in investigating platelet morphodynamics and reveal differential effects of LDL and oxLDL on platelet morphology and platelet-matrix interaction.
Collapse
Affiliation(s)
- Jan Seifert
- Institute of Applied Physics, University of Tübingen, 72076 Tübingen, Germany; (J.S.); (H.v.E.)
| | - Hendrik von Eysmondt
- Institute of Applied Physics, University of Tübingen, 72076 Tübingen, Germany; (J.S.); (H.v.E.)
| | - Madhumita Chatterjee
- Department of Cardiology and Angiology, University of Tübingen, 72076 Tübingen, Germany; (M.C.); (M.G.)
| | - Meinrad Gawaz
- Department of Cardiology and Angiology, University of Tübingen, 72076 Tübingen, Germany; (M.C.); (M.G.)
| | - Tilman E. Schäffer
- Institute of Applied Physics, University of Tübingen, 72076 Tübingen, Germany; (J.S.); (H.v.E.)
| |
Collapse
|
14
|
Britton C, Poznansky MC, Reeves P. Polyfunctionality of the CXCR4/CXCL12 axis in health and disease: Implications for therapeutic interventions in cancer and immune-mediated diseases. FASEB J 2021; 35:e21260. [PMID: 33715207 DOI: 10.1096/fj.202001273r] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/12/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022]
Abstract
Historically the chemokine receptor CXCR4 and its canonical ligand CXCL12 are associated with the bone marrow niche and hematopoiesis. However, CXCL12 exhibits broad tissue expression including brain, thymus, heart, lung, liver, kidney, spleen, and bone marrow. CXCR4 can be considered as a node which is integrating and transducing inputs from a range of ligand-receptor interactions into a responsive and divergent network of intracellular signaling pathways that impact multiple cellular processes such as proliferation, migration, and stress resistance. Dysregulation of the CXCR4/CXCL12 axis and consequent fundamental cellular processes, are associated with a panoply of disease. This review frames the polyfunctionality of the receptor at a molecular, physiological, and pathophysiological levels. Transitioning our perspective of this axis from a single gene/protein:single function model to a polyfunctional signaling cascade highlights the potential for finer therapeutic intervention and cautions against a reductionist approach.
Collapse
Affiliation(s)
- C Britton
- Vaccine and Immunotherapy Center, Boston, MA, USA
| | | | - P Reeves
- Vaccine and Immunotherapy Center, Boston, MA, USA.,Department of Medicine, Imperial College School of Medicine, London, England
| |
Collapse
|
15
|
Xiu G, Li X, Yin Y, Li J, Li B, Chen X, Liu P, Sun J, Ling B. SDF-1/CXCR4 Augments the Therapeutic Effect of Bone Marrow Mesenchymal Stem Cells in the Treatment of Lipopolysaccharide-Induced Liver Injury by Promoting Their Migration Through PI3K/Akt Signaling Pathway. Cell Transplant 2021; 29:963689720929992. [PMID: 32452221 PMCID: PMC7563832 DOI: 10.1177/0963689720929992] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are thought to have great potential in the therapy of acute liver injury. It is possible that these cells may be regulated by the stromal cell-derived factor-1 (SDF-1)/CXC chemokine receptor-4 (CXCR4) signaling axis, which has been shown to promote stem cells migration in the inflammation-associated diseases. However, the effects of SDF-1/CXCR4 axis on the MSCs-transplantation-based treatment for acute liver injury and the underlying mechanisms are largely unknown. In this study, we sought to determine whether SDF-1/CXCR4 would augment the therapeutic effect of bone marrow mesenchymal stem cells (BMSCs) by promoting their migration, which may result from activating the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway, in a rat acute liver injury model induced by lipopolysaccharide (LPS). We found that BMSCs transplantation markedly attenuated liver injury and improved the survival of LPS-treated rats. Of interest, overexpression of CXCR4 in BMSCs could substantially promote their migration both in vitro and in vivo, and result in even better therapeutic effects. This might be attributed to the activation of PI3K/Akt signaling pathway in BMSCs that is downstream of CXCR4, as demonstrated by the use of the CXCR4 antagonist AMD3100 and PI3K pathway inhibitor LY294002 assays in vitro and in vivo. Together, our results unraveled a novel molecular mechanism for the therapeutic effect of BMSCs for the treatment of acute liver injury, which may shed a new light on the clinical application of BMSCs for acute liver failure.
Collapse
Affiliation(s)
- Guanghui Xiu
- Department of Intensive Care Unit, The Second People's Hospital of Yunnan Province (The Fourth Affiliated Hospital of Kunming Medical University), Kunming, Yunnan Province, China.,These authors contributed equally to this article
| | - Xiuling Li
- Department of Obstetrics, The First People's Hospital of Yunnan province, Kunming, Yunnan Province, China.,These authors contributed equally to this article
| | - Yunyu Yin
- Department of Intensive Care Unit, The Affiliated hospital of North Sichuan Medical College, Nanchong, Sichuan Province, China.,These authors contributed equally to this article
| | - Jintao Li
- The Institute of Neuroscience, The Kunming Medical University, Kunming, Yunnan Province, China
| | - Bingqin Li
- Department of Intensive Care Unit, The Second People's Hospital of Yunnan Province (The Fourth Affiliated Hospital of Kunming Medical University), Kunming, Yunnan Province, China
| | - Xianzhong Chen
- Department of Intensive Care Unit, The Second People's Hospital of Yunnan Province (The Fourth Affiliated Hospital of Kunming Medical University), Kunming, Yunnan Province, China
| | - Ping Liu
- Department of Intensive Care Unit, The Second People's Hospital of Yunnan Province (The Fourth Affiliated Hospital of Kunming Medical University), Kunming, Yunnan Province, China
| | - Jie Sun
- Department of Intensive Care Unit, The Second People's Hospital of Yunnan Province (The Fourth Affiliated Hospital of Kunming Medical University), Kunming, Yunnan Province, China
| | - Bin Ling
- Department of Intensive Care Unit, The Second People's Hospital of Yunnan Province (The Fourth Affiliated Hospital of Kunming Medical University), Kunming, Yunnan Province, China
| |
Collapse
|
16
|
OvCa-Chip microsystem recreates vascular endothelium-mediated platelet extravasation in ovarian cancer. Blood Adv 2021; 4:3329-3342. [PMID: 32717032 DOI: 10.1182/bloodadvances.2020001632] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022] Open
Abstract
In ovarian cancer, platelet extravasation into the tumor and resulting metastasis is thought to be regulated mostly by the vascular endothelium. Because it is difficult to dissect complex underlying events in murine models, organ-on-a-chip methodology is applied to model vascular and platelet functions in ovarian cancer. This system (OvCa-Chip) consists of microfluidic chambers that are lined by human ovarian tumor cells interfaced with a 3-dimensional endothelialized lumen. Subsequent perfusion with human platelets within the device's vascular endothelial compartment under microvascular shear conditions for 5 days uncovered organ-to-molecular-level contributions of the endothelium to triggering platelet extravasation into tumors. Further, analysis of effluents available from the device's individual tumor and endothelial chambers revealed temporal dynamics of vascular disintegration caused by cancer cells, a differential increase in cytokine expression, and an alteration of barrier maintenance genes in endothelial cells. These events, when analyzed within the device over time, made the vascular tissue leaky and promoted platelet extravasation. Atorvastatin treatment of the endothelial cells within the OvCa-Chip revealed improved endothelial barrier function, reduction in inflammatory cytokines and, eventually, arrest of platelet extravasation. These data were validated through corresponding observations in patient-derived tumor samples. The OvCa-Chip provides a novel in vitro dissectible platform to model the mechanisms of the cancer-vascular-hematology nexus and the analyses of potential therapeutics.
Collapse
|
17
|
Huilcaman R, Veliz-Olivos N, Venturini W, Olate-Briones A, Treuer AV, Valenzuela C, Brown N, Moore-Carrasco R. Endothelial transmigration of platelets depends on soluble factors released by activated endothelial cells and monocytes. Platelets 2021; 32:1113-1119. [PMID: 33775219 DOI: 10.1080/09537104.2021.1902970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Cardiovascular diseases (CVDs) remain leading causes of death worldwide. While platelet-mediated thrombus formation following the rupture of an atherosclerotic plaque is one of the key pathophysiologic events in CVDs, the role of platelets in previous or more advanced stages of atherosclerosis is less known. Interestingly, the presence of platelets has been observed at the core of the atherosclerotic plaque.In order to study the conditions necessary for platelets to migrate toward an atherosclerotic lesion, we designed an in vitro co-culture model. Platelets were co-cultured with monocytes in Transwell inserts covered with a confluent endothelium and the number of migrating platelets and/or monocytes was determined under different conditions. Platelets were also exposed to media conditioned obtained from co-cultures prior to migration assays.Here we show that coculturing platelets and monocytes increased platelet transmigration, with a considerable number of transmigrated platelets found not associated to monocytes. Interestingly, conditioned media from platelet-monocyte co-cultures also increased platelet transmigration and aggregation, suggesting the existence of soluble factors secreted by monocytes that enhance the migratory and pro-aggregating capabilities of platelets.We conclude that platelets have the machinery to migrate through an activated endothelium, a response that requires the interaction with secreted factors produce in the context of the interaction with monocytes under atherogenic conditions.
Collapse
Affiliation(s)
- Ricardo Huilcaman
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, University of Talca, Talca, Chile
| | - Natalia Veliz-Olivos
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, University of Talca, Talca, Chile
| | - Whitney Venturini
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, University of Talca, Talca, Chile.,Center for Medical Research, University of Talca School of Medicine, Talca, Chile
| | | | - Adriana V Treuer
- Department of Biomedical Basic Sciences, Faculty of Health Sciences, University of Talca, Talca Chile
| | - Claudio Valenzuela
- Center for Medical Research, University of Talca School of Medicine, Talca, Chile
| | - Nelson Brown
- Center for Medical Research, University of Talca School of Medicine, Talca, Chile
| | - Rodrigo Moore-Carrasco
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, University of Talca, Talca, Chile
| |
Collapse
|
18
|
Witte A, Rohlfing AK, Dannenmann B, Dicenta V, Nasri M, Kolb K, Sudmann J, Castor T, Rath D, Borst O, Skokowa J, Gawaz M. The chemokine CXCL14 mediates platelet function and migration via direct interaction with CXCR4. Cardiovasc Res 2021; 117:903-917. [PMID: 32239134 DOI: 10.1093/cvr/cvaa080] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/05/2020] [Accepted: 03/27/2020] [Indexed: 12/24/2022] Open
Abstract
AIMS Beyond classical roles in thrombosis and haemostasis, it becomes increasingly clear that platelets contribute as key players to inflammatory processes. The involvement of platelets in these processes is often mediated through a variety of platelet-derived chemokines which are released upon activation and act as paracrine and autocrine factors. In this study, we investigate CXCL14, a newly described platelet chemokine and its role in thrombus formation as well as monocyte and platelet migration. In addition, we examine the chemokine receptor CXCR4 as a possible receptor for CXCL14 on platelets. Furthermore, with the use of artificially generated platelets derived from induced pluripotent stem cells (iPSC), we investigate the importance of CXCR4 for CXCL14-mediated platelet functions. METHODS AND RESULTS In this study, we showed that CXCL14 deficient platelets reveal reduced thrombus formation under flow compared with wild-type platelets using a standardized flow chamber. Addition of recombinant CXCL14 normalized platelet-dependent thrombus formation on collagen. Furthermore, we found that CXCL14 is a chemoattractant for platelets and mediates migration via CXCR4. CXCL14 promotes platelet migration of platelets through the receptor CXCR4 as evidenced by murine CXCR4-deficient platelets and human iPSC-derived cultured platelets deficient in CXCR4. We found that CXCL14 directly interacts with the CXCR4 as verified by immunoprecipitation and confocal microscopy. CONCLUSIONS Our results reveal CXCL14 as a novel platelet-derived chemokine that is involved in thrombus formation and platelet migration. Furthermore, we identified CXCR4 as principal receptor for CXCL14, an interaction promoting platelet migration.
Collapse
Affiliation(s)
- Alexander Witte
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Otfried - Müller - Straße 10, 72076 Tübingen, Germany
| | - Anne-Katrin Rohlfing
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Otfried - Müller - Straße 10, 72076 Tübingen, Germany
| | - Benjamin Dannenmann
- Department of Oncology, Hematology, Immunology, Rheumatology, University Hospital Tübingen, Eberhard Karls University Tübingen, Otfried - Müller - Straße 10, 72076 Tübingen, Germany
| | - Valerie Dicenta
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Otfried - Müller - Straße 10, 72076 Tübingen, Germany
| | - Masoud Nasri
- Department of Oncology, Hematology, Immunology, Rheumatology, University Hospital Tübingen, Eberhard Karls University Tübingen, Otfried - Müller - Straße 10, 72076 Tübingen, Germany
| | - Kyra Kolb
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Otfried - Müller - Straße 10, 72076 Tübingen, Germany
| | - Jessica Sudmann
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Otfried - Müller - Straße 10, 72076 Tübingen, Germany
| | - Tatsiana Castor
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Otfried - Müller - Straße 10, 72076 Tübingen, Germany
| | - Dominik Rath
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Otfried - Müller - Straße 10, 72076 Tübingen, Germany
| | - Oliver Borst
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Otfried - Müller - Straße 10, 72076 Tübingen, Germany
| | - Julia Skokowa
- Department of Oncology, Hematology, Immunology, Rheumatology, University Hospital Tübingen, Eberhard Karls University Tübingen, Otfried - Müller - Straße 10, 72076 Tübingen, Germany
| | - Meinrad Gawaz
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Otfried - Müller - Straße 10, 72076 Tübingen, Germany
| |
Collapse
|
19
|
Coenen DM, Heinzmann ACA, Karel MFA, Cosemans JMEM, Koenen RR. The multifaceted contribution of platelets in the emergence and aftermath of acute cardiovascular events. Atherosclerosis 2021; 319:132-141. [PMID: 33468314 DOI: 10.1016/j.atherosclerosis.2020.12.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/17/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022]
Abstract
Atherosclerosis is an underlying cause of a broad array of cardiovascular diseases characterized by plaques, arterial wall thickening initiated by hyperlipidemia, pro-inflammatory signals, endothelial dysfunction and the influx of inflammatory cells. By still incompletely characterized mechanisms, these plaques can destabilize or erode, leading to thrombosis and blood vessel occlusion and becomes clinically manifest as angina pectoris, myocardial infarction (MI) or stroke. Among the several blood cell types that are involved in the development of atherosclerosis, the role of platelets during the thrombotic occlusion of ruptured or eroded plaques is well established and clinically exploited as evident by the extensive use of platelet inhibitors. However, there is increasing evidence that platelets are also involved in the earlier stages of atheroma development by exhibiting pro-inflammatory activities. The scope of this review is to describe the role of platelets in the initiation and propagation stages of atherosclerosis and beyond; in atherothrombotic complications.
Collapse
Affiliation(s)
- Daniëlle M Coenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Alexandra C A Heinzmann
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Mieke F A Karel
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Judith M E M Cosemans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Rory R Koenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
20
|
Wang L, Tang C. Targeting Platelet in Atherosclerosis Plaque Formation: Current Knowledge and Future Perspectives. Int J Mol Sci 2020; 21:ijms21249760. [PMID: 33371312 PMCID: PMC7767086 DOI: 10.3390/ijms21249760] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 12/23/2022] Open
Abstract
Besides their role in hemostasis and thrombosis, it has become increasingly clear that platelets are also involved in many other pathological processes of the vascular system, such as atherosclerotic plaque formation. Atherosclerosis is a chronic vascular inflammatory disease, which preferentially develops at sites under disturbed blood flow with low speeds and chaotic directions. Hyperglycemia, hyperlipidemia, and hypertension are all risk factors for atherosclerosis. When the vascular microenvironment changes, platelets can respond quickly to interact with endothelial cells and leukocytes, participating in atherosclerosis. This review discusses the important roles of platelets in the plaque formation under pro-atherogenic factors. Specifically, we discussed the platelet behaviors under disturbed flow, hyperglycemia, and hyperlipidemia conditions. We also summarized the molecular mechanisms involved in vascular inflammation during atherogenesis based on platelet receptors and secretion of inflammatory factors. Finally, we highlighted the studies of platelet migration in atherogenesis. In general, we elaborated an atherogenic role of platelets and the aspects that should be further studied in the future.
Collapse
Affiliation(s)
- Lei Wang
- Cyrus Tang Hematology Center, Cyrus Tang Medical Institute, Soochow University, Suzhou 215123, China;
| | - Chaojun Tang
- Cyrus Tang Hematology Center, Cyrus Tang Medical Institute, Soochow University, Suzhou 215123, China;
- Collaborative Innovation Center of Hematology of Jiangsu Province, Soochow University, Suzhou 215123, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215123, China
- Correspondence: ; Tel.: +86-512-6588-0899
| |
Collapse
|
21
|
Kraemer BF, Geimer M, Franz-Wachtel M, Lamkemeyer T, Mannell H, Lindemann S. Extracellular Matrix-Specific Platelet Activation Leads to a Differential Translational Response and Protein De Novo Synthesis in Human Platelets. Int J Mol Sci 2020; 21:ijms21218155. [PMID: 33142786 PMCID: PMC7672557 DOI: 10.3390/ijms21218155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 02/08/2023] Open
Abstract
Platelets are exposed to extracellular matrix (ECM) proteins like collagen and laminin and to fibrinogen during acute vascular events. However, beyond hemostasis, platelets have the important capacity to migrate on ECM surfaces, but the translational response of platelets to different extracellular matrix stimuli is still not fully characterized. Using 2D-gel electrophoresis, confocal microscopy, polysome analysis and protein sequencing by mass spectrometry, we demonstrate that platelets show a differential expression profile of newly synthesized proteins on laminin, collagen or fibrinogen. In this context, we observed a characteristic, ECM-dependent translocation phenotype of translation initiation factor eIF4E to the ribosomal site. eIF4E accumulated in polysomes with increased binding of mRNA and co-localization with vinculin, leading to de novo synthesis of important cytoskeletal regulator proteins. As the first study, we included a proteome analysis of laminin-adherent platelets and interestingly identified upregulation of essentially important proteins that mediate cytoskeletal regulation and mobility in platelets, such as filamin A, talin, vinculin, gelsolin, coronin or kindlin-3. In summary, we demonstrate that platelet activation with extracellular matrix proteins results in a distinct stimulus-specific translational response of platelets that will help to improve our understanding of the regulation of platelet mobility and migration.
Collapse
Affiliation(s)
- Bjoern F. Kraemer
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Marchioninistrasse 15, 81377 Munich, Germany;
| | - Marc Geimer
- Klinik für Anästhesie, Intensiv- und Notfallmedizin, Westpfalz Klinikum Kaiserslautern, Hellmut-Hartert Str. 1, 67655 Kaiserslautern, Germany;
| | - Mirita Franz-Wachtel
- Proteasome Center Tuebingen, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany;
| | - Tobias Lamkemeyer
- Cluster of Excellence Cologne (CEDAD), Mass Spectrometry Facility at the Institute for Genetics, University of Köln, Josef-Stelzmann-Str. 26, 50931 Köln, Germany;
| | - Hanna Mannell
- Doctoral Programme of Clinical Pharmacy, University Hospital, Ludwig-Maximilians-University, Marchioninistr. 27, 81377 Munich, Germany;
- Institute of Cardiovascular Physiology and Pathophysiology Biomedical Center, Ludwig-Maximilians-University, Großhaderner Str. 9, 82152 Planegg, Germany
| | - Stephan Lindemann
- Philipps Universität Marburg, FB 20-Medizin, Baldingerstraße, 35032 Marburg, Germany
- Klinikum Warburg, Medizinische Klinik II, Hüffertstr. 50, 34414 Warburg, Germany
- Medizinische Klinik und Poliklinik III, Otfried-Muller-Str. 10, Universitätsklinikum Tübingen, 72076 Tübingen, Germany
- Correspondence:
| |
Collapse
|
22
|
Molecular Drivers of Platelet Activation: Unraveling Novel Targets for Anti-Thrombotic and Anti-Thrombo-Inflammatory Therapy. Int J Mol Sci 2020; 21:ijms21217906. [PMID: 33114406 PMCID: PMC7662962 DOI: 10.3390/ijms21217906] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death globally-partly a consequence of increased population size and ageing-and are major contributors to reduced quality of life. Platelets play a major role in hemostasis and thrombosis. While platelet activation and aggregation are essential for hemostasis at sites of vascular injury, uncontrolled platelet activation leads to pathological thrombus formation and provokes thrombosis leading to myocardial infarction or stroke. Platelet activation and thrombus formation is a multistage process with different signaling pathways involved to trigger platelet shape change, integrin activation, stable platelet adhesion, aggregation, and degranulation. Apart from thrombotic events, thrombo-inflammation contributes to organ damage and dysfunction in CVDs and is mediated by platelets and inflammatory cells. Therefore, in the past, many efforts have been made to investigate specific signaling pathways in platelets to identify innovative and promising approaches for novel antithrombotic and anti-thrombo-inflammatory strategies that do not interfere with hemostasis. In this review, we focus on some of the most recent data reported on different platelet receptors, including GPIb-vWF interactions, GPVI activation, platelet chemokine receptors, regulation of integrin signaling, and channel homeostasis of NMDAR and PANX1.
Collapse
|
23
|
Miao S, Lu M, Liu Y, Shu D, Zhu Y, Song W, Ma Y, Ma R, Zhang B, Fang C, Ming ZY. Platelets are recruited to hepatocellular carcinoma tissues in a CX3CL1-CX3CR1 dependent manner and induce tumour cell apoptosis. Mol Oncol 2020; 14:2546-2559. [PMID: 32799418 PMCID: PMC7530782 DOI: 10.1002/1878-0261.12783] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/18/2020] [Accepted: 08/13/2020] [Indexed: 12/22/2022] Open
Abstract
The mechanisms and biological functions of migrating platelets in cancer remain largely unknown. Here, we analyzed platelet infiltration in hepatocellular carcinoma. We detected platelet extravasation in both mouse and human HCC tissues. CX3CL1 directly induced platelet migration, and hypoxia enhanced platelet migration by upregulating CX3CL1 expression. Knocking down CX3CL1 in HCC cells reduced platelet migration in vitro, as well as infiltration of HCC tissue in an orthotopic HCC mouse model. Components of the CX3CR1/Syk/PI3K pathway were essential for CX3CL1‐induced platelet migration. Migrating platelets induced HCC cell apoptosis in vitro, as indicated by a reduced mitochondrial membrane potential and an increased percentage of apoptotic cells. In the orthotopic tumor implantation model, decreased platelet infiltration was associated with accelerated tumor growth. Taken together, our findings indicate that HCC cell‐derived CX3CL1 contributes to tumor infiltration by platelets, which in turn promotes apoptosis of HCC cells.
Collapse
Affiliation(s)
- Shuo Miao
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.,School of Basic Medicine, Qingdao University, Qingdao, China.,The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Meng Lu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Yue Liu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Dan Shu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Ying Zhu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Wei Song
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.,Department of Pharmacy, Renmin Hospital, Wuhan University, Wuhan, China
| | - Yuanyuan Ma
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.,Pharmacy Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Ma
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Bixiang Zhang
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Fang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Zhang-Yin Ming
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China.,Tongji-Rongcheng Center for Biomedicine, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
24
|
Refined fabrication of mechano-stimulating micro-platform for on-chip analyses of complex platelet behavior. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
The Integrin Activating Protein Kindlin-3 Is Cleaved in Human Platelets during ST-Elevation Myocardial Infarction. Int J Mol Sci 2019; 20:ijms20246154. [PMID: 31817594 PMCID: PMC6941114 DOI: 10.3390/ijms20246154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 12/17/2022] Open
Abstract
Kindlins are important proteins for integrin signaling and regulation of the cytoskeleton, but we know little about their precise function and regulation in platelets during acute ischemic events. In this work, we investigated kindlin-3 protein levels in platelets isolated from patients with ST-elevation myocardial infarction (STEMI) compared to patients with non-ischemic chest pain. Platelets from twelve patients with STEMI and twelve patients with non-ischemic chest pain were isolated and analyzed for kindlin-3 protein levels and intracellular localization by immunoblotting and two-dimensional gel electrophoresis. Platelet proteome analysis by two-dimensional gel electrophoresis and protein sequencing identified kindlin-3 as a protein that is cleaved in platelets from patients with myocardial infarction. Kindlin-3 full-length protein was significantly decreased in patients with STEMI compared to patients with non-ischemic chest pain (1.0 ± 0.2 versus 0.28 ± 0.2, p < 0.05) by immunoblotting. Kindlin-3 showed a differential distribution and was primarily cleaved in the cytosolic and membrane compartment of platelets in myocardial infarction. Platelet activation with thrombin alone did not affect kindlin-3 protein levels. The present study demonstrates that kindlin-3 protein levels become significantly reduced in platelets of patients with myocardial infarction compared to controls. The results suggest that kindlin-3 cleavage in platelets is associated with the ischemic event of myocardial infarction.
Collapse
|
26
|
Heat-Shock Protein 27 (HSPB1) Is Upregulated and Phosphorylated in Human Platelets during ST-Elevation Myocardial Infarction. Int J Mol Sci 2019; 20:ijms20235968. [PMID: 31783528 PMCID: PMC6928972 DOI: 10.3390/ijms20235968] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 12/22/2022] Open
Abstract
Heat-shock proteins are a family of proteins which are upregulated in response to stress stimuli including inflammation, oxidative stress, or ischemia. Protective functions of heat-shock proteins have been studied in vascular disease models, and malfunction of heat-shock proteins is associated with vascular disease development. Heat-shock proteins however have not been investigated in human platelets during acute myocardial infarction ex vivo. Using two-dimensional electrophoresis and immunoblotting, we observed that heat-shock protein 27 (HSPB1) levels and phosphorylation are significantly increased in platelets of twelve patients with myocardial infarction compared to patients with nonischemic chest pain (6.4 ± 1.0-fold versus 1.0 ± 0.9-fold and 5.9 ± 1.8-fold versus 1.0 ± 0.8-fold; p < 0.05). HSP27 (HSPB1) showed a distinct and characteristic intracellular translocation from the cytoskeletal fraction into the membrane fraction of platelets during acute myocardial infarction that did not occur in the control group. In this study, we could demonstrate for the first time that HSP27 (HSPB1) is upregulated and phosphorylated in human platelets during myocardial infarction on a cellular level ex vivo with a characteristic intracellular translocation pattern. This HSP27 (HSPB1) phenotype in platelets could thus represent a measurable stress response in myocardial infarction and potentially other acute ischemic events.
Collapse
|
27
|
Gaertner F, Massberg S. Patrolling the vascular borders: platelets in immunity to infection and cancer. Nat Rev Immunol 2019; 19:747-760. [DOI: 10.1038/s41577-019-0202-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2019] [Indexed: 12/13/2022]
|
28
|
Abstract
The idea that anucleate platelets display autonomous migration has long been viewed with skepticism. Gaertner et al. provide in vivo evidence that platelets undergo active migration at sites of thrombus formation and in inflamed liver sinusoids. Integrin-dependent migration allows platelets to scavenge and bundle fibrin-bound material, including intravascular bacteria.
Collapse
Affiliation(s)
- Sarah K Bambach
- Max Planck Institute of Immunobiology and Epigenetics, Group Immune Cell Dynamics, Freiburg, Germany; International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Tim Lämmermann
- Max Planck Institute of Immunobiology and Epigenetics, Group Immune Cell Dynamics, Freiburg, Germany.
| |
Collapse
|
29
|
|
30
|
A dichotomy in platelet activation: Evidence of different functional platelet responses to inflammatory versus haemostatic stimuli. Thromb Res 2018; 172:110-118. [DOI: 10.1016/j.thromres.2018.10.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 09/18/2018] [Accepted: 10/22/2018] [Indexed: 12/12/2022]
|
31
|
Rossaint J, Margraf A, Zarbock A. Role of Platelets in Leukocyte Recruitment and Resolution of Inflammation. Front Immunol 2018; 9:2712. [PMID: 30515177 PMCID: PMC6255980 DOI: 10.3389/fimmu.2018.02712] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/02/2018] [Indexed: 12/30/2022] Open
Abstract
Platelets are most often recognized for their crucial role in the control of acute hemorrhage. However, current research has greatly expanded the appreciation of platelets beyond their contribution to primary hemostasis, indicating that platelets also actively participate in leukocyte recruitment and the regulation of the host defense in response to exogenous pathogens and sterile injury. Early recruitment of leukocytes, especially neutrophils, is the evolutionary stronghold of the innate immune response to successfully control exogenous infections. Platelets have been shown to physically interact with different leukocyte subsets during inflammatory processes. This interaction holds far-reaching implications for the leukocyte recruitment into peripheral tissues as well as the regulation of leukocyte cell autonomous functions, including the formation and liberation of neutrophil extracellular traps. These functions critically depend on the interaction of platelets with leukocytes. The host immune response and leukocyte recruitment must be tightly regulated to avoid excessive tissue and organ damage and to avoid chronification of inflammation. Thus, platelet-leukocyte interactions and the resulting leukocyte activation and recruitment also underlies tight regulation by several inherited feedback mechanisms to limit the extend of vascular inflammation and to protect the host from collateral damage caused by overshooting immune system activation. After the acute inflammatory phase has been overcome the host defense response must eventually be terminated to allow for resolution from inflammation and restoration of tissue and organ function. Besides their essential role for leukocyte recruitment and the initiation and propagation of vascular inflammation, platelets have lately also been implicated in the resolution process. Here, their contribution to phagocyte clearance, T cell recruitment and macrophage reprogramming is also of outmost importance. This review will focus on the role of platelets in leukocyte recruitment during the initiation of the host defense and we will also discuss the participation of platelets in the resolution process after acute inflammation.
Collapse
Affiliation(s)
- Jan Rossaint
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Andreas Margraf
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany.,Interdisciplinary Centre for Clinical Research, University Hospital Münster, Münster, Germany
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| |
Collapse
|
32
|
Chen R, Jin G, Li W, McIntyre TM. Epidermal Growth Factor (EGF) Autocrine Activation of Human Platelets Promotes EGF Receptor-Dependent Oral Squamous Cell Carcinoma Invasion, Migration, and Epithelial Mesenchymal Transition. THE JOURNAL OF IMMUNOLOGY 2018; 201:2154-2164. [PMID: 30150285 DOI: 10.4049/jimmunol.1800124] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 07/25/2018] [Indexed: 12/11/2022]
Abstract
Activated platelets release functional, high m.w. epidermal growth factor (HMW-EGF). In this study, we show platelets also express epidermal growth factor (EGF) receptor (EGFR) protein, but not ErbB2 or ErbB4 coreceptors, and so might respond to HMW-EGF. We found HMW-EGF stimulated platelet EGFR autophosphorylation, PI3 kinase-dependent AKT phosphorylation, and a Ca2+ transient that were blocked by EGFR tyrosine kinase inhibition. Strong (thrombin) and weak (ADP, platelet-activating factor) G protein-coupled receptor agonists and non-G protein-coupled receptor collagen recruited EGFR tyrosine kinase activity that contributed to platelet activation because EGFR kinase inhibition reduced signal transduction and aggregation induced by each agonist. EGF stimulated ex vivo adhesion of platelets to collagen-coated microfluidic channels, whereas systemic EGF injection increased initial platelet deposition in FeCl3-damaged murine carotid arteries. EGFR signaling contributes to oral squamous cell carcinoma (OSCC) tumorigenesis, but the source of its ligand is not established. We find individual platelets were intercalated within OSCC tumors. A portion of these platelets expressed stimulation-dependent Bcl-3 and IL-1β and so had been activated. Stimulated platelets bound OSCC cells, and material released from stimulated platelets induced OSCC epithelial-mesenchymal transition and stimulated their migration and invasion through Matrigel barriers. Anti-EGF Ab or EGFR inhibitors abolished platelet-induced tumor cell phenotype transition, migration, and invasion; so the only factor released from activated platelets necessary for OSCC metastatic activity was HMW-EGF. These results establish HMW-EGF in platelet function and elucidate a previously unsuspected connection between activated platelets and tumorigenesis through rapid, and prolonged, autocrine-stimulated release of HMW-EGF by tumor-associated platelets.
Collapse
Affiliation(s)
- Rui Chen
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Ge Jin
- Case Western Reserve University School of Dental Medicine, Cleveland, OH 44106
| | - Wei Li
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195.,Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH 44106; and.,Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195
| | - Thomas M McIntyre
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195; .,Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH 44106; and.,Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195
| |
Collapse
|
33
|
Kanikarla-Marie P, Lam M, Sorokin AV, Overman MJ, Kopetz S, Menter DG. Platelet Metabolism and Other Targeted Drugs; Potential Impact on Immunotherapy. Front Oncol 2018; 8:107. [PMID: 29732316 PMCID: PMC5919962 DOI: 10.3389/fonc.2018.00107] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/27/2018] [Indexed: 12/13/2022] Open
Abstract
The role of platelets in cancer progression has been well recognized in the field of cancer biology. Emerging studies are elaborating further the additional roles and added extent that platelets play in promoting tumorigenesis. Platelets release factors that support tumor growth and also form heterotypic aggregates with tumor cells, which can provide an immune-evasive advantage. Their most critical role may be the inhibition of immune cell function that can negatively impact the body’s ability in preventing tumor establishment and growth. This review summarizes the importance of platelets in tumor progression, therapeutic response, survival, and finally the notion of immunotherapy modulation being likely to benefit from the inclusion of platelet inhibitors.
Collapse
Affiliation(s)
- Preeti Kanikarla-Marie
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Michael Lam
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Alexey V Sorokin
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Michael J Overman
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Scott Kopetz
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - David G Menter
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
34
|
Abstract
Platelet P2Y1 receptor signalling via RhoGTPases is necessary for platelet-dependent leukocyte recruitment, where no platelet aggregation is observed. We investigated signalling cascades involved in distinct P2Y1-dependent platelet activities in vitro, using specific inhibitors for phospholipase C (PLC) (U73122, to inhibit the canonical pathway), and RhoGTPases: Rac1 (NSC23766) and RhoA (ROCK inhibitor GSK429286). Human platelet rich plasma (for platelet aggregation) or isolated washed platelets (for chemotaxis assays) was treated with U73122, GSK429286 or NSC23766 prior to stimulation with adenosine diphosphate (ADP) or the P2Y1 specific agonist MRS2365. Aggregation, chemotaxis (towards f-MLP), or platelet-induced human neutrophil chemotaxis (PINC) towards macrophage derived chemokine (MDC) was assessed. Molecular docking of ADP and MRS2365 to P2Y1 was analysed using AutoDock Smina followed by GOLD molecular docking in the Accelrys Discovery Studio software. Inhibition of PLC, but not Rac1 or RhoA, suppressed platelet aggregation induced by ADP and MRS2365. In contrast, platelet chemotaxis and PINC, were significantly attenuated by inhibition of platelet Rac1 or RhoA, but not PLC. MRS2365, compared to ADP had a less pronounced effect on P2Y1-induced aggregation, but a similar efficacy to stimulate platelet chemotaxis and PINC, which might be explained by differences in molecular interaction of ADP compared to MRS2365 with the P2Y1 receptor. Platelet P2Y1 receptor activation during inflammation signals through alternate pathways involving Rho GTPases in contrast to canonical P2Y1 receptor induced PLC signalling. This might be explained by selective molecular interactions of ligands within the orthosteric site of the P2Y1 receptor.
Collapse
|
35
|
Gaertner F, Ahmad Z, Rosenberger G, Fan S, Nicolai L, Busch B, Yavuz G, Luckner M, Ishikawa-Ankerhold H, Hennel R, Benechet A, Lorenz M, Chandraratne S, Schubert I, Helmer S, Striednig B, Stark K, Janko M, Böttcher RT, Verschoor A, Leon C, Gachet C, Gudermann T, Mederos Y Schnitzler M, Pincus Z, Iannacone M, Haas R, Wanner G, Lauber K, Sixt M, Massberg S. Migrating Platelets Are Mechano-scavengers that Collect and Bundle Bacteria. Cell 2017; 171:1368-1382.e23. [PMID: 29195076 DOI: 10.1016/j.cell.2017.11.001] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 08/27/2017] [Accepted: 10/30/2017] [Indexed: 01/07/2023]
Abstract
Blood platelets are critical for hemostasis and thrombosis and play diverse roles during immune responses. Despite these versatile tasks in mammalian biology, their skills on a cellular level are deemed limited, mainly consisting in rolling, adhesion, and aggregate formation. Here, we identify an unappreciated asset of platelets and show that adherent platelets use adhesion receptors to mechanically probe the adhesive substrate in their local microenvironment. When actomyosin-dependent traction forces overcome substrate resistance, platelets migrate and pile up the adhesive substrate together with any bound particulate material. They use this ability to act as cellular scavengers, scanning the vascular surface for potential invaders and collecting deposited bacteria. Microbe collection by migrating platelets boosts the activity of professional phagocytes, exacerbating inflammatory tissue injury in sepsis. This assigns platelets a central role in innate immune responses and identifies them as potential targets to dampen inflammatory tissue damage in clinical scenarios of severe systemic infection.
Collapse
Affiliation(s)
- Florian Gaertner
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, 81377 Munich, Germany; Deutsches Zentrum für Herz-Kreislaufforschung (DZHK), 13347 Berlin, Germany.
| | - Zerkah Ahmad
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, 81377 Munich, Germany
| | - Gerhild Rosenberger
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, 81377 Munich, Germany
| | - Shuxia Fan
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, 81377 Munich, Germany
| | - Leo Nicolai
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, 81377 Munich, Germany
| | - Benjamin Busch
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU, 80336 Munich, Germany
| | - Gökce Yavuz
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, 81377 Munich, Germany
| | - Manja Luckner
- Ultrastructural Research, Department Biology I, Biozentrum, Ludwig-Maximillians-Universität, 82152 Martinsried, Germany
| | | | - Roman Hennel
- Department of Radiation Oncology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Alexandre Benechet
- Division of Immunology, Transplantation and Infectious Diseases, Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Michael Lorenz
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, 81377 Munich, Germany
| | - Sue Chandraratne
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, 81377 Munich, Germany
| | - Irene Schubert
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, 81377 Munich, Germany
| | - Sebastian Helmer
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, 81377 Munich, Germany
| | - Bianca Striednig
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, 81377 Munich, Germany
| | - Konstantin Stark
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, 81377 Munich, Germany; Deutsches Zentrum für Herz-Kreislaufforschung (DZHK), 13347 Berlin, Germany
| | - Marek Janko
- Department of Materials Science, Technische Universität, 64287 Darmstadt, Germany
| | - Ralph T Böttcher
- Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany; Deutsches Zentrum für Herz-Kreislaufforschung (DZHK), 13347 Berlin, Germany
| | - Admar Verschoor
- Institute for Systemic Inflammation Research, Universität zu Lübeck, 23538 Lübeck, Germany
| | - Catherine Leon
- UMR S949, Inserm, Université de Strasbourgh, Etablissement Français du Sang-Alsace, 67065 Strasbourg, France
| | - Christian Gachet
- UMR S949, Inserm, Université de Strasbourgh, Etablissement Français du Sang-Alsace, 67065 Strasbourg, France
| | - Thomas Gudermann
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität, 80336 Munich, Germany; Deutsches Zentrum für Herz-Kreislaufforschung (DZHK), 13347 Berlin, Germany
| | - Michael Mederos Y Schnitzler
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität, 80336 Munich, Germany; Deutsches Zentrum für Herz-Kreislaufforschung (DZHK), 13347 Berlin, Germany
| | - Zachary Pincus
- Department of Developmental Biology and Department of Genetics, Washington University, St. Louis, St. Louis, MO 63110, USA
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Rainer Haas
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU, 80336 Munich, Germany; German Center for Infection Research (DZIF), Munich Site, 80336 Munich, Germany
| | - Gerhard Wanner
- Ultrastructural Research, Department Biology I, Biozentrum, Ludwig-Maximillians-Universität, 82152 Martinsried, Germany
| | - Kirsten Lauber
- Department of Radiation Oncology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Michael Sixt
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria
| | - Steffen Massberg
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, 81377 Munich, Germany; Deutsches Zentrum für Herz-Kreislaufforschung (DZHK), 13347 Berlin, Germany.
| |
Collapse
|
36
|
Döring Y, Noels H, Weber C. Potential cell-specific functions of CXCR4 in atherosclerosis. Hamostaseologie 2017; 36:97-102. [DOI: 10.5482/hamo-14-10-0054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 11/27/2014] [Indexed: 11/05/2022] Open
Abstract
ZusammenfassungDer Chemokinrezeptor CXCR4 and sein Ligand CXCL12 bilden eine wichtige Achse in der Regulation von Zellfunktionen bei normaler Homöostase und bei Erkrankungen. Zusätzlich kann der atypische CXCL12 Rezeptor CXCR7 die Verfügbarkeit und Funktion von CXCL12 modulieren. Neben ihrer Rolle in der Mobilisierung von Stamm- und Vorläuferzellen, können CXCR4 und CXCL12 auch die Entwicklung der Atherosklerose über verschiedene Zellfunktionen beeinflussen. Dieser kurze Übersichtsartikel fasst das gegenwärtige Wissen zu den zellspezifischen Funktionen von CXCL12 und den Rezeptoren CXCR4 und CXCR7 mit möglichen Implikationen für die Entstehung und Progression der Atherosklerose zusammen
Collapse
|
37
|
Seizer P, May AE. Platelets and matrix metalloproteinases. Thromb Haemost 2017; 110:903-9. [DOI: 10.1160/th13-02-0113] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Accepted: 06/18/2013] [Indexed: 11/05/2022]
Abstract
SummaryMatrix metalloproteinases (MMPs) and their inhibitors essentially contribute to a variety of pathophysiologies by modulating cell migration, tissue degradation and inflammation. Platelet-associated MMP activity appears to play a major role in these processes. First, platelets can concentrate leukocyte-derived MMP activity to sites of vascular injury by leukocyte recruitment. Second, platelets stimulate MMP production in e.g. leukocytes, endothelial cells, or tumour cells by direct receptor interaction or/and by paracrine pathways. Third, platelets synthesise and secrete a variety of MMPs including MMP-1, MMP-2, MMP-3, and MMP-14 (MT1-MMP), and potentially MMP-9 as well as the tissue inhibitors of metalloproteinase (TIMPs). This review focuses on platelet-derived and platelet-induced MMPs and their inhibitors.
Collapse
|
38
|
Müller K, Chatterjee M, Rath D, Geisler T. Platelets, inflammation and anti-inflammatory effects of antiplatelet drugs in ACS and CAD. Thromb Haemost 2017. [DOI: 10.1160/th14-11-0947] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SummaryPlatelets play a pivotal role in chronic inflammation leading to progression of atherosclerosis and acute coronary events. Recent discoveries on novel mechanisms and platelet-dependent inflammatory targets underpin the role of platelets to maintain a chronic inflammatory condition in cardiovascular disease. There is strong and clinically relevant crosslink between chronic inflammation and platelet activation. Antiplatelet therapy is a cornerstone in the prevention and treatment of acute cardiovascular events. The benefit of antiplatelet agents has mainly been attributed to their direct anti-aggregatory impact. Some anti-inflammatory off-target effects have also been described. However, it is unclear whether these effects are secondary due to inhibition of platelet activation or are caused by direct distinct mechanisms interfering with inflammatory pathways. This article will highlight novel platelet associated targets that contribute to inflammation in cardiovascular disease and elucidate mechanisms by which currently available antiplatelet agents evolve anti-inflammatory capacities, in particular by carving out the differential mechanisms directly or indirectly affecting platelet mediated inflammation. It will further illustrate the prognostic impact of antiplatelet therapies by reducing inflammatory marker release in recent cardiovascular trials.
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW This review describes the essential roles of platelets in neutrophil recruitment from the bloodstream into inflamed and infected tissues, with a focus on recent findings. RECENT FINDINGS Platelets are required for the recruitment of neutrophils to sites of inflammation and infection. They fulfil this role largely by enabling contacts of circulating neutrophils with the inflamed blood vessel wall prior to extravasation. Platelets promote both early stages of neutrophil recruitment (tethering, rolling, arrest, firm adhesion) and - as recent work has demonstrated - later stages (intravascular crawling and diapedesis). Recent studies have also begun to identify platelet-signaling pathways that can elicit the underlying interactions between platelets, neutrophils and vascular endothelial cells without stimulating concomitant platelet aggregation and thrombus formation. These pathways include Rho-guanine-nucleotide binding proteins and Rho-guanine-nucleotide exchange factors. SUMMARY Recent findings have contributed to our burgeoning understanding of the platelet-dependent mechanisms that control neutrophil recruitment to sites of inflammation and have opened up new avenues of research aimed at increasing our knowledge of these mechanisms further. These insights might lead to the development of novel anti-inflammatory drugs that will be useful in a wide range of inflammatory diseases without causing immunodeficiency.
Collapse
|
40
|
Shah SA, Page CP, Pitchford SC. Platelet-Eosinophil Interactions As a Potential Therapeutic Target in Allergic Inflammation and Asthma. Front Med (Lausanne) 2017; 4:129. [PMID: 28848732 PMCID: PMC5550710 DOI: 10.3389/fmed.2017.00129] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/24/2017] [Indexed: 01/24/2023] Open
Abstract
The importance of platelet activation during hemostasis is well understood. An understanding of these mechanisms has led to the use of several classes of anti-platelet drugs to inhibit aggregation for the prevention of thrombi during cardiovascular disease. It is now also recognized that platelets can function very differently during inflammation, as part of their role in the innate immune response against pathogens. This dichotomy in platelet function occurs through distinct physiological processes and alternative signaling pathways compared to that of hemostasis (leading to platelet aggregation) and is manifested as increased rheological interactions with leukocytes, the ability to undergo chemotaxis, communication with antigen-presenting cells, and direct anti-pathogen responses. Mounting evidence suggests platelets are also critical in the pathogenesis of allergic diseases such as asthma, where they have been associated with antigen presentation, bronchoconstriction, bronchial hyperresponsiveness, airway inflammation, and airway remodeling in both clinical and experimental studies. In particular, platelets have been reported bound to eosinophils in the blood of patients with asthma and the incidence of these events increases after both spontaneous asthma attacks in a biphasic manner, or after allergen challenge in the clinic. Platelet depletion in animal models of allergic airway inflammation causes a profound reduction in eosinophil recruitment to the lung, suggesting that the association of platelets with eosinophils is indeed an important event during eosinophil activation. Furthermore, in cases of severe asthma, and in animal models of allergic airways inflammation, platelet–eosinophil complexes move into the lung through a platelet P-selectin-mediated, eosinophil β1-integrin activation-dependent process, while platelets increase adherence of eosinophils to the vascular endothelium in vitro, demonstrating a clear interaction between these cell types in allergic inflammatory diseases. This review will explore non-thrombotic platelet activation in the context of allergy and the association of platelets with eosinophils, to reveal how these phenomena may lead to the discovery of novel therapeutic targets.
Collapse
Affiliation(s)
- Sajeel A Shah
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Simon C Pitchford
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| |
Collapse
|
41
|
Menter DG, Kopetz S, Hawk E, Sood AK, Loree JM, Gresele P, Honn KV. Platelet "first responders" in wound response, cancer, and metastasis. Cancer Metastasis Rev 2017; 36:199-213. [PMID: 28730545 PMCID: PMC5709140 DOI: 10.1007/s10555-017-9682-0] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Platelets serve as "first responders" during normal wounding and homeostasis. Arising from bone marrow stem cell lineage megakaryocytes, anucleate platelets can influence inflammation and immune regulation. Biophysically, platelets are optimized due to size and discoid morphology to distribute near vessel walls, monitor vascular integrity, and initiate quick responses to vascular lesions. Adhesion receptors linked to a highly reactive filopodia-generating cytoskeleton maximizes their vascular surface contact allowing rapid response capabilities. Functionally, platelets normally initiate rapid clotting, vasoconstriction, inflammation, and wound biology that leads to sterilization, tissue repair, and resolution. Platelets also are among the first to sense, phagocytize, decorate, or react to pathogens in the circulation. These platelet first responder properties are commandeered during chronic inflammation, cancer progression, and metastasis. Leaky or inflammatory reaction blood vessel genesis during carcinogenesis provides opportunities for platelet invasion into tumors. Cancer is thought of as a non-healing or chronic wound that can be actively aided by platelet mitogenic properties to stimulate tumor growth. This growth ultimately outstrips circulatory support leads to angiogenesis and intravasation of tumor cells into the blood stream. Circulating tumor cells reengage additional platelets, which facilitates tumor cell adhesion, arrest and extravasation, and metastasis. This process, along with the hypercoagulable states associated with malignancy, is amplified by IL6 production in tumors that stimulate liver thrombopoietin production and elevates circulating platelet numbers by thrombopoiesis in the bone marrow. These complex interactions and the "first responder" role of platelets during diverse physiologic stresses provide a useful therapeutic target that deserves further exploration.
Collapse
Affiliation(s)
- David G Menter
- Department of Gastrointestinal Medical Oncology, M. D. Anderson Cancer Center, Room#: FC10.3004, 1515 Holcombe Boulevard--Unit 0426, Houston, TX, 77030, USA.
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, M. D. Anderson Cancer Center, Room#: FC10.3004, 1515 Holcombe Boulevard--Unit 0426, Houston, TX, 77030, USA
| | - Ernest Hawk
- Office of the Vice President Cancer Prevention & Population Science, M. D. Anderson Cancer Center, Unit 1370, 1515 Holcombe Boulevard, Houston, TX, 77054, USA
| | - Anil K Sood
- Gynocologic Oncology & Reproductive Medicine, M. D. Anderson Cancer Center, Unit 1362, 1515 Holcombe Boulevard, Houston, TX, 77054, USA
- Department of Cancer Biology, M. D. Anderson Cancer Center, Unit 1362, 1515 Holcombe Boulevard, Houston, TX, 77054, USA
- Center for RNA Interference and Non-Coding RNA The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Jonathan M Loree
- Department of Gastrointestinal Medical Oncology, M. D. Anderson Cancer Center, Room#: FC10.3004, 1515 Holcombe Boulevard--Unit 0426, Houston, TX, 77030, USA
| | - Paolo Gresele
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Via E. Dal Pozzo, 06126, Perugia, Italy
| | - Kenneth V Honn
- Bioactive Lipids Research Program, Department of Pathology, Wayne State University, 431 Chemistry Bldg, 5101 Cass Avenue, Detroit, MI, 48202, USA
- Department of Pathology, Wayne State University, 431 Chemistry Bldg, 5101 Cass Avenue, Detroit, MI, 48202, USA
- Cancer Biology Division, Wayne State University School of Medicine, 431 Chemistry Bldg, 5101 Cass Avenue, Detroit, MI, 48202, USA
| |
Collapse
|
42
|
Abstract
The role of platelets as inflammatory cells is now well established. Given the peculiar characteristics of the lung circulation, with a broad capillary bed, platelets are especially involved with the physiology of the lungs and play a key role in a number of inflammatory lung disorders. The platelet precursors, megakaryocytes, are detected in the lung microcirculation; moreover platelets with their endothelium-protective and vascular reparative activities contribute to the lung capillary blood barrier integrity. Given the function of the lungs as first wall against pathogen invasion, platelets participate in immune defence of the normal lung. On the other hand, platelets may turn into effectors of the inflammatory reaction of the lungs to allergens, to infectious agents, to chemical agents and may contribute strongly to the perpetuation of chronic inflammatory reactions, largely by their ability to interact with other inflammatory cells and the endothelium. In this chapter we provide an overview of the role of platelets in several inflammatory lung disorders discussing the pathophysiologic bases of platelet involvement in these conditions and the experimental and clinical evidence for a role of platelets in lung diseases.
Collapse
|
43
|
Menter DG, Davis JS, Tucker SC, Hawk E, Crissman JD, Sood AK, Kopetz S, Honn KV. Platelets: “First Responders” in Cancer Progression and Metastasis. PLATELETS IN THROMBOTIC AND NON-THROMBOTIC DISORDERS 2017:1111-1132. [DOI: 10.1007/978-3-319-47462-5_74] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
44
|
Finch-Edmondson M, Sudol M. Framework to function: mechanosensitive regulators of gene transcription. Cell Mol Biol Lett 2016; 21:28. [PMID: 28536630 PMCID: PMC5415767 DOI: 10.1186/s11658-016-0028-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/16/2016] [Indexed: 01/06/2023] Open
Abstract
Mechanobiology has shifted our understanding of fundamental cellular and physiological functions. Changes to the stiffness of the extracellular matrix, cell rigidity, or shape of the cell environment were considered in the past to be a consequence of aging or pathological processes. We now understand that these factors can actually be causative biological mediators of cell growth to control organ size. Mechanical cues are known to trigger a relatively fast translocation of specific transcriptional co-factors such as MRTFs, YAP and TAZ from the cytoplasm to the cell nucleus to initiate discrete transcriptional programs. The focus of this review is the molecular mechanisms by which biophysical stimuli that induce changes in cytoplasmic actin dynamics are communicated within cells to elicit gene-specific transcription via nuclear localisation or activation of specialized transcription factors, namely MRTFs and the Hippo pathway effectors YAP and TAZ. We propose here that MRTFs, YAP and TAZ closely collaborate as mechano-effectors.
Collapse
Affiliation(s)
- Megan Finch-Edmondson
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 117411 Singapore, Singapore.,Department of Physiology, National University of Singapore, Yong Loo Lin School of Medicine, 2 Medical Drive, 117597 Singapore, Singapore
| | - Marius Sudol
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 117411 Singapore, Singapore.,Department of Physiology, National University of Singapore, Yong Loo Lin School of Medicine, 2 Medical Drive, 117597 Singapore, Singapore
| |
Collapse
|
45
|
Middleton EA, Weyrich AS, Zimmerman GA. Platelets in Pulmonary Immune Responses and Inflammatory Lung Diseases. Physiol Rev 2016; 96:1211-59. [PMID: 27489307 PMCID: PMC6345245 DOI: 10.1152/physrev.00038.2015] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Platelets are essential for physiological hemostasis and are central in pathological thrombosis. These are their traditional and best known activities in health and disease. In addition, however, platelets have specializations that broaden their functional repertoire considerably. These functional capabilities, some of which are recently discovered, include the ability to sense and respond to infectious and immune signals and to act as inflammatory effector cells. Human platelets and platelets from mice and other experimental animals can link the innate and adaptive limbs of the immune system and act across the immune continuum, often also linking immune and hemostatic functions. Traditional and newly recognized facets of the biology of platelets are relevant to defensive, physiological immune responses of the lungs and to inflammatory lung diseases. The emerging view of platelets as blood cells that are much more diverse and versatile than previously thought further predicts that additional features of the biology of platelets and of megakaryocytes, the precursors of platelets, will be discovered and that some of these will also influence pulmonary immune defenses and inflammatory injury.
Collapse
Affiliation(s)
- Elizabeth A Middleton
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and the Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Andrew S Weyrich
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and the Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Guy A Zimmerman
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and the Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
46
|
Wilhelm EN, González-Alonso J, Parris C, Rakobowchuk M. Exercise intensity modulates the appearance of circulating microvesicles with proangiogenic potential upon endothelial cells. Am J Physiol Heart Circ Physiol 2016; 311:H1297-H1310. [PMID: 27638881 DOI: 10.1152/ajpheart.00516.2016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/12/2016] [Indexed: 12/22/2022]
Abstract
The effect of endurance exercise on circulating microvesicle dynamics and their impact on surrounding endothelial cells is unclear. Here we tested the hypothesis that exercise intensity modulates the time course of platelet (PMV) and endothelial-derived (EMV) microvesicle appearance in the circulation through hemodynamic and biochemical-related mechanisms, and that microvesicles formed during exercise would stimulate endothelial angiogenesis in vitro. Nine healthy young men had venous blood samples taken before, during, and throughout the recovery period after 1 h of moderate [46 ± 2% maximal oxygen uptake (V̇o2max)] or heavy (67 ± 2% V̇o2max) intensity semirecumbent cycling and a time-matched resting control trial. In vitro experiments were performed by incubating endothelial cells with rest and exercise-derived microvesicles to examine their effects on cell angiogenic capacities. PMVs (CD41+) increased from baseline only during heavy exercise (from 21 ± 1 × 103 to 55 ± 8 × 103 and 48 ± 6 × 103 PMV/μl at 30 and 60 min, respectively; P < 0.05), returning to baseline early in postexercise recovery (P > 0.05), whereas EMVs (CD62E+) were unchanged (P > 0.05). PMVs were related to brachial artery shear rate (r2 = 0.43) and plasma norepinephrine concentrations (r2 = 0.21) during exercise (P < 0.05). Exercise-derived microvesicles enhanced endothelial proliferation, migration, and tubule formation compared with rest microvesicles (P < 0.05). These results demonstrate substantial increases in circulating PMVs during heavy exercise and that exercise-derived microvesicles stimulate human endothelial cells by enhancing angiogenesis and proliferation. This involvement of microvesicles may be considered a novel mechanism through which exercise mediates vascular healing and adaptation.
Collapse
Affiliation(s)
- Eurico N Wilhelm
- Centre for Human Performance, Exercise and Rehabilitation, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - José González-Alonso
- Centre for Human Performance, Exercise and Rehabilitation, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Christopher Parris
- Institute for the Environment, Health and Societies, Brunel University London, Uxbridge, United Kingdom; and
| | - Mark Rakobowchuk
- Faculty of Science, Department of Biological Sciences, Thompson Rivers University Kamloops, British Columbia, Canada
| |
Collapse
|
47
|
Zhu K, Sun Y, Miu A, Yen M, Liu B, Zeng Q, Mogilner A, Zhao M. cAMP and cGMP Play an Essential Role in Galvanotaxis of Cell Fragments. J Cell Physiol 2015; 231:1291-300. [PMID: 26517849 DOI: 10.1002/jcp.25229] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 10/28/2015] [Indexed: 01/09/2023]
Abstract
Cell fragments devoid of the nucleus and major organelles are found in physiology and pathology, for example platelets derived from megakaryocytes, and cell fragments from white blood cells and glioma cells. Platelets exhibit active chemotaxis. Fragments from white blood cells display chemotaxis, phagocytosis, and bactericidal functions. Signaling mechanisms underlying migration of cell fragments are poorly understood. Here we used fish keratocyte fragments and demonstrated striking differences in signal transduction in migration of cell fragments and parental cells in a weak electric field. cAMP or cGMP agonists completely abolished directional migration of fragments, but had no effect on parental cells. The inhibition effects were prevented by pre-incubating with cAMP and cGMP antagonists. Blocking cAMP and cGMP downstream signaling by inhibition of PKA and PKG also recovered fragment galvanotaxis. Both perturbations confirmed that the inhibitory effect was mediated by cAMP or cGMP signaling. Inhibition of cathode signaling with PI3K inhibitor LY294002 also prevented the effects of cAMP or cGMP agonists. Our results suggest that cAMP and cGMP are essential for galvanotaxis of cell fragments, in contrast to the signaling mechanisms in parental cells.
Collapse
Affiliation(s)
- Kan Zhu
- Departments of Dermatology and Ophthalmology, Institute for Regenerative Cures, University of California Davis School of Medicine, Sacramento, California.,Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Yaohui Sun
- Departments of Dermatology and Ophthalmology, Institute for Regenerative Cures, University of California Davis School of Medicine, Sacramento, California
| | - Anh Miu
- Departments of Dermatology and Ophthalmology, Institute for Regenerative Cures, University of California Davis School of Medicine, Sacramento, California
| | - Michael Yen
- Departments of Dermatology and Ophthalmology, Institute for Regenerative Cures, University of California Davis School of Medicine, Sacramento, California
| | - Bowei Liu
- Departments of Dermatology and Ophthalmology, Institute for Regenerative Cures, University of California Davis School of Medicine, Sacramento, California
| | - Qunli Zeng
- Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Alex Mogilner
- Courant Institute and Department of Biology, New York University, New York, New York
| | - Min Zhao
- Departments of Dermatology and Ophthalmology, Institute for Regenerative Cures, University of California Davis School of Medicine, Sacramento, California
| |
Collapse
|
48
|
van der Vorst EPC, Döring Y, Weber C. Chemokines and their receptors in Atherosclerosis. J Mol Med (Berl) 2015; 93:963-71. [PMID: 26175090 PMCID: PMC4577534 DOI: 10.1007/s00109-015-1317-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/27/2015] [Accepted: 07/02/2015] [Indexed: 12/20/2022]
Abstract
Atherosclerosis, a chronic inflammatory disease of the medium- and large-sized arteries, is the main underlying cause of cardiovascular diseases (CVDs) most often leading to a myocardial infarction or stroke. However, atherosclerosis can also develop without this clinical manifestation. The pathophysiology of atherosclerosis is very complex and consists of many cells and molecules interacting with each other. Over the last years, chemokines (small 8-12 kDa cytokines with chemotactic properties) have been identified as key players in atherogenesis. However, this remains a very active and dynamic field of research. Here, we will give an overview of the current knowledge about the involvement of chemokines in all phases of atherosclerotic lesion development. Furthermore, we will focus on two chemokines that recently have been associated with atherogenesis, CXCL12, and macrophage migration inhibitory factor (MIF). Both chemokines play a crucial role in leukocyte recruitment and arrest, a critical step in atherosclerosis development. MIF has shown to be a more pro-inflammatory and thus pro-atherogenic chemokine, instead CXCL12 seems to have a more protective function. However, results about this protective role are still quite debatable. Future research will further elucidate the precise role of these chemokines in atherosclerosis and determine the potential of chemokine-based therapies.
Collapse
Affiliation(s)
- Emiel P C van der Vorst
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Pettenkoferstr 9, 80336, Munich, Germany.
| | - Yvonne Döring
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Pettenkoferstr 9, 80336, Munich, Germany.
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Pettenkoferstr 9, 80336, Munich, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
49
|
Role of chemokine receptors CXCR4 and CXCR7 for platelet function. Biochem Soc Trans 2015; 43:720-6. [PMID: 26551719 DOI: 10.1042/bst20150113] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Indexed: 02/07/2023]
Abstract
Platelet-derived SDF-1α (stromal cell derived factor-α) mediates inflammation, immune defence and repair mechanisms at site of tissue injury. This review summarizes the relative expression of CXC chemokine receptor 4 (CXCR4) and CXCR7 in platelets, their dynamic trafficking in presence of ligands like chemokine C-X-C-motif ligand 11 (CXCL11), CXCL12 and MIF (macrophage migration inhibitory factor); how these receptors differentially mediate the functional and survival response to the chemokines CXCL11, CXCL12 and MIF. We further elaborate and emphasize the prognostic significance of platelet surface expression of CXCR4-CXCR7 in the context of coronary artery disease (CAD). SDF-1α/CXCL12, CXCL11, MIF effects mediated through CXCR4 and CXCR7 may play a regulatory role at the site of vascular and tissue inflammation, immune defence and repair where activated platelets reach as forerunners and function as critical players.
Collapse
|
50
|
van der Vorst EPC, Döring Y, Weber C. MIF and CXCL12 in Cardiovascular Diseases: Functional Differences and Similarities. Front Immunol 2015; 6:373. [PMID: 26257740 PMCID: PMC4508925 DOI: 10.3389/fimmu.2015.00373] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/07/2015] [Indexed: 12/11/2022] Open
Abstract
Coronary artery disease (CAD) as part of the cardiovascular diseases is a pathology caused by atherosclerosis, a chronic inflammatory disease of the vessel wall characterized by a massive invasion of lipids and inflammatory cells into the inner vessel layer (intima) leading to the formation of atherosclerotic lesions; their constant growth may cause complications such as flow-limiting stenosis and plaque rupture, the latter triggering vessel occlusion through thrombus formation. Pathophysiology of CAD is complex and over the last years many players have entered the picture. One of the latter being chemokines (small 8-12 kDa cytokines) and their receptors, known to orchestrate cell chemotaxis and arrest. Here, we will focus on the chemokine CXCL12, also known as stromal cell-derived factor 1 (SDF-1) and the chemokine-like function chemokine, macrophage migration-inhibitory factor (MIF). Both are ubiquitously expressed and highly conserved proteins and play an important role in cell homeostasis, recruitment, and arrest through binding to their corresponding chemokine receptors CXCR4 (CXCL12 and MIF), ACKR3 (CXCL12), and CXCR2 (MIF). In addition, MIF also binds to the receptor CD44 and the co-receptor CD74. CXCL12 has mostly been studied for its crucial role in the homing of (hematopoietic) progenitor cells in the bone marrow and their mobilization into the periphery. In contrast to CXCL12, MIF is secreted in response to diverse inflammatory stimuli, and has been associated with a clear pro-inflammatory and pro-atherogenic role in multiple studies of patients and animal models. Ongoing research on CXCL12 points at a protective function of this chemokine in atherosclerotic lesion development. This review will focus on the role of CXCL12 and MIF and their differences and similarities in CAD of high risk patients.
Collapse
Affiliation(s)
- Emiel P C van der Vorst
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich , Munich , Germany
| | - Yvonne Döring
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich , Munich , Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich , Munich , Germany ; German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance , Munich , Germany ; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht , Netherlands
| |
Collapse
|