1
|
Rezkitha YAA, Panenggak NSR, Lusida MI, Rianda RV, Mahmudah I, Pradana AD, Uchida T, Miftahussurur M. Detecting colorectal cancer using genetic and epigenetic biomarkers: screening and diagnosis. J Med Life 2024; 17:4-14. [PMID: 38737656 PMCID: PMC11080499 DOI: 10.25122/jml-2023-0269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/01/2023] [Indexed: 05/14/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most frequent types of cancer, with high incidence rates and mortality globally. The extended timeframe for developing CRC allows for the potential screening and early identification of the disease. Furthermore, studies have shown that survival rates for patients with cancer are increased when diagnoses are made at earlier stages. Recent research suggests that the development of CRC, including its precancerous lesion, is influenced not only by genetic factors but also by epigenetic variables. Studies suggest epigenetics plays a significant role in cancer development, particularly CRC. While this approach is still in its early stages and faces challenges due to the variability of CRC, it shows promise as a potential method for understanding and addressing the disease. This review examined the current evidence supporting genetic and epigenetic biomarkers for screening and diagnosis. In addition, we also discussed the feasibility of translating these methodologies into clinical settings. Several markers show promising potential, including the methylation of vimentin (VIM), syndecan-2 (SDC2), and septin 9 (SEPT9). However, their application as screening and diagnostic tools, particularly for early-stage CRC, has not been fully optimized, and their effectiveness needs validation in large, multi-center patient populations. Extensive trials and further investigation are required to translate genetic and epigenetic biomarkers into practical clinical use. biomarkers, diagnostic biomarkers.
Collapse
Affiliation(s)
- Yudith Annisa Ayu Rezkitha
- Doctoral Program of Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Nur Syahadati Retno Panenggak
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Maria Inge Lusida
- Institute of Tropical Disease, Indonesia-Japan Collaborative Research Center for Emerging and Re-Emerging Infectious Diseases, Universitas Airlangga, Surabaya, Indonesia
| | - Raissa Virgy Rianda
- Department of Child Health, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Isna Mahmudah
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
- Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Aditya Doni Pradana
- Department of Emergency Services, Kendal Islamic Hospital, Kendal, Indonesia
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Public Health and Nursing, Gadjah Mada University, Yogyakarta, Indonesia
| | - Tomohisa Uchida
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Muhammad Miftahussurur
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
- Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine-Dr Soetomo Teaching Hospital, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
2
|
Yang Y, Liao C, Yang Q, Li Y, Tang Y, Xu B. Role of hypermethylated SLC5A8 in follicular thyroid cancer diagnosis and prognosis prediction. World J Surg Oncol 2023; 21:367. [PMID: 38007446 PMCID: PMC10675931 DOI: 10.1186/s12957-023-03240-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/13/2023] [Indexed: 11/27/2023] Open
Abstract
OBJECTIVE Thyroid cancer is one of the most frequently reported endocrine system malignancies. It is difficult to distinguish follicular thyroid cancer (FTC) from follicular thyroid adenoma (FTA) during pathological diagnosis in patients without lymph nodes or distant metastases. Therefore, we conducted a retrospective study to investigate the significance of SLC5A8 methylation and expression in the diagnosis and prognosis of FTC. METHODS We used 165 tissue samples, including FTC (n = 58), thyroid tumors of uncertain malignant potential (TT-UMP, n = 40), and FTA (n = 67), to explore the differences in SLC5A8 methylation and mRNA transcription in different pathological types. Survival analysis was conducted to evaluate the recurrence rate at a 5-year follow-up. RESULTS The SLC5A8 methylation positive rate was higher in patients with thyroglobulin ≥ 40 μg/l and Chol ≥ 5.17 mmol/l, and it was higher in patients with FTC (n = 42, 72.4%) than those with FTA (n = 27, 40.3%) and TT-UMP (n = 23, 57.5%). The relative concentration of SLC5A8 mRNA was lower in patients with FTC than in those with FTA (p < 0.05). At 5-year follow-ups, patients who were SLC5A8 methylation-positive had a higher recurrence rate than those who were methylation-negative. CONCLUSIONS Our current study indicates that SLC5A8 gene methylation occurs more commonly in patients with FTC than in those with FTA. The differences in SLC5A8 methylation and expression among FTA, FTC, and TT-UMP provide an important basis for further exploration of epigenetic changes in the occurrence, development, and prognosis of thyroid cancer. Our findings need to be further validated in larger populations with long-term follow-up in the future.
Collapse
Affiliation(s)
- Yan Yang
- Department of Oncology and Hematology, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Chenjin Liao
- Department of Ultrasound, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Qian Yang
- Department of General Surgery, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Yuxia Li
- Department of Nuclear Medicine, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Yunxiang Tang
- Department of Nuclear Medicine, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Bin Xu
- Department of Nuclear Medicine, Chongqing University Central Hospital, Chongqing, 400014, China.
| |
Collapse
|
3
|
Li Y, Li B, Jiang R, Liao L, Zheng C, Yuan J, Zeng L, Hu K, Zhang Y, Mei W, Hong Z, Xiao B, Kong L, Han K, Tang J, Jiang W, Pan Z, Zhang S, Ding P. A novel screening method of DNA methylation biomarkers helps to improve the detection of colorectal cancer and precancerous lesions. Cancer Med 2023; 12:20626-20638. [PMID: 37881109 PMCID: PMC10660402 DOI: 10.1002/cam4.6511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/22/2023] [Accepted: 08/30/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common malignancies, and early detection plays a crucial role in enhancing curative outcomes. While colonoscopy is considered the gold standard for CRC diagnosis, noninvasive screening methods of DNA methylation biomarkers can improve the early detection of CRC and precancerous lesions. METHODS Bioinformatics and machine learning methods were used to evaluate CRC-related genes within the TCGA database. By identifying the overlapped genes, potential biomarkers were selected for further validation. Methylation-specific PCR (MSP) was utilized to identify the associated genes as biomarkers. Subsequently, a real-time PCR assay for detecting the presence of neoplasia or cancer of the colon or rectum was established. This screening approach involved the recruitment of 978 participants from five cohorts. RESULTS The genes with the highest specificity and sensitivity were Septin9, AXL4, and SDC2. A total of 940 participants were involved in the establishment of the final PCR system and the subsequent performance evaluation test. A multiplex TaqMan real-time PCR system has been illustrated to greatly enhance the ability to detect precancerous lesions and achieved an accuracy of 87.8% (95% CI 82.9-91.5), a sensitivity of 82.7% (95% CI 71.8-90.1), and a specificity of 90.1% (95% CI 84.3-93.9). Moreover, the detection rate of precancerous lesions of this assay reached 55.0% (95% CI 38.7-70.4). CONCLUSION The combined detection of the methylation status of SEPT9, SDC2, and ALX4 in plasma holds the potential to further enhance the sensitivity of CRC detection.
Collapse
Affiliation(s)
- Yuan Li
- Department of Colorectal SurgerySun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Bin Li
- Beijing BGI‐GBI Biotech Co., LtdBeijingChina
| | - Rou Jiang
- Department of Cancer Prevention CenterSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Leen Liao
- Department of Colorectal SurgerySun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouChina
| | | | - Jie Yuan
- Department of General SurgeryThe Fifth Affiliated Hospital of Southern Medical UniversityGuangzhouChina
| | | | - Kunling Hu
- Beijing BGI‐GBI Biotech Co., LtdBeijingChina
| | | | - Weijian Mei
- Department of Colorectal SurgerySun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Zhigang Hong
- Department of Colorectal SurgerySun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Binyi Xiao
- Department of Colorectal SurgerySun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Lingheng Kong
- Department of Colorectal SurgerySun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Kai Han
- Department of Colorectal SurgerySun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Jinghua Tang
- Department of Colorectal SurgerySun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Wu Jiang
- Department of Colorectal SurgerySun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Zhizhong Pan
- Department of Colorectal SurgerySun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouChina
| | | | - Peirong Ding
- Department of Colorectal SurgerySun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouChina
| |
Collapse
|
4
|
Li J, Sun Y, Cao L, Wang F. Correlation of NPDC1 Expression and Perineural Invasion Status with Clinicopathological Features in Patients with Colon Cancer. Int J Gen Med 2023; 16:4549-4563. [PMID: 37822345 PMCID: PMC10563778 DOI: 10.2147/ijgm.s428590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023] Open
Abstract
Background Colon cancer is a prevalent gastrointestinal malignancy that often exhibits distant metastasis, hindering the effectiveness of surgical interventions. In addition to well-known hematogenous and lymphatic metastasis, perineural invasion (PNI) has emerged as a significant mode of distant metastasis in colon tumors. PNI is closely associated with oncologic pain in advanced cancer patients, but the underlying mechanisms and associated biomarkers, which might be the novel therapeutic targets, remain poorly understood. Methods In this study, we employed large databases and bioinformatics methods to identify genes strongly linked to PNI in colon cancer and investigated their involvement in tumor nerve invasion, progression mechanisms, and chemotherapy resistance. Immunohistochemical techniques were utilized to validate the expression of target genes in 384 colon cancer tissues, and their expression was correlated with clinicopathological characteristics and patient survival data in our hospital. Furthermore, we conducted a comprehensive literature review to explore the potential functions of the target genes and their associated genes. Results Our screening revealed a significant correlation between neural proliferation differentiation and control-1 (NPDC1) expression and patient prognosis, suggesting a potential association with neural infiltration in colon cancer. Additionally, NPDC1 may promote tumorigenesis, progression, and chemoresistance through various related pathways. Conclusion Our study provides novel insights into the utility of NPDC1 as a predictive marker for PNI status, disease-free survival, and overall survival in patients with colon cancer, highlighting the prevalence of NPDC1 overexpression in patients with PNI in colon cancer.
Collapse
Affiliation(s)
- Jiannan Li
- Department of Medical Microbiology, College of Basic Medical Sciences, Jilin University, Changchun, People’s Republic of China
- Department of Colorectal and Anal Surgery, Jilin University Second Hospital, Changchun, People’s Republic of China
| | - Yao Sun
- Department of Colorectal and Anal Surgery, Jilin University Second Hospital, Changchun, People’s Republic of China
| | - Lanqing Cao
- Department of Pathology, Jilin University Second Hospital, Changchun, People’s Republic of China
| | - Fang Wang
- Department of Medical Microbiology, College of Basic Medical Sciences, Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
5
|
Mohanraj L, Lapato DM, Toor A, Swift-Scanlan T. DNA Methylation Research in Autologous Hematopoietic Stem Cell Transplant Population. Biol Res Nurs 2023; 25:220-226. [PMID: 36242509 DOI: 10.1177/10998004221132251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Despite increased sophistication in DNA methylation (DNAm) measurement and methods, conducting studies in specific populations such as the hematopoietic stem cell transplant (HCT) population, presents unique challenges and study design considerations. In this article, we explain the motivation for investigating DNAm in the HCT population, highlighting important study design features and key findings in a longitudinal prospective pilot study of DNAm in 32 patients undergoing autologous HCT in Central Virginia, USA. We also discuss limitations and challenges to generating robust results. We observed that HCT does not prevent high-quality DNA from being extracted from whole blood for DNAm research and that longitudinal prospective studies that span pre- and 2-months post-HCT are feasible. Critically, we did not observe significant impacts of cancer diagnosis, time since transplant, age, or chromosomal sex on overall DNAm data dimensionality. These observations demonstrate that while extreme care is required to ensure generalizable, accurate, and interpretable results, researchers should not avoid HCT-DNAm research simply for fear that the transplant procedure or presence of a cancer diagnosis will prevent meaningful conclusions from being drawn. DNAm is an attractive biomarker that is understudied in patients undergoing HCT and needs to expand to improve precise prediction of HCT outcomes.
Collapse
Affiliation(s)
- Lathika Mohanraj
- Department of Adult Health and Nursing Systems, 16197VCU School of Nursing, Richmond, VA, USA
| | - Dana M Lapato
- Department of Human and Molecular Genetics, VCU School of Medicine, Richmond, VA, USA
| | - Amir Toor
- Department of Internal Medicine, VCU School of Medicine, Richmond, VA, USA
| | - Theresa Swift-Scanlan
- Endowed Professor and Director, Biobehavioral Research Lab, 16197VCU School of Nursing, Richmond, VA, USA
| |
Collapse
|
6
|
Fu Y, Zhang L, Xing Y, Deng S. Quantitative analysis of DNA methylation using sequence-specific, real-time loop-mediated isothermal amplification. Anal Chim Acta 2022; 1235:340535. [DOI: 10.1016/j.aca.2022.340535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/26/2022] [Accepted: 10/16/2022] [Indexed: 11/01/2022]
|
7
|
Rademakers G, Massen M, Koch A, Draht MX, Buekers N, Wouters KAD, Vaes N, De Meyer T, Carvalho B, Meijer GA, Herman JG, Smits KM, van Engeland M, Melotte V. Identification of DNA methylation markers for early detection of CRC indicates a role for nervous system-related genes in CRC. Clin Epigenetics 2021; 13:80. [PMID: 33858496 PMCID: PMC8048074 DOI: 10.1186/s13148-021-01067-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/04/2021] [Indexed: 12/17/2022] Open
Abstract
Purpose Colonoscopy and the fecal immunochemical test (FIT) are currently the most widely used screening modalities for colorectal cancer (CRC), however, both with their own limitations. Here we aim to identify and validate stool-based DNA methylation markers for the early detection of CRC and investigate the biological pathways prone to DNA methylation. Methods DNA methylation marker discovery was performed using The Cancer Genome Atlas (TCGA) colon adenocarcinoma data set consisting of normal and primary colon adenocarcinoma tissue. The performance of the five best candidate markers and a previously identified marker, NDRG4, was evaluated on tissues and whole stool samples of healthy subjects and CRC patients using quantitative MSP assays. The results were compared and combined with FIT data. Finally, pathway and gene ontology enrichment analyses were performed using ToppFun, GOrilla and clusterProfiler. Results GDNF, HAND2, SLC35F3, SNAP91 and SORCS1 were ranked as the best performing markers. Gene combinations of all five markers, NDRG4 and FIT were evaluated to establish the biomarker panel with the highest diagnostic potential, resulting in the identification of GDNF/SNAP91/NDRG4/FIT as the best performing marker panel. Pathway and gene ontology enrichment analyses revealed that genes associated with the nervous system were enriched in the set of best performing CRC-specific biomarkers. Conclusion In silico discovery analysis using TCGA-derived data yielded a novel DNA-methylation-based assay for the early detection of CRC, potentially improving current screening modalities. Additionally, nervous system-related pathways were enriched in the identified genes, indicating an epigenetic regulation of neuronal genes in CRC. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01067-9.
Collapse
Affiliation(s)
- Glenn Rademakers
- Department of Pathology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Maartje Massen
- Department of Pathology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Alexander Koch
- Department of Pathology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Muriel X Draht
- Department of Pathology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Nikkie Buekers
- Department of Pathology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Kim A D Wouters
- Department of Pathology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Nathalie Vaes
- Department of Pathology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Tim De Meyer
- Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent, Belgium
| | - Beatriz Carvalho
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Gerrit A Meijer
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - James G Herman
- The Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Kim M Smits
- Department of Pathology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Manon van Engeland
- Department of Pathology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Veerle Melotte
- Department of Pathology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 616, 6200 MD, Maastricht, The Netherlands. .,Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
8
|
Laugsand EA, Brenne SS, Skorpen F. DNA methylation markers detected in blood, stool, urine, and tissue in colorectal cancer: a systematic review of paired samples. Int J Colorectal Dis 2021; 36:239-251. [PMID: 33030559 PMCID: PMC7801356 DOI: 10.1007/s00384-020-03757-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/17/2020] [Indexed: 02/04/2023]
Abstract
PURPOSE Methylated cell-free DNA in liquid biopsies are promising non-invasive biomarkers for colorectal cancer (CRC). Optimal markers would have high sensitivity and specificity for early detection of CRC and could be detected in more than one type of material from the patient. We systematically reviewed the literature on DNA methylation markers of colorectal cancer, detected in more than one type of material, regarding their potential as contributors to a panel for screening and follow-up of CRC. METHODS The databases MEDLINE, Web of Science, and Embase were systematically searched. Data extraction and review was performed by two authors independently. Agreement between methylation status in tissue and other materials (blood/stool/urine) was analyzed using the McNemar test and Cohen's kappa. RESULTS From the 51 included studies, we identified seven single markers with sensitivity ≥ 75% and specificity ≥ 90% for CRC. We also identified one promising plasma panel and two stool panels. The correspondence of methylation status was evaluated as very good for four markers, but only marginal for most of the other markers investigated (12 of 21). CONCLUSION The included studies reported only some of the variables and markers of interest and included few patients. Hence, a meta-analysis was not possible at this point. Larger, prospective studies must be designed to study the discordant detection of markers in tissue and liquid biopsies. When reporting their findings, such studies should use a standardized format.
Collapse
Affiliation(s)
- Eivor Alette Laugsand
- Department of Surgery, Levanger Hospital, Nord-Trøndelag Hospital trust, N-7600, Levanger, Norway.
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), N-7491, Trondheim, Norway.
| | - Siv Sellæg Brenne
- Department of Surgery, Levanger Hospital, Nord-Trøndelag Hospital trust, N-7600, Levanger, Norway
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), N-7491, Trondheim, Norway
| | - Frank Skorpen
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), N-7491, Trondheim, Norway
| |
Collapse
|
9
|
C8orf48 inhibits the tumorigenesis of colorectal cancer by regulating the MAPK signaling pathway. Life Sci 2020; 266:118872. [PMID: 33309715 DOI: 10.1016/j.lfs.2020.118872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 11/22/2022]
Abstract
AIMS Colorectal cancer (CRC) is a leading cause of cancer-related death globally. Thus, in this study, we aimed to investigate chromosome 8 open reading frame 48 (C8orf48) as a biomarker for early detection of CRC. MAIN METHODS RNA expression and methylation profiles were downloaded from The Cancer Genome Atlas (TCGA) database. Cell proliferation, migration and invasion assays were performed to confirm the function of C8orf48 in CRC cells. Dual-luciferase reporter assay was used to identify that C8orf48 was the direct target of miR-556. Genomics of Drug Sensitivity in Cancer (GDSC) database, gene set enrichment analysis (GSEA) and western blot analysis were performed to explore the mechanism of C8orf48. KEY FINDINGS we found that C8orf48 is down-regulated in clinical samples of CRC tissues. Enrichment analysis showed that C8orf48 is associated with methylation biomarkers in CRC, and TCGA database confirmed that the methylation of C8orf48 is up-regulated in the early stage of CRC. We further revealed that the overexpression of C8orf48 decreased CRC cell proliferation, migration and invasion. Luciferase reporter indicated that C8orf48 was the direct target of the oncogene miR-556. Additionally, we used GDSC database, GSEA database and western blot analysis to demonstrate that C8orf48 plays a suppressor role in CRC by inhibiting MAPK signaling pathway. SIGNIFICANCE C8orf48 was identified as a biomarker for early detection of CRC for the first time, and might provide novel information for CRC prediction and therapy.
Collapse
|
10
|
Wang Y, Franks JM, Whitfield ML, Cheng C. BioMethyl: an R package for biological interpretation of DNA methylation data. Bioinformatics 2020; 35:3635-3641. [PMID: 30799505 PMCID: PMC6761945 DOI: 10.1093/bioinformatics/btz137] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 01/25/2019] [Accepted: 02/22/2019] [Indexed: 12/16/2022] Open
Abstract
Motivation The accumulation of publicly available DNA methylation datasets has resulted in the need for tools to interpret the specific cellular phenotypes in bulk tissue data. Current approaches use either single differentially methylated CpG sites or differentially methylated regions that map to genes. However, these approaches may introduce biases in downstream analyses of biological interpretation, because of the variability in gene length. There is a lack of approaches to interpret DNA methylation effectively. Therefore, we have developed computational models to provide biological interpretation of relevant gene sets using DNA methylation data in the context of The Cancer Genome Atlas. Results We illustrate that Biological interpretation of DNA Methylation (BioMethyl) utilizes the complete DNA methylation data for a given cancer type to reflect corresponding gene expression profiles and performs pathway enrichment analyses, providing unique biological insight. Using breast cancer as an example, BioMethyl shows high consistency in the identification of enriched biological pathways from DNA methylation data compared to the results calculated from RNA sequencing data. We find that 12 out of 14 pathways identified by BioMethyl are shared with those by using RNA-seq data, with a Jaccard score 0.8 for estrogen receptor (ER) positive samples. For ER negative samples, three pathways are shared in the two enrichments with a slight lower similarity (Jaccard score = 0.6). Using BioMethyl, we can successfully identify those hidden biological pathways in DNA methylation data when gene expression profile is lacking. Availability and implementation BioMethyl R package is freely available in the GitHub repository (https://github.com/yuewangpanda/BioMethyl). Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yue Wang
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Jennifer M Franks
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.,Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Michael L Whitfield
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.,Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Chao Cheng
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.,Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.,Norris Cotton Cancer Center, Lebanon, NH, USA.,Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
11
|
Liu X, Wen J, Li C, Wang H, Wang J, Zou H. High-Yield Methylation Markers for Stool-Based Detection of Colorectal Cancer. Dig Dis Sci 2020; 65:1710-1719. [PMID: 31720923 DOI: 10.1007/s10620-019-05908-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Many methylation markers associated with colorectal cancer have been reported, but few of them are actually used in clinical practice. AIMS This study was designed to identify promising methylation markers for stool-based detection of colorectal cancer. METHODS We first tested 324 reported methylated genes in colorectal cancer cell lines. A total of 111 heavily methylated genes were selected for further evaluation with a pilot set of colorectal cancer and adjacent normal tissues. Ten high-yield methylated markers were further studied in 319 tissue samples. Eventually, the four best markers, namely methylated COL4A1, COL4A2, TLX2, and ITGA4, were validated in 240 stool samples. Methylation-specific PCR (MSP) and real-time MSP (qMSP) were employed for methylation detection. RESULTS After hierarchical selection, ten differentially methylated genes demonstrated high sensitivity and specificity for the detection of colorectal cancer in tissue. When validated in stool samples, the four with the best performance-COL4A1, COL4A2, TLX2, and ITGA4-were able to detect 82.5-92.5% of colorectal cancers and 41.6-58.4% of adenomas (≥ 1 cm) with specificity of 88.0-96.4%. The best combination, COL4A2 and TLX2, detected 91.3% of CRCs and 51.9% of advanced adenomas in stool with 97.6% specificity. CONCLUSIONS Methylated COL4A1, COL4A2, TLX2, and ITGA4 demonstrated high accuracy for the detection of colorectal neoplasms in stool. They are potentially valuable markers for the detection of colorectal cancer.
Collapse
Affiliation(s)
- Xianglin Liu
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Yuancun Erheng Road, Guangzhou, 510655, Guangdong, China
| | - Jialing Wen
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Yuancun Erheng Road, Guangzhou, 510655, Guangdong, China
| | - Chujun Li
- Digestive Endoscopy Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hui Wang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jianping Wang
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Yuancun Erheng Road, Guangzhou, 510655, Guangdong, China.,Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hongzhi Zou
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Yuancun Erheng Road, Guangzhou, 510655, Guangdong, China. .,Creative Biosciences (Guangzhou) CO., Ltd., Guangzhou, Guangdong, China.
| |
Collapse
|
12
|
Bagheri H, Mosallaei M, Bagherpour B, Khosravi S, Salehi AR, Salehi R. TFPI2 and NDRG4 gene promoter methylation analysis in peripheral blood mononuclear cells are novel epigenetic noninvasive biomarkers for colorectal cancer diagnosis. J Gene Med 2020; 22:e3189. [PMID: 32196834 DOI: 10.1002/jgm.3189] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND As a result of the growing prevalence of colorectal cancer (CRC), new screening and early detection methods are required. Among the novel biomarkers, DNA methylation has emerged as a high-potential diagnosis/screening molecular marker. The present study aimed to assess non-invasive early diagnosis of CRC by examining promoter methylation of TFPI2 and NDRG4 genes in peripheral blood mononuclear cells (PBMCs). METHODS Fifty CRC patients and 50 normal controls were recruited to the present study. Quantitative methylation of the promoter region of the TFPI2 and NDRG4 genes was analyzed in DNA extracted from PBMCs of all cases and control subjects using a methylation-quantification endonuclease-resistant DNA (MethyQESD) method. RESULTS The sensitivity and specificity of the TFPI2 gene for the diagnosis of CRC was 88% and 92%, respectively, and, for the NDRG4 gene, it was 86% and 92%, respectively. The methylation range for the TFPI2 gene was 43.93% and 11.56% in patients and controls, respectively, and, for the NDRG4 gene, it was 38.8% in CRC patients and 12.23% in healthy controls (p < 0.001). In addition, we observed that a higher percentage of methylation was correlated with the higher stage of CRC. CONCLUSIONS The results of the present study reveal that PBMCs are reliable sources of methylation analysis for CRC screening. Furthermore, the TFPI2 and NDRG4 genes provide sufficiently high sensitivity and specificity to be nominated for use in a novel noninvasive CRC screening method in PBMCs.
Collapse
Affiliation(s)
- Hadi Bagheri
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Meysam Mosallaei
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahram Bagherpour
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Gerfa Namayesh Azmayesh (GENAZMA) Science & Research Institute, Isfahan, Iran
| | - Sharifeh Khosravi
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ahmad Reza Salehi
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rasoul Salehi
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Gerfa Namayesh Azmayesh (GENAZMA) Science & Research Institute, Isfahan, Iran
| |
Collapse
|
13
|
Hsu CH, Hsiao CW, Sun CA, Wu WC, Yang T, Hu JM, Liao YC, Huang CH, Chen CY, Lin FH, Chou YC. Multiple gene promoter methylation and clinical stage in adjacent normal tissues: Effect on prognosis of colorectal cancer in Taiwan. Sci Rep 2020; 10:145. [PMID: 31924802 PMCID: PMC6954240 DOI: 10.1038/s41598-019-56691-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/16/2019] [Indexed: 12/16/2022] Open
Abstract
This study provide an insight that the panel genes methylation status in different clinical stage tended to reflect a different prognosis even in matched normal tissues, to clinical recommendation. We enrolled 153 colorectal cancer patients from a medical center in Taiwan and used the candidate gene approach to select five genes involved in carcinogenesis pathways. We analyzed the relationship between DNA methylation with different cancer stages and the prognostic outcome. There were significant trends of increasing risk of 5-year time to progression and event-free survival of subjects with raising number of hypermethylation genes both in normal tissue and tumor tissue. The group with two or more genes with aberrant methylation in the advanced cancer stages (Me/advanced) had lower 5-year event-free survival among patients with colorectal cancer in either normal or tumor tissue. The adjusted hazard ratios in the group with two or more genes with aberrant methylation with advanced cancer stages (Me/advanced) were 8.04 (95% CI, 2.80–23.1; P for trend <0.01) and 8.01 (95% CI, 1.92–33.4; P for trend <0.01) in normal and tumor tissue, respectively. DNA methylation status was significantly associated with poor prognosis outcome. This finding in the matched normal tissues of colorectal cancer patients could be an alternative source of prognostic markers to assist clinical decision making.
Collapse
Affiliation(s)
- Chih-Hsiung Hsu
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Teaching Office, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Cheng-Wen Hsiao
- Division of Colorectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Chien-An Sun
- Department of Public Health, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan, Republic of China.,Big Data Research Center, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan, Republic of China
| | - Wen-Chih Wu
- School of Public Health, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Department of Surgery, Suao and Yuanshan branches of Taipei Veterans General Hospital, Yilan County, Taiwan, Republic of China
| | - Tsan Yang
- Department of Health Business Administration, Meiho University, Pingtung County, Taiwan, Republic of China
| | - Je-Ming Hu
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Division of Colorectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Adjunct Instructor, School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Yu-Chan Liao
- School of Public Health, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Chi-Hua Huang
- School of Public Health, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Chao-Yang Chen
- Division of Colorectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Adjunct Instructor, School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Fu-Huang Lin
- School of Public Health, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Yu-Ching Chou
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China. .,School of Public Health, National Defense Medical Center, Taipei, Taiwan, Republic of China.
| |
Collapse
|
14
|
Babaei K, Khaksar R, Zeinali T, Hemmati H, Bandegi A, Samidoust P, Ashoobi MT, Hashemian H, Delpasand K, Talebinasab F, Naebi H, Mirpour SH, Keymoradzadeh A, Norollahi SE. Epigenetic profiling of MUTYH, KLF6, WNT1 and KLF4 genes in carcinogenesis and tumorigenesis of colorectal cancer. Biomedicine (Taipei) 2019; 9:22. [PMID: 31724937 PMCID: PMC6855188 DOI: 10.1051/bmdcn/2019090422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 09/02/2019] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) is distinguished by epigenetic elements like DNA methylation, histone modification, histone acetylation and RNA remodeling which is related with genomic instability and tumor initiation. Correspondingly, as a main epigenetic regulation, DNA methylation has an impressive ability in order to be used in CRC targeted therapy. Meaningly, DNA methylation is identified as one of most important epigenetic regulators in gene expression and is considered as a notable potential driver in tumorigenesis and carcinogenesis through gene-silencing of tumor suppressors genes. Abnormal methylation situation, even in the level of promoter regions, does not essentially change the gene expression levels, particularly if the gene was become silenced, leaving the mechanisms of methylation without any response. According to the methylation situation which has a strong eagerness to be highly altered on CpG islands in carcinogenesis and tumorigenesis, considering its epigenetic fluctuations in finding new biomarkers is of great importance. Modifications in DNA methylation pattern and also enrichment of methylated histone signs in the promoter regions of some certain genes like MUTYH, KLF4/6 and WNT1 in different signaling pathways could be a notable key contributors to the upregulation of tumor initiation in CRC. These epigenetic alterations could be employed as a practical diagnostic biomarkers for colorectal cancer. In this review, we will be discuss these fluctuations of MUTYH, KLF4/6 and WNT1 genes in CRC.
Collapse
Affiliation(s)
- Kosar Babaei
- Department of Biology, Islamic Azad University of Tonekabon Branch, Tonekabon, Iran
| | - Roya Khaksar
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Tahereh Zeinali
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Hossein Hemmati
- Razi Clinical Research Development Unit, Guilan University of Medical Sciences, Rasht, Iran
| | - Ahmadreza Bandegi
- Department of Biochemistry, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Pirouz Samidoust
- Razi Clinical Research Development Unit, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Taghi Ashoobi
- Department of Surgery, Poursina Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Hooman Hashemian
- Pediatric Diseases Research Center,Guilan University of Medical ciences, Rasht, Iran
| | - Kourosh Delpasand
- School of Medicine, Kurdistan University of Mdical Ciences, Sanandaj, Iran
| | - Fereshteh Talebinasab
- Department of Biochemistry, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Hoora Naebi
- Department of Biochemistry, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Seyed Hossein Mirpour
- Department of Hematology and Oncology, Razi hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Arman Keymoradzadeh
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyedeh Elham Norollahi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
15
|
Kasprzak A, Adamek A. Insulin-Like Growth Factor 2 (IGF2) Signaling in Colorectal Cancer-From Basic Research to Potential Clinical Applications. Int J Mol Sci 2019; 20:ijms20194915. [PMID: 31623387 PMCID: PMC6801528 DOI: 10.3390/ijms20194915] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers in men and women worldwide as well as is the leading cause of death in the western world. Almost a third of the patients has or will develop liver metastases. While genetic as well as epigenetic mechanisms are important in CRC pathogenesis, the basis of the most cases of cancer is unknown. High spatial and inter-patient variability of the molecular alterations qualifies this cancer in the group of highly heterogeneous tumors, which makes it harder to elucidate the mechanisms underlying CRC progression. Determination of highly sensitive and specific early diagnosis markers and understanding the cellular and molecular mechanism(s) of cancer progression are still a challenge of the current era in oncology of solid tumors. One of the accepted risk factors for CRC development is overexpression of insulin-like growth factor 2 (IGF2), a 7.5-kDa peptide produced by liver and many other tissues. IGF2 is the first gene discovered to be parentally imprinted. Loss of imprinting (LOI) or aberrant imprinting of IGF2 could lead to IGF2 overexpression, increased cell proliferation, and CRC development. IGF2 as a mitogen is associated with increased risk of developing colorectal neoplasia. Higher serum IGF2 concentration as well as its tissue overexpression in CRC compared to control are associated with metastasis. IGF2 protein was one of the three candidates for a selective marker of CRC progression and staging. Recent research indicates dysregulation of different micro- and long non-coding RNAs (miRNAs and lncRNAs, respectively) embedded within the IGF2 gene in CRC carcinogenesis, with some of them indicated as potential diagnostic and prognostic CRC biomarkers. This review systematises the knowledge on the role of genetic and epigenetic instabilities of IGF2 gene, free (active form of IGF2) and IGF-binding protein (IGFBP) bound (inactive form), paracrine/autocrine secretion of IGF2, as well as mechanisms of inducing dysplasia in vitro and tumorigenicity in vivo. We have tried to answer which molecular changes of the IGF2 gene and its regulatory mechanisms have the most significance in initiation, progression (including liver metastasis), prognosis, and potential anti-IGF2 therapy in CRC patients.
Collapse
Affiliation(s)
- Aldona Kasprzak
- Department of Histology and Embryology, University of Medical Sciences, Swiecicki Street 6, 60-781 Poznan, Poland.
| | - Agnieszka Adamek
- Department of Infectious Diseases, Hepatology and Acquired Immunodeficiencies, University of Medical Sciences, Szwajcarska Street 3, 61-285 Poznan, Poland.
| |
Collapse
|
16
|
Fiedler D, Hirsch D, El Hajj N, Yang HH, Hu Y, Sticht C, Nanda I, Belle S, Rueschoff J, Lee MP, Ried T, Haaf T, Gaiser T. Genome-wide DNA methylation analysis of colorectal adenomas with and without recurrence reveals an association between cytosine-phosphate-guanine methylation and histological subtypes. Genes Chromosomes Cancer 2019; 58:783-797. [PMID: 31334584 DOI: 10.1002/gcc.22787] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 12/24/2022] Open
Abstract
Aberrant methylation of DNA is supposed to be a major and early driver of colonic adenoma development, which may result in colorectal cancer (CRC). Although gene methylation assays are used already for CRC screening, differential epigenetic alterations of recurring and nonrecurring colorectal adenomas have yet not been systematically investigated. Here, we collected a sample set of formalin-fixed paraffin-embedded colorectal low-grade adenomas (n = 72) consisting of primary adenomas without and with recurrence (n = 59), recurrent adenomas (n = 10), and normal mucosa specimens (n = 3). We aimed to unveil differentially methylated CpG positions (DMPs) across the methylome comparing not only primary adenomas without recurrence vs primary adenomas with recurrence but also primary adenomas vs recurrent adenomas using the Illumina Human Methylation 450K BeadChip array. Unsupervised hierarchical clustering exhibited a significant association of methylation patterns with histological adenoma subtypes. No significant DMPs were identified comparing primary adenomas with and without recurrence. Despite that, a total of 5094 DMPs (false discovery rate <0.05; fold change >10%) were identified in the comparisons of recurrent adenomas vs primary adenomas with recurrence (674; 98% hypermethylated), recurrent adenomas vs primary adenomas with and without recurrence (241; 99% hypermethylated) and colorectal adenomas vs normal mucosa (4179; 46% hypermethylated). DMPs in cytosine-phosphate-guanine (CpG) islands were frequently hypermethylated, whereas open sea- and shelf-regions exhibited hypomethylation. Gene ontology analysis revealed enrichment of genes associated with the immune system, inflammatory processes, and cancer pathways. In conclusion, our methylation data could assist in establishing a more robust and reproducible histological adenoma classification, which is a prerequisite for improving surveillance guidelines.
Collapse
Affiliation(s)
- David Fiedler
- Institute of Pathology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Daniela Hirsch
- Institute of Pathology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nady El Hajj
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany.,College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Doha, Qatar
| | - Howard H Yang
- High Dimension Data Analysis Group, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Yue Hu
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Carsten Sticht
- Center for Medical Research, Bioinformatic and Statistic, Medical Faculty Mannheim, Mannheim, Germany
| | - Indrajit Nanda
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | - Sebastian Belle
- Department of Internal Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Central Interdisciplinary Endoscopy Unit, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Maxwell P Lee
- High Dimension Data Analysis Group, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Thomas Ried
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | - Timo Gaiser
- Institute of Pathology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
17
|
Abstract
Over the last years, epigenetic changes, including DNA methylation and histone modifications detected in early tumorigenesis and cancer progression, have been proposed as biomarkers for cancer detection, tumor prognosis, and prediction to treatment response. Importantly for the clinical use of DNA methylation biomarkers, specific methylation signatures can be detected in many body fluids including serum/plasma samples. Several of these potential epigenetic biomarkers detected in women's cancers, colorectal cancers, prostate, pancreatic, gastric, and lung cancers are discussed. Studies conducted in breast cancer, for example, found that aberrant methylation detection of several genes in serum DNA and genome-wide epigenetic change could be used for early breast cancer diagnosis and prediction of breast cancer risk. In colorectal cancers, numerous studies have been conducted to identify specific methylation markers important for CRC detection and in fact clinical assays evaluating the methylation status of SEPT19 gene and vimentin, became commercially available. Furthermore, some epigenetic changes detected in gastric washes have been suggested as potential circulating noninvasive biomarkers for the early detection of gastric cancers. For the early detection of prostate cancer, few epigenetic markers have shown a better sensitivity and specificity than serum PSA, indicating that the inclusion of these markers together with current screening tools, could improve early diagnosis and may reduce unnecessary repeat biopsies. Similarly, in pancreatic cancers, abnormal DNA methylation of several genes including NPTX2, have been suggested as a diagnostic biomarker. Epigenetic dysregulation was also observed in several tumor suppressor genes and miRNAs in lung cancer patients, suggesting the important role of these changes in cancer initiation and progression. In conclusion, epigenetic changes detected in biological fluids could play an essential role in the early detection of several cancer types and this may have a great impact for the cancer precision medicine field.
Collapse
|
18
|
Gargalionis AN, Basdra EK, Papavassiliou AG. Polycystins and Mechanotransduction in Human Disease. Int J Mol Sci 2019; 20:ijms20092182. [PMID: 31052533 PMCID: PMC6539061 DOI: 10.3390/ijms20092182] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 12/20/2022] Open
Abstract
Alterations in the process of mechanotransduction have been implicated in the pathogenesis of several diseases such as genetic diseases, osteoporosis, cardiovascular anomalies, and cancer. Several studies over the past twenty years have demonstrated that polycystins (polycystin-1, PC1; and polycystin-2, PC2) respond to changes of extracellular mechanical cues, and mediate pathogenic mechanotransduction and cyst formation in kidney cells. However, recent reports reveal the emergence of polycystins as key proteins that facilitate the transduction of mechano-induced signals in various clinical entities besides polycystic kidney disease, such as cancer, cardiovascular defects, bone loss, and deformations, as well as inflammatory processes like psoriasis. Herewith, we discuss data from recent studies that establish this role with potential clinical utility.
Collapse
Affiliation(s)
- Antonios N Gargalionis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Efthimia K Basdra
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| |
Collapse
|
19
|
Kacmarczyk TJ, Fall MP, Zhang X, Xin Y, Li Y, Alonso A, Betel D. "Same difference": comprehensive evaluation of four DNA methylation measurement platforms. Epigenetics Chromatin 2018; 11:21. [PMID: 29801521 PMCID: PMC5970534 DOI: 10.1186/s13072-018-0190-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 05/21/2018] [Indexed: 12/17/2022] Open
Abstract
Background DNA methylation in CpG context is fundamental to the epigenetic regulation of gene expression in higher eukaryotes. Changes in methylation patterns are implicated in many diseases, cellular differentiation, imprinting, and other biological processes. Techniques that enrich for biologically relevant genomic regions with high CpG content are desired, since, depending on the size of an organism’s methylome, the depth of sequencing required to cover all CpGs can be prohibitively expensive. Currently, restriction enzyme-based reduced representation bisulfite sequencing and its modified protocols are widely used to study methylation differences. Recently, Agilent Technologies, Roche NimbleGen, and Illumina have ventured to both reduce sequencing costs and capture CpGs of known biological relevance by marketing in-solution custom-capture hybridization platforms. We aimed to evaluate the similarities and differences of these four methods considering each platform targets approximately 10–13% of the human methylome. Results Overall, the regions covered per platform were as expected: targeted capture-based methods covered > 95% of their designed regions, whereas the restriction enzyme-based method covered > 70% of the expected fragments. While the total number of CpG loci shared by all methods was low, ~ 24% of any platform, the methylation levels of CpGs covered by all platforms were concordant. Annotation of CpG loci with genomic features revealed roughly the same proportions of feature annotations across the four platforms. Targeted capture methods comprise similar types and coverage of annotations and, relative to the targeted methods, the restriction enzyme method covers fewer promoters (~ 9%), CpG shores (~ 8%) and unannotated loci (~ 11%). Conclusions Although all methods are largely consistent in terms of covered CpG loci, the commercially available capture methods result in covering nearly all CpG sites in their target regions with few off-target loci and covering similar proportions of annotated CpG loci, the restriction-based enrichment results in more off-target and unannotated CpG loci. Quality of DNA is very important for restriction-based enrichment and starting material can be low. Conversely, quality of the starting material is less important for capture methods, and at least twice the amount of starting material is required. Pricing is marginally less for restriction-based enrichment, and the number of samples that can be prepared is not restricted to the number of capture reactions a kit supports. However, the advantage of capture libraries is the ability to custom design areas of interest. The choice of the technique would be decided by the number of samples, the quality and quantity of DNA available and the biological areas of interest since comparable data are obtained from all platforms. Electronic supplementary material The online version of this article (10.1186/s13072-018-0190-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thadeous J Kacmarczyk
- Division of Hematology/Oncology, Department of Medicine, Epigenomics Core Facility, Weill Cornell Medicine, New York, NY, USA.
| | - Mame P Fall
- Division of Hematology/Oncology, Department of Medicine, Epigenomics Core Facility, Weill Cornell Medicine, New York, NY, USA
| | - Xihui Zhang
- Division of Hematology/Oncology, Department of Medicine, Epigenomics Core Facility, Weill Cornell Medicine, New York, NY, USA
| | - Yuan Xin
- Division of Hematology/Oncology, Department of Medicine, Epigenomics Core Facility, Weill Cornell Medicine, New York, NY, USA
| | - Yushan Li
- Division of Hematology/Oncology, Department of Medicine, Epigenomics Core Facility, Weill Cornell Medicine, New York, NY, USA
| | - Alicia Alonso
- Division of Hematology/Oncology, Department of Medicine, Epigenomics Core Facility, Weill Cornell Medicine, New York, NY, USA
| | - Doron Betel
- Division of Hematology/Oncology, Department of Medicine, Epigenomics Core Facility, Weill Cornell Medicine, New York, NY, USA.,Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
20
|
Freitas M, Ferreira F, Carvalho S, Silva F, Lopes P, Antunes L, Salta S, Diniz F, Santos LL, Videira JF, Henrique R, Jerónimo C. A novel DNA methylation panel accurately detects colorectal cancer independently of molecular pathway. J Transl Med 2018; 16:45. [PMID: 29486770 PMCID: PMC6389195 DOI: 10.1186/s12967-018-1415-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 02/16/2018] [Indexed: 12/14/2022] Open
Abstract
Background Colorectal cancer (CRC) is one of the most incident cancers, associated with significant morbidity and mortality, and usually classified into three main molecular pathways: chromosomal instability, microsatellite instability (MSI) and CpG island methylator phenotype (CIMP). Currently, available screening methods are either costly or of limited specificity, impairing global implementation. More cost-effective strategies, including DNA methylation-based tests, might prove advantageous. Although some are already available, its performance is suboptimal, entailing the need for better candidate biomarkers. Herein, we tested whether combined use of APC, IGF2, MGMT, RASSF1A, and SEPT9 promoter methylation might accurately detect CRC irrespective of molecular subtype. Methods Selected genes were validated using formalin-fixed paraffin-embedded tissues from 214 CRC and 50 non-malignant colorectal mucosae (CRN). Promoter methylation levels were assessed using real-time quantitative methylation-specific PCR. MSI and CIMP status were determined. Molecular data were correlated with standard clinicopathological features. Diagnostic and prognostic performances were evaluated by receiver operator characteristics curve and survival analyses, respectively. Results Except for IGF2, promoter methylation levels were significantly higher in CRC compared to CRN. A three-gene panel (MGMT, RASSF1A, SEPT9) identified malignancy with 96.6% sensitivity, 74.0% specificity and 91.5 positive predictive value (area under the curve: 0.97), independently of tumor location, stage, and molecular pathway. Conclusions Combined promoter methylation analysis of MGMT/RASSF1A/SEPT9 displays a better performance than currently available epigenetic-based biomarkers for CRC, providing the basis for the development of a non-invasive assay to detect CRC irrespective of the molecular pathway. Electronic supplementary material The online version of this article (10.1186/s12967-018-1415-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Micaela Freitas
- Cancer Biology & Epigenetics Group-Research Center (CI-IPOP), Research Center-LAB 3, Portuguese Oncology Institute of Porto (IPO Porto), F Bdg, 1st Floor, Rua Dr António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Fábio Ferreira
- Cancer Biology & Epigenetics Group-Research Center (CI-IPOP), Research Center-LAB 3, Portuguese Oncology Institute of Porto (IPO Porto), F Bdg, 1st Floor, Rua Dr António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Sónia Carvalho
- Cancer Biology & Epigenetics Group-Research Center (CI-IPOP), Research Center-LAB 3, Portuguese Oncology Institute of Porto (IPO Porto), F Bdg, 1st Floor, Rua Dr António Bernardino de Almeida, 4200-072, Porto, Portugal.,Departments of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Fernanda Silva
- Departments of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Paula Lopes
- Cancer Biology & Epigenetics Group-Research Center (CI-IPOP), Research Center-LAB 3, Portuguese Oncology Institute of Porto (IPO Porto), F Bdg, 1st Floor, Rua Dr António Bernardino de Almeida, 4200-072, Porto, Portugal.,Departments of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Luís Antunes
- Departments of Epidemiology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Sofia Salta
- Cancer Biology & Epigenetics Group-Research Center (CI-IPOP), Research Center-LAB 3, Portuguese Oncology Institute of Porto (IPO Porto), F Bdg, 1st Floor, Rua Dr António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Francisca Diniz
- Cancer Biology & Epigenetics Group-Research Center (CI-IPOP), Research Center-LAB 3, Portuguese Oncology Institute of Porto (IPO Porto), F Bdg, 1st Floor, Rua Dr António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Lúcio Lara Santos
- Departments of Surgical Oncology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - José Flávio Videira
- Departments of Surgical Oncology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Rui Henrique
- Cancer Biology & Epigenetics Group-Research Center (CI-IPOP), Research Center-LAB 3, Portuguese Oncology Institute of Porto (IPO Porto), F Bdg, 1st Floor, Rua Dr António Bernardino de Almeida, 4200-072, Porto, Portugal. .,Departments of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal. .,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira n.º 228, 4050-313, Porto, Portugal.
| | - Carmen Jerónimo
- Cancer Biology & Epigenetics Group-Research Center (CI-IPOP), Research Center-LAB 3, Portuguese Oncology Institute of Porto (IPO Porto), F Bdg, 1st Floor, Rua Dr António Bernardino de Almeida, 4200-072, Porto, Portugal. .,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira n.º 228, 4050-313, Porto, Portugal.
| |
Collapse
|
21
|
El Bairi K, Tariq K, Himri I, Jaafari A, Smaili W, Kandhro AH, Gouri A, Ghazi B. Decoding colorectal cancer epigenomics. Cancer Genet 2018; 220:49-76. [PMID: 29310839 DOI: 10.1016/j.cancergen.2017.11.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/01/2017] [Accepted: 11/06/2017] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is very heterogeneous and presents different types of epigenetic alterations including DNA methylation, histone modifications and microRNAs. These changes are considered as characteristics of various observed clinical phenotypes. Undoubtedly, the discovery of epigenetic pathways with novel epigenetic-related mechanisms constitutes a promising advance in cancer biomarker discovery. In this review, we provide an evidence-based discussing of the current understanding of CRC epigenomics and its role in initiation, epithelial-to-mesenchymal transition and metastasis. We also discuss the recent findings regarding the potential clinical perspectives of these alterations as potent biomarkers for CRC diagnosis, prognosis, and therapy in the era of liquid biopsy.
Collapse
Affiliation(s)
- Khalid El Bairi
- Independent Research Team in Cancer Biology and Bioactive Compounds, Mohamed 1(st) University, Oujda, Morocco.
| | - Kanwal Tariq
- B-10 Jumani Center, Garden East, Karachi 74400, Pakistan
| | - Imane Himri
- Laboratory of Biochemistry, Faculty of Sciences, Mohamed I(st) Universiy, Oujda, Morocco; Delegation of the Ministry of Health, Oujda, Morocco
| | - Abdeslam Jaafari
- Laboratoire de Génie Biologique, Equipe d'Immunopharmacologie, Faculté des Sciences et Techniques, Université Sultan Moulay Slimane, Beni Mellal, Maroc
| | - Wiam Smaili
- Centre de Génomique Humaine, Faculté de Médecine et de Pharmacie, Université Mohamed V, Rabat, Maroc; Département de Génétique Médicale, Institut National d'Hygiène, Rabat, Maroc
| | - Abdul Hafeez Kandhro
- Department of Biochemistry, Healthcare Molecular and Diagnostic Laboratory, Hyderabad, Pakistan
| | - Adel Gouri
- Laboratory of Medical Biochemistry, Ibn Rochd University Hospital, Annaba, Algeria
| | - Bouchra Ghazi
- National Laboratory of Reference, Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| |
Collapse
|
22
|
Jakubowski JL, Labrie V. Epigenetic Biomarkers for Parkinson's Disease: From Diagnostics to Therapeutics. JOURNAL OF PARKINSONS DISEASE 2017; 7:1-12. [PMID: 27792016 PMCID: PMC5302044 DOI: 10.3233/jpd-160914] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Parkinson’s disease (PD) is a prevalent neurodegenerative illness that is often diagnosed after significant pathology and neuronal cell loss has occurred. Biomarkers of PD are greatly needed for early diagnosis, as well as for the prediction of disease progression and treatment outcome. In this regard, the epigenome, which is partially dynamic, holds considerable promise for the development of molecular biomarkers for PD. Epigenetic marks are modified by both DNA sequence and environmental factors associated with PD, and such marks could serve as a unifying predictor of at-risk individuals. Epigenetic abnormalities have been detected in PD and other age-dependent neurodegenerative diseases, some of which were reported to occur early on and were reversible by PD medications. Emerging reports indicate that certain epigenetic differences observed in the PD brain are detectable in more easily accessible tissues. In this review, we examine epigenetic-based strategies for the development of PD biomarkers. Despite the complexities and challenges faced, the epigenome offers a new source of biomarkers with potential etiological relevance to PD, and may expand opportunities for personalized therapies.
Collapse
Affiliation(s)
- Jennifer L Jakubowski
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Viviane Labrie
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA.,Center for Addiction and Mental Health, Toronto, ON, Canada
| |
Collapse
|
23
|
Yoshida W, Baba Y, Banzawa K, Karube I. A quantitative homogeneous assay for global DNA methylation levels using CpG-binding domain- and methyl-CpG-binding domain-fused luciferase. Anal Chim Acta 2017; 990:168-173. [PMID: 29029740 DOI: 10.1016/j.aca.2017.07.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/14/2017] [Accepted: 07/21/2017] [Indexed: 02/01/2023]
Abstract
Global DNA methylation levels have been considered as biomarkers for cancer diagnostics because transposable elements that constitute approximately 45% of the human genome are hypomethylated in cancer cells. We have previously reported a homogeneous assay for measuring methylated CpG content of genomic DNA based on bioluminescence resonance energy transfer (BRET) using methyl-CpG-binding domain (MBD)-fused luciferase (MBD-luciferase). In this study, a homogeneous assay for measuring unmethylated CpG content of genomic DNA in the same platform was developed using CXXC domain-fused luciferase (CXXC-luciferase) that specifically recognizes unmethylated CpG. In this assay, CXXC-luciferase recognizes unmethylated CpG on genomic DNA, whereby BRET between luciferase and the fluorescent DNA intercalating dye is detected. We demonstrated that the BRET signal depended on the genomic DNA concentration (R2 = 0.99) and unmethylated CpG content determined by the bisulfite method (R2 = 0.97). There was a significant negative correlation between the BRET signal of the CXXC-luciferase-based assay and that of the MBD-luciferase-based assay (R2 = 0.92). Moreover, we demonstrated that the global DNA methylation level determined using the bisulfite method was dependent on the ratio of the BRET signal in the MBD-luciferase-based assay to the total BRET signal in the MBD-luciferase- and CXXC-luciferase-based assays (R2 = 0.99, relative standard deviation < 2.2%, and analysis speed < 35 min). These results demonstrated that global DNA methylation levels can be quantified by calculating the BRET signal ratio without any calibration curve.
Collapse
Affiliation(s)
- Wataru Yoshida
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo 192-0982, Japan.
| | - Yuji Baba
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo 192-0982, Japan.
| | - Kyoko Banzawa
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo 192-0982, Japan.
| | - Isao Karube
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo 192-0982, Japan.
| |
Collapse
|
24
|
Balc'h EL, Grandin N, Demattei MV, Guyétant S, Tallet A, Pagès JC, Ouaissi M, Lecomte T, Charbonneau M. Measurement of Telomere Length in Colorectal Cancers for Improved Molecular Diagnosis. Int J Mol Sci 2017; 18:ijms18091871. [PMID: 28850092 PMCID: PMC5618520 DOI: 10.3390/ijms18091871] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/18/2017] [Accepted: 08/25/2017] [Indexed: 02/06/2023] Open
Abstract
All tumors have in common to reactivate a telomere maintenance mechanism to allow for unlimited proliferation. On the other hand, genetic instability found in some tumors can result from the loss of telomeres. Here, we measured telomere length in colorectal cancers (CRCs) using TRF (Telomere Restriction Fragment) analysis. Telomeric DNA content was also quantified as the ratio of total telomeric (TTAGGG) sequences over that of the invariable Alu sequences. In most of the 125 CRCs analyzed, there was a significant diminution in telomere length compared with that in control healthy tissue. Only 34 tumors exhibited no telomere erosion and, in some cases, a slight telomere lengthening. Telomere length did not correlate with age, gender, tumor stage, tumor localization or stage of tumor differentiation. In addition, while telomere length did not correlate with the presence of a mutation in BRAF (V-raf murine sarcoma viral oncogene homolog B), PIK3CA (phosphatidylinositol 3-kinase catalytic subunit), or MSI status, it was significantly associated with the occurrence of a mutation in KRAS. Interestingly, we found that the shorter the telomeres in healthy tissue of a patient, the larger an increase in telomere length in the tumor. Our study points to the existence of two types of CRCs based on telomere length and reveals that telomere length in healthy tissue might influence telomere maintenance mechanisms in the tumor.
Collapse
Affiliation(s)
- Eric Le Balc'h
- CHRU Hôpital de Tours Trousseau, avenue de la République, 37170 Chambray-lès-Tours, France.
| | - Nathalie Grandin
- UMR CNRS 7292, UFR Pharmacy, University of Tours, Parc Grandmont, 31 avenue Monge, 37200 Tours, France.
| | - Marie-Véronique Demattei
- UMR CNRS 7292, UFR Pharmacy, University of Tours, Parc Grandmont, 31 avenue Monge, 37200 Tours, France.
| | - Serge Guyétant
- CHRU Hôpital de Tours Trousseau, avenue de la République, 37170 Chambray-lès-Tours, France.
| | - Anne Tallet
- CHRU Hôpital de Tours Trousseau, avenue de la République, 37170 Chambray-lès-Tours, France.
| | - Jean-Christophe Pagès
- CHRU Hôpital de Tours Trousseau, avenue de la République, 37170 Chambray-lès-Tours, France.
| | - Mehdi Ouaissi
- CHRU Hôpital de Tours Trousseau, avenue de la République, 37170 Chambray-lès-Tours, France.
| | - Thierry Lecomte
- CHRU Hôpital de Tours Trousseau, avenue de la République, 37170 Chambray-lès-Tours, France.
- UMR CNRS 7292, UFR Pharmacy, University of Tours, Parc Grandmont, 31 avenue Monge, 37200 Tours, France.
| | - Michel Charbonneau
- UMR CNRS 7292, UFR Pharmacy, University of Tours, Parc Grandmont, 31 avenue Monge, 37200 Tours, France.
| |
Collapse
|
25
|
Liang X, Lan C, Zhou J, Fu W, Long X, An Y, Jiao G, Wang K, Li Y, Xu J, Huang Q, Xu B, Xiao J. Development of a new analog of SGK1 inhibitor and its evaluation as a therapeutic molecule of colorectal cancer. J Cancer 2017; 8:2256-2262. [PMID: 28819428 PMCID: PMC5560143 DOI: 10.7150/jca.19566] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/02/2017] [Indexed: 01/21/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most leading causes of cancer-related death worldwide. The serum and glucocorticoid inducible kinase SGK1 is highly expressed and involved in several tumors. GSK650394, a SGK1 inhibitor, has been proved to be effective in impeding tumor growth in vitro. In this study, we developed a novel analog of GSK650394, and evaluated its effects on CRC cells and tumor growth both in vitro and in vivo. HCT116 cells were treated with a concentration gradient of new developed compounds and cholecystokinin octapeptide (CCK-8) assay was used to calculate the IC50 value of every analog. Cell proliferation analysis was estimated from EdU staining and flow cytometry in vitro, and immunohistochemistry of Ki67 and PCNA in vivo. Cell migration analysis was examined using the transwell assay. In vivo tumor growth was determined in athymic nude mice by injecting the HCT116 cells in the subcutaneous tissue, followed by the injection of QGY-5-114-A. We found that new developed GSK650394 analog QGY-5-114-A has lower IC50 value, and treatment with QGY-5-114-A significantly inhibited CRC cell proliferation and migration in vitro. Besides that, colonic tumor growth was also dramatically restricted by QGY-5-114-A in vivo. In conclusion, pharmacological treatment with QGY-5-114-A impedes CRC tumor cell proliferation, migration and tumor growth.
Collapse
Affiliation(s)
- Xuchun Liang
- Regeneration and Ageing Lab, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Chunling Lan
- Department of Chemistry, Qianweichang College, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
| | - Jinzhe Zhou
- Department of General Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Wencheng Fu
- Regeneration and Ageing Lab, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Xuesha Long
- Regeneration and Ageing Lab, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Yu An
- Department of Chemistry, Qianweichang College, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
| | - Guanming Jiao
- Regeneration and Ageing Lab, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Kejin Wang
- Regeneration and Ageing Lab, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Yongqin Li
- Regeneration and Ageing Lab, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Jiahong Xu
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Qi Huang
- Department of General Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Bin Xu
- Department of Chemistry, Qianweichang College, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
| | - Junjie Xiao
- Regeneration and Ageing Lab, School of Life Science, Shanghai University, Shanghai 200444, China
| |
Collapse
|
26
|
Zheng X, Zhang N, Wu HJ, Wu H. Estimating and accounting for tumor purity in the analysis of DNA methylation data from cancer studies. Genome Biol 2017; 18:17. [PMID: 28122605 PMCID: PMC5267453 DOI: 10.1186/s13059-016-1143-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/20/2016] [Indexed: 01/03/2023] Open
Abstract
We present a set of statistical methods for the analysis of DNA methylation microarray data, which account for tumor purity. These methods are an extension of our previously developed method for purity estimation; our updated method is flexible, efficient, and does not require data from reference samples or matched normal controls. We also present a method for incorporating purity information for differential methylation analysis. In addition, we propose a control-free differential methylation calling method when normal controls are not available. Extensive analyses of TCGA data demonstrate that our methods provide accurate results. All methods are implemented in InfiniumPurify.
Collapse
Affiliation(s)
- Xiaoqi Zheng
- Department of Mathematics, Shanghai Normal University, Shanghai, 200234, China.
| | - Naiqian Zhang
- Department of Mathematics, Weifang University, Weifang, Shandong, 261061, China
| | - Hua-Jun Wu
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, MA, 02215, USA
| | - Hao Wu
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, Georgia, 30322, USA.
| |
Collapse
|
27
|
Hardy T, Mann DA. Epigenetics in liver disease: from biology to therapeutics. Gut 2016; 65:1895-1905. [PMID: 27624887 PMCID: PMC5099193 DOI: 10.1136/gutjnl-2015-311292] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 07/29/2016] [Accepted: 08/01/2016] [Indexed: 02/06/2023]
Abstract
Knowledge of the fundamental epigenetic mechanisms governing gene expression and cellular phenotype are sufficiently advanced that novel insights into the epigenetic control of chronic liver disease are now emerging. Hepatologists are in the process of shedding light on the roles played by DNA methylation, histone/chromatin modifications and non-coding RNAs in specific liver pathologies. Alongside these discoveries are advances in the technologies for the detection and quantification of epigenetic biomarkers, either directly from patient tissue or from body fluids. The premise for this review is to survey the recent advances in the field of liver epigenetics and to explore their potential for translation by industry and clinical hepatologists for the design of novel therapeutics and diagnostic/prognostic biomarkers. In particular, we present findings in the context of hepatocellular carcinoma, fibrosis and non-alcoholic fatty liver disease, where there is urgent unmet need for new clinical interventions and biomarkers.
Collapse
Affiliation(s)
- Timothy Hardy
- Fibrosis Laboratories, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK,Department of Gastroenterology and Hepatology, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Derek A Mann
- Fibrosis Laboratories, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
28
|
Yoshida W, Yoshioka H, Bay DH, Iida K, Ikebukuro K, Nagasawa K, Karube I. Detection of DNA Methylation of G-Quadruplex and i-Motif-Forming Sequences by Measuring the Initial Elongation Efficiency of Polymerase Chain Reaction. Anal Chem 2016; 88:7101-7. [PMID: 27351368 DOI: 10.1021/acs.analchem.6b00982] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
DNA methylation has been proposed as one of the promising biomarkers for cancer diagnosis. In this study, we developed a DNA methylation detection system utilizing G-quadruplex and i-motif-forming sequences that requires neither sodium bisulfite treatment nor methylated DNA ligands. We hypothesized that G-quadruplex and i-motif structures would be stabilized by DNA methylation and arrest DNA polymerase activity during quantitative polymerase chain reaction (qPCR). The PCR products from VEGF, RET G-quadruplex, and i-motif-forming sequences were used as templates and analyzed by qPCR. Our results indicated that the initial elongation efficiency of PCR decreased with increasing DNA methylation levels in the G-quadruplex and i-motif-forming sequences. Moreover, we demonstrated that the initial elongation efficiency of PCR decreased with increased DNA methylation of the VEGF region on genomic DNA. These results indicated that DNA methylation of the G-quadruplex and i-motif-forming sequences on genomic DNA can be detected by qPCR.
Collapse
Affiliation(s)
- Wataru Yoshida
- School of Bioscience and Biotechnology, Tokyo University of Technology , 1404-1 Katakuramachi, Hachioji, Tokyo, 192-0982, Japan
| | - Hitomi Yoshioka
- School of Bioscience and Biotechnology, Tokyo University of Technology , 1404-1 Katakuramachi, Hachioji, Tokyo, 192-0982, Japan
| | - Daniyah Habiballah Bay
- School of Bioscience and Biotechnology, Tokyo University of Technology , 1404-1 Katakuramachi, Hachioji, Tokyo, 192-0982, Japan.,Biology Department, Umm Al-Qura University , P.O. Box 715, Makkah, 21955, Kingdom of Saudi Arabia
| | - Keisuke Iida
- Graduate School of Science and Engineering, Saitama University , Kitaadachi-gun, Saitama, 362-0806, Japan
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology , 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Kazuo Nagasawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology , 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Isao Karube
- School of Bioscience and Biotechnology, Tokyo University of Technology , 1404-1 Katakuramachi, Hachioji, Tokyo, 192-0982, Japan
| |
Collapse
|
29
|
Zhao LD, Zheng WW, Wang GX, Kang XC, Qin L, Ji JJ, Hao S. Epigenetic silencing of miR-181b contributes to tumorigenicity in colorectal cancer by targeting RASSF1A. Int J Oncol 2016; 48:1977-84. [PMID: 26935905 DOI: 10.3892/ijo.2016.3414] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/20/2016] [Indexed: 11/06/2022] Open
Abstract
Aberrant microRNA expression is common in colorectal cancer and DNA methylation is believed to be responsible for this alteration. In this study, we performed evaluation in vivo and in vitro to determine the role of miR-181b as a potential diagnostic and prognostic biomarker in colorectal cancer. Ninety-seven pairs of colorectal cancer tissues and adjacent normal tissues were collected. The expression level and methylation status of miR-181b was determined in tissue samples and multiple colorectal cancer cell lines. RASSF1A, a predicted target gene of miR-181b, was investigated in vitro. Further mechanistic explorations were conducted. It was found that miR-181b expression was frequently downregulated in cancer samples. This lower expression level resulted from higher hypermethylation in cancer tissue and was closely related to TNM stage. Following artificial synthesis of miR-181b stimulation, colorectal cancer cell proliferation was greatly inhibited in CRC cells while apoptosis percentage markedly increased. miR-181b achieved the tumor suppressive effects via direct targeting of the RASSF1A gene. This study indicated the clinical significance of miR-181b and the influence of miR-181b promoter region in epigenetic silencing of tumorigenicity in colorectal cancer, and implied the possible usage of miR-181b as a diagnostic and prognostic biomarker in colorectal cancer.
Collapse
Affiliation(s)
- Lun-De Zhao
- Department of Emergency, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, P.R. China
| | - Wei-Wei Zheng
- Department of General Surgery, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, P.R. China
| | - Gao-Xiang Wang
- Department of Emergency, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, P.R. China
| | - Xiao-Chun Kang
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, P.R. China
| | - Lei Qin
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, P.R. China
| | - Juan-Juan Ji
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, P.R. China
| | - Sha Hao
- Department of Medical Oncology, Jingmen Traditional Chinese Medicine Hospital, Jingmen, Hubei 448000, P.R. China
| |
Collapse
|
30
|
Kitchen MO, Bryan RT, Emes RD, Glossop JR, Luscombe C, Cheng KK, Zeegers MP, James ND, Devall AJ, Mein CA, Gommersall L, Fryer AA, Farrell WE. Quantitative genome-wide methylation analysis of high-grade non-muscle invasive bladder cancer. Epigenetics 2016; 11:237-46. [PMID: 26929985 DOI: 10.1080/15592294.2016.1154246] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
High-grade non-muscle invasive bladder cancer (HG-NMIBC) is a clinically unpredictable disease with greater risks of recurrence and progression relative to their low-intermediate-grade counterparts. The molecular events, including those affecting the epigenome, that characterize this disease entity in the context of tumor development, recurrence, and progression, are incompletely understood. We therefore interrogated genome-wide DNA methylation using HumanMethylation450 BeadChip arrays in 21 primary HG-NMIBC tumors relative to normal bladder controls. Using strict inclusion-exclusion criteria we identified 1,057 hypermethylated CpGs within gene promoter-associated CpG islands, representing 256 genes. We validated the array data by bisulphite pyrosequencing and examined 25 array-identified candidate genes in an independent cohort of 30 HG-NMIBC and 18 low-intermediate-grade NMIBC. These analyses revealed significantly higher methylation frequencies in high-grade tumors relative to low-intermediate-grade tumors for the ATP5G2, IRX1 and VAX2 genes (P<0.05), and similarly significant increases in mean levels of methylation in high-grade tumors for the ATP5G2, VAX2, INSRR, PRDM14, VSX1, TFAP2b, PRRX1, and HIST1H4F genes (P<0.05). Although inappropriate promoter methylation was not invariantly associated with reduced transcript expression, a significant association was apparent for the ARHGEF4, PON3, STAT5a, and VAX2 gene transcripts (P<0.05). Herein, we present the first genome-wide DNA methylation analysis in a unique HG-NMIBC cohort, showing extensive and discrete methylation changes relative to normal bladder and low-intermediate-grade tumors. The genes we identified hold significant potential as targets for novel therapeutic intervention either alone, or in combination, with more conventional therapeutic options in the treatment of this clinically unpredictable disease.
Collapse
Affiliation(s)
- Mark O Kitchen
- a Institute for Science and Technology in Medicine, Keele University , UK.,b Urology Department , University Hospitals of North Midlands NHS Trust , UK
| | - Richard T Bryan
- c Institute of Cancer and Genomic Sciences, University of Birmingham , UK
| | - Richard D Emes
- d Advanced Data Analysis Center, University of Nottingham , UK
| | - John R Glossop
- a Institute for Science and Technology in Medicine, Keele University , UK
| | | | - K K Cheng
- c Institute of Cancer and Genomic Sciences, University of Birmingham , UK
| | - Maurice P Zeegers
- c Institute of Cancer and Genomic Sciences, University of Birmingham , UK.,e Department of Complex Genetics , Maastricht University Medical Center , The Netherlands.,f NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center , The Netherlands.,g CAPHRI School for Public Health and Primary Care, Maastricht University Medical Center , The Netherlands
| | | | - Adam J Devall
- c Institute of Cancer and Genomic Sciences, University of Birmingham , UK
| | - Charles A Mein
- i The Genome Center, Barts and the London School of Medicine and Dentistry , London , UK
| | - Lyndon Gommersall
- b Urology Department , University Hospitals of North Midlands NHS Trust , UK
| | - Anthony A Fryer
- a Institute for Science and Technology in Medicine, Keele University , UK
| | - William E Farrell
- a Institute for Science and Technology in Medicine, Keele University , UK
| |
Collapse
|
31
|
Geybels MS, Alumkal JJ, Luedeke M, Rinckleb A, Zhao S, Shui IM, Bibikova M, Klotzle B, van den Brandt PA, Ostrander EA, Fan JB, Feng Z, Maier C, Stanford JL. Epigenomic profiling of prostate cancer identifies differentially methylated genes in TMPRSS2:ERG fusion-positive versus fusion-negative tumors. Clin Epigenetics 2015; 7:128. [PMID: 26692910 PMCID: PMC4676897 DOI: 10.1186/s13148-015-0161-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/03/2015] [Indexed: 12/17/2022] Open
Abstract
Background About half of all prostate cancers harbor the TMPRSS2:ERG (T2E) gene fusion. While T2E-positive and T2E-negative tumors represent specific molecular subtypes of prostate cancer (PCa), previous studies have not yet comprehensively investigated how these tumor subtypes differ at the epigenetic level. We therefore investigated epigenome-wide DNA methylation profiles of PCa stratified by T2E status. Results The study included 496 patients with clinically localized PCa who had a radical prostatectomy as primary treatment for PCa. Fluorescence in situ hybridization (FISH) “break-apart” assays were used to determine tumor T2E-fusion status, which showed that 266 patients (53.6 %) had T2E-positive PCa. The study showed global DNA methylation differences between tumor subtypes. A large number of differentially methylated CpG sites were identified (false-discovery rate [FDR] Q-value <0.00001; n = 27,876) and DNA methylation profiles accurately distinguished between tumor T2E subgroups. A number of top-ranked differentially methylated CpGs in genes (FDR Q-values ≤1.53E−29) were identified: C3orf14, CACNA1D, GREM1, KLK10, NT5C, PDE4D, RAB40C, SEPT9, and TRIB2, several of which had a corresponding alteration in mRNA expression. These genes may have various roles in the pathogenesis of PCa, and the calcium-channel gene CACNA1D is a known ERG-target. Analysis of The Cancer Genome Atlas (TCGA) data provided confirmatory evidence for our findings. Conclusions This study identified substantial differences in DNA methylation profiles of T2E-positive and T2E-negative tumors, thereby providing further evidence that different underlying oncogenic pathways characterize these molecular subtypes. Electronic supplementary material The online version of this article (doi:10.1186/s13148-015-0161-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Milan S Geybels
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA USA ; Department of Epidemiology, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Joshi J Alumkal
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR USA
| | - Manuel Luedeke
- Institute of Human Genetics and Department of Urology, Faculty of Medicine, University of Ulm, Ulm, Germany
| | - Antje Rinckleb
- Institute of Human Genetics and Department of Urology, Faculty of Medicine, University of Ulm, Ulm, Germany
| | - Shanshan Zhao
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA USA ; Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, NC Research Triangle Park, USA
| | - Irene M Shui
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA USA
| | | | | | - Piet A van den Brandt
- Department of Epidemiology, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Elaine A Ostrander
- Cancer Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD USA
| | - Jian-Bing Fan
- Illumina, Inc., San Diego, CA USA ; Present Address: AnchorDx Corp., Guangzhou, 510300 People's Republic of China
| | | | - Christiane Maier
- Institute of Human Genetics and Department of Urology, Faculty of Medicine, University of Ulm, Ulm, Germany
| | - Janet L Stanford
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA USA ; Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA USA
| |
Collapse
|
32
|
Simultaneous Analysis of SEPT9 Promoter Methylation Status, Micronuclei Frequency, and Folate-Related Gene Polymorphisms: The Potential for a Novel Blood-Based Colorectal Cancer Biomarker. Int J Mol Sci 2015; 16:28486-97. [PMID: 26633373 PMCID: PMC4691060 DOI: 10.3390/ijms161226113] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/09/2015] [Accepted: 11/17/2015] [Indexed: 12/11/2022] Open
Abstract
One challenge in colorectal cancer (CRC) is identifying novel biomarkers to be introduced in screening programs. The present study investigated the promoter methylation status of the SEPT9 gene in peripheral blood samples of subjects' positive fecal occult blood test (FOBT). In order to add new insights, we investigated the association between SEPT9 promoter methylation and micronuclei frequency, and polymorphisms in the folate-related pathway genes. SEPT9 promoter methylation, micronuclei frequency, and genotypes were evaluated on 74 individuals' FOBT positive. Individuals were subjected to a colonoscopy that provided written informed consent for study participation. SEPT9 promoter methylation status was significantly lower in the CRC group than controls (p = 0.0006). In contrast, the CaCo2 cell-line, analyzed as a tissue specific model of colon adenocarcinoma, showed a significantly higher percentage of SEPT9 promoter methylation compared to the CRC group (p < 0.0001). Linear regression analysis showed an inverse correlation between micronuclei frequency and the decrease in the methylation levels of SEPT9 promoter region among CRC patients (β = -0.926, p = 0.0001). With regard to genotype analysis, we showed the involvement of the DHFR polymorphism (rs70991108) in SEPT9 promoter methylation level in CRC patients only. In particular, the presence of at least one 19 bp del allele significantly correlates with decreased SEPT9 promoter methylation, compared to the 19 bp ins/ins genotype (p = 0.007). While remaining aware of the strengths and limitations of the study, this represents the first evidence of a novel approach for the early detection of CRC, using SEPT9 promoter methylation, micronuclei frequency and genotypes, with the potential to improve CRC risk assessment.
Collapse
|
33
|
Geybels MS, Zhao S, Wong CJ, Bibikova M, Klotzle B, Wu M, Ostrander EA, Fan JB, Feng Z, Stanford JL. Epigenomic profiling of DNA methylation in paired prostate cancer versus adjacent benign tissue. Prostate 2015; 75:1941-50. [PMID: 26383847 PMCID: PMC4928710 DOI: 10.1002/pros.23093] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/31/2015] [Indexed: 01/16/2023]
Abstract
BACKGROUND Aberrant DNA methylation may promote prostate carcinogenesis. We investigated epigenome-wide DNA methylation profiles in prostate cancer (PCa) compared to adjacent benign tissue to identify differentially methylated CpG sites. METHODS The study included paired PCa and adjacent benign tissue samples from 20 radical prostatectomy patients. Epigenetic profiling was done using the Infinium HumanMethylation450 BeadChip. Linear models that accounted for the paired study design and False Discovery Rate Q-values were used to evaluate differential CpG methylation. mRNA expression levels of the genes with the most differentially methylated CpG sites were analyzed. RESULTS In total, 2,040 differentially methylated CpG sites were identified in PCa versus adjacent benign tissue (Q-value < 0.001), the majority of which were hypermethylated (n = 1,946; 95%). DNA methylation profiles accurately distinguished between PCa and benign tissue samples. Twenty-seven top-ranked hypermethylated CpGs had a mean methylation difference of at least 40% between tissue types, which included 25 CpGs in 17 genes. Furthermore, for 10 genes over 50% of promoter region CpGs were hypermethylated in PCa versus benign tissue. The top-ranked differentially methylated genes included three genes that were associated with both promoter hypermethylation and reduced gene expression: SCGB3A1, HIF3A, and AOX1. Analysis of The Cancer Genome Atlas (TCGA) data provided confirmatory evidence for our findings. CONCLUSIONS This study of PCa versus adjacent benign tissue showed many differentially methylated CpGs and regions in and outside gene promoter regions, which may potentially be used for the development of future epigenetic-based diagnostic tests or as therapeutic targets.
Collapse
Affiliation(s)
- Milan S. Geybels
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Epidemiology, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Shanshan Zhao
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
- National Institute of Environmental Health Sciences, Biostatistics & Computational Biology Branch, North Carolina
| | - Chao-Jen Wong
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | | | - Michael Wu
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Elaine A. Ostrander
- Cancer Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland
| | | | | | - Janet L. Stanford
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington
| |
Collapse
|
34
|
Xue M, Lai SC, Xu ZP, Wang LJ. Noninvasive DNA methylation biomarkers in colorectal cancer: A systematic review. J Dig Dis 2015; 16:699-712. [PMID: 26565661 DOI: 10.1111/1751-2980.12299] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/25/2015] [Accepted: 11/08/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To summarize the current evidence on the biomarkers associated with DNA methylation in the screening and diagnosis of colorectal cancer (CRC). METHODS A literature search was conducted on the databases of PubMed and Web of Science to identify articles published from 1 January 2000 to 6 June 2015 with language striction. Stuides focusing on the association between noninvasive biomarkers indicating DNA methylation and CRC were included. RESULTS Altogether 74 studies were finally included in the study. Varied genetic markers in the feces and blood samples were hypermethylated in patients with CRC than in the healthy controls. Some of them could even be detected at the early stage of the tumors. The sensitivity of the genetic markers was superior to that of fecal occult blood test and carcinoembryonic antigen. Multitarget DNA assays using a combination of different methylated genes could improve the diagnostic sensitivity. CONCLUSIONS Genetic markers might be minimally invasive, economical and accurate for the screening and surveillance of CRC. Large multicenter studies evaluating these biomarkers systematically and prospectively not only in CRC but also in other types of cancers are needed in the future.
Collapse
Affiliation(s)
- Meng Xue
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, Zhejiang University.,Institute of Gastroenterology, Zhejiang University
| | - San Chuan Lai
- Institute of Gastroenterology, Zhejiang University.,Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Zhi Peng Xu
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, Zhejiang University
| | - Liang Jing Wang
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, Zhejiang University.,Institute of Gastroenterology, Zhejiang University
| |
Collapse
|
35
|
Lin YL, Gui SL, Guo H, Ma JG, Li WP. Protocadherin17 Promoter Methylation is a Potential Predictive Biomarker in Clear Cell Renal Cell Carcinoma. Med Sci Monit 2015; 21:2870-6. [PMID: 26404644 PMCID: PMC4588677 DOI: 10.12659/msm.895603] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background Protocadherin17 (PCDH17) is a tumor suppressor gene, and is frequently silenced by promoter methylation in human cancers, including clear cell renal cell carcinoma (ccRCC). However, the clinical significance of PCDH17 methylation in ccRCC remains largely unclear. The aim of the present study was to investigate the methylation status of PCDH17 in ccRCC and its potential relevance to clinicopathological parameters and prognosis. Material/Methods Methylation-specific PCR was used to examine the methylation status of PCDH17 in 191 ccRCC tumors and matched paired adjacent noncancerous tissues. Subsequently, the associations between PCDH17 methylation and clinicopathological parameters and prognosis of patients with ccRCC were analyzed. Results PCDH17 methylation occurred in 66.5% of ccRCC tumors, but in only 12.1% of adjacent noncancerous tissues. PCDH17 methylation is significantly correlated with advanced stage, higher grade, and lymph node metastasis in ccRCC. Moreover, it is an independent prognostic factor for progression-free survival and overall survival of patients with ccRCC. Conclusions PCDH17 methylation occurred more frequently and was associated with malignant clinicopathological characteristics and poor prognosis in ccRCC patients. Thus, PCDH17 methylation may be used as a novel biomarker to predict the prognosis of patients with ccRCC.
Collapse
Affiliation(s)
- Ying-Li Lin
- Department of Urology, Affiliated Xuzhou Hospital of Jiangsu University (Xuzhou Cancer Hospital), Xuzhou, Jiangsu, China (mainland)
| | - Shi-Liang Gui
- Department of Urology, First Hospital of Jiamusi University, Jiamusi, Heilongjiang, China (mainland)
| | - Hong Guo
- Department of Pharmacy, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Jian-Guo Ma
- Department of Urology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Wen-Ping Li
- Department of Urology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| |
Collapse
|
36
|
Kitchen MO, Bryan RT, Haworth KE, Emes RD, Luscombe C, Gommersall L, Cheng KK, Zeegers MP, James ND, Devall AJ, Fryer AA, Farrell WE. Methylation of HOXA9 and ISL1 Predicts Patient Outcome in High-Grade Non-Invasive Bladder Cancer. PLoS One 2015; 10:e0137003. [PMID: 26332997 PMCID: PMC4558003 DOI: 10.1371/journal.pone.0137003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/11/2015] [Indexed: 12/28/2022] Open
Abstract
Introduction Inappropriate DNA methylation is frequently associated with human tumour development, and in specific cases, is associated with clinical outcomes. Previous reports of DNA methylation in low/intermediate grade non-muscle invasive bladder cancer (NMIBC) have suggested that specific patterns of DNA methylation may have a role as diagnostic or prognostic biomarkers. In view of the aggressive and clinically unpredictable nature of high-grade (HG) NMIBC, and the current shortage of the preferred treatment option (Bacillus:Calmette-Guerin), novel methylation analyses may similarly reveal biomarkers of disease outcome that could risk-stratify patients and guide clinical management at initial diagnosis. Methods Promoter-associated CpG island methylation was determined in primary tumour tissue of 36 initial presentation high-grade NMIBCs, 12 low/intermediate-grade NMIBCs and 3 normal bladder controls. The genes HOXA9, ISL1, NKX6-2, SPAG6, ZIC1 and ZNF154 were selected for investigation on the basis of previous reports and/or prognostic utility in low/intermediate-grade NMIBC. Methylation was determined by Pyrosequencing of sodium-bisulphite converted DNA, and then correlated with gene expression using RT-qPCR. Methylation was additionally correlated with tumour behaviour, including tumour recurrence and progression to muscle invasive bladder cancer or metastases. Results The ISL1 genes’ promoter-associated island was more frequently methylated in recurrent and progressive high-grade tumours than their non-recurrent counterparts (60.0% vs. 18.2%, p = 0.008). ISL1 and HOXA9 showed significantly higher mean methylation in recurrent and progressive tumours compared to non-recurrent tumours (43.3% vs. 20.9%, p = 0.016 and 34.5% vs 17.6%, p = 0.017, respectively). Concurrent ISL1/HOXA9 methylation in HG-NMIBC reliably predicted tumour recurrence and progression within one year (Positive Predictive Value 91.7%), and was associated with disease-specific mortality (DSM). Conclusions In this study we report methylation differences and similarities between clinical sub-types of high-grade NMIBC. We report the potential ability of methylation biomarkers, at initial diagnosis, to predict tumour recurrence and progression within one year of diagnosis. We found that specific biomarkers reliably predict disease outcome and therefore may help guide patient treatment despite the unpredictable clinical course and heterogeneity of high-grade NMIBC. Further investigation is required, including validation in a larger patient cohort, to confirm the clinical utility of methylation biomarkers in high-grade NMIBC.
Collapse
Affiliation(s)
- Mark O Kitchen
- Institute for Science and Technology in Medicine, Keele University, Stoke-on-Trent, United Kingdom; Urology Department, University Hospitals of North Midlands NHS Trust, Stoke-on-Trent, United Kingdom
| | - Richard T Bryan
- School of Cancer Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Kim E Haworth
- Institute for Science and Technology in Medicine, Keele University, Stoke-on-Trent, United Kingdom
| | - Richard D Emes
- Advanced Data Analysis Centre, University of Nottingham, Nottingham, United Kingdom
| | - Christopher Luscombe
- Urology Department, University Hospitals of North Midlands NHS Trust, Stoke-on-Trent, United Kingdom
| | - Lyndon Gommersall
- Urology Department, University Hospitals of North Midlands NHS Trust, Stoke-on-Trent, United Kingdom
| | - K K Cheng
- School of Cancer Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Maurice P Zeegers
- Department of Complex Genetics, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Nicholas D James
- Cancer Research Unit, University of Warwick, Coventry, United Kingdom
| | - Adam J Devall
- School of Cancer Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Anthony A Fryer
- Institute for Science and Technology in Medicine, Keele University, Stoke-on-Trent, United Kingdom
| | - William E Farrell
- Institute for Science and Technology in Medicine, Keele University, Stoke-on-Trent, United Kingdom
| |
Collapse
|
37
|
Villanueva A, Portela A, Sayols S, Battiston C, Hoshida Y, Méndez-González J, Imbeaud S, Letouzé E, Hernandez-Gea V, Cornella H, Pinyol R, Solé M, Fuster J, Zucman-Rossi J, Mazzaferro V, Esteller M, Llovet JM. DNA methylation-based prognosis and epidrivers in hepatocellular carcinoma. Hepatology 2015; 61:1945-56. [PMID: 25645722 DOI: 10.1002/hep.27732] [Citation(s) in RCA: 290] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 01/25/2015] [Indexed: 12/07/2022]
Abstract
UNLABELLED Epigenetic deregulation has emerged as a driver in human malignancies. There is no clear understanding of the epigenetic alterations in hepatocellular carcinoma (HCC) and of the potential role of DNA methylation markers as prognostic biomarkers. Analysis of tumor tissue from 304 patients with HCC treated with surgical resection allowed us to generate a methylation-based prognostic signature using a training-validation scheme. Methylome profiling was done with the Illumina HumanMethylation450 array (Illumina, Inc., San Diego, CA), which covers 96% of known cytosine-phosphate-guanine (CpG) islands and 485,000 CpG, and transcriptome profiling was performed with Affymetrix Human Genome U219 Plate (Affymetrix, Inc., Santa Clara, CA) and miRNA Chip 2.0. Random survival forests enabled us to generate a methylation signature based on 36 methylation probes. We computed a risk score of mortality for each individual that accurately discriminated patient survival both in the training (221 patients; 47% hepatitis C-related HCC) and validation sets (n = 83; 47% alcohol-related HCC). This signature correlated with known predictors of poor outcome and retained independent prognostic capacity of survival along with multinodularity and platelet count. The subset of patients identified by this signature was enriched in the molecular subclass of proliferation with progenitor cell features. The study confirmed a high prevalence of genes known to be deregulated by aberrant methylation in HCC (e.g., Ras association [RalGDS/AF-6] domain family member 1, insulin-like growth factor 2, and adenomatous polyposis coli) and other solid tumors (e.g., NOTCH3) and describes potential candidate epidrivers (e.g., septin 9 and ephrin B2). CONCLUSIONS A validated signature of 36 DNA methylation markers accurately predicts poor survival in patients with HCC. Patients with this methylation profile harbor messenger RNA-based signatures indicating tumors with progenitor cell features.
Collapse
Affiliation(s)
- Augusto Villanueva
- Liver Cancer Research Program, Division of Liver Diseases, Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY.,Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY.,Barcelona-Clínic Liver Cancer Group (Liver Cancer Translational Research Laboratory, Liver Unit, Pathology Department, Surgery Department), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBEREHD, Hospital Clínic de Barcelona, Universitat de Barcelona (UB), Barcelona, Spain
| | - Anna Portela
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Sergi Sayols
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,Institute of Molecular Biology, Mainz, Germany
| | - Carlo Battiston
- Gastrointestinal Surgery and Liver Transplantation Unit, National Cancer Institute, Milan, Italy
| | - Yujin Hoshida
- Liver Cancer Research Program, Division of Liver Diseases, Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jesús Méndez-González
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Sandrine Imbeaud
- Inserm, UMR-1162, Génomique fonctionnelle des tumeurs solides, IUH, Paris, France.,Université Paris Descartes; Université Paris Diderot, Université Paris 13, Labex Immuno-oncology, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - Eric Letouzé
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre le Cancer, Paris, France
| | - Virginia Hernandez-Gea
- Barcelona-Clínic Liver Cancer Group (Liver Cancer Translational Research Laboratory, Liver Unit, Pathology Department, Surgery Department), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBEREHD, Hospital Clínic de Barcelona, Universitat de Barcelona (UB), Barcelona, Spain
| | - Helena Cornella
- Barcelona-Clínic Liver Cancer Group (Liver Cancer Translational Research Laboratory, Liver Unit, Pathology Department, Surgery Department), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBEREHD, Hospital Clínic de Barcelona, Universitat de Barcelona (UB), Barcelona, Spain
| | - Roser Pinyol
- Barcelona-Clínic Liver Cancer Group (Liver Cancer Translational Research Laboratory, Liver Unit, Pathology Department, Surgery Department), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBEREHD, Hospital Clínic de Barcelona, Universitat de Barcelona (UB), Barcelona, Spain
| | - Manel Solé
- Barcelona-Clínic Liver Cancer Group (Liver Cancer Translational Research Laboratory, Liver Unit, Pathology Department, Surgery Department), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBEREHD, Hospital Clínic de Barcelona, Universitat de Barcelona (UB), Barcelona, Spain
| | - Josep Fuster
- Barcelona-Clínic Liver Cancer Group (Liver Cancer Translational Research Laboratory, Liver Unit, Pathology Department, Surgery Department), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBEREHD, Hospital Clínic de Barcelona, Universitat de Barcelona (UB), Barcelona, Spain
| | - Jessica Zucman-Rossi
- Inserm, UMR-1162, Génomique fonctionnelle des tumeurs solides, IUH, Paris, France.,Université Paris Descartes; Université Paris Diderot, Université Paris 13, Labex Immuno-oncology, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - Vincenzo Mazzaferro
- Gastrointestinal Surgery and Liver Transplantation Unit, National Cancer Institute, Milan, Italy
| | - Manel Esteller
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Josep M Llovet
- Liver Cancer Research Program, Division of Liver Diseases, Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY.,Barcelona-Clínic Liver Cancer Group (Liver Cancer Translational Research Laboratory, Liver Unit, Pathology Department, Surgery Department), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBEREHD, Hospital Clínic de Barcelona, Universitat de Barcelona (UB), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | | |
Collapse
|
38
|
Abstract
BACKGROUND Gastric cancer and colorectal cancer, the two most frequent cancers within the gastrointestinal tract, account for a large proportion of human malignancies worldwide. The initiation and progression of gastrointestinal cancer (GIC) is controlled by both genetic and epigenetic events. Epigenetic alterations, including changes in DNA methylation, specific histone modifications, chromatin remodeling and noncoding RNA-mediated gene silencing, are potentially reversible and heritable. SUMMARY In this article, we summarize the current advances in epigenetic biomarkers as potential substrates for GIC detection. The combined screening of a panel of methylated genes, hyperacetylated histones, microRNAs or other noncoding RNAs is currently under evaluation to improve sensitivity. KEY MESSAGE Current studies concentrated on the development of cost-effective epigenetic diagnostic biomarkers for GIC based on noninvasive blood or stool samples. The combined blood or stool test with a relatively high sensitivity could be a cost-effective screening tool for the detection of patients with asymptomatic cancers who could therefore choose whether or not to go for further examinations, such as endoscopy or colonoscopy. PRACTICAL IMPLICATIONS A better understanding of epigenetic mechanisms has not only offered new insights into a deeper understanding of the underlying mechanisms of carcinogenesis, but has also allowed identification of clinically relevant putative biomarkers for the early detection, disease monitoring, prognosis and risk assessment of GIC. In particular, noninvasive biomarkers in serum or fecal samples for the detection of GIC could have potential for better compliance and can be incorporated into routine clinical practice in the foreseeable future, pending their validation in large-scale prospective trials.
Collapse
Affiliation(s)
- Hui-Mi Chen
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai Institute of Digestive Disease, China ; Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, China ; State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Jing-Yua Fang
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai Institute of Digestive Disease, China ; Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, China ; State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| |
Collapse
|
39
|
Garrett-Bakelman FE, Sheridan CK, Kacmarczyk TJ, Ishii J, Betel D, Alonso A, Mason CE, Figueroa ME, Melnick AM. Enhanced reduced representation bisulfite sequencing for assessment of DNA methylation at base pair resolution. J Vis Exp 2015:e52246. [PMID: 25742437 PMCID: PMC4354670 DOI: 10.3791/52246] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
DNA methylation pattern mapping is heavily studied in normal and diseased tissues. A variety of methods have been established to interrogate the cytosine methylation patterns in cells. Reduced representation of whole genome bisulfite sequencing was developed to detect quantitative base pair resolution cytosine methylation patterns at GC-rich genomic loci. This is accomplished by combining the use of a restriction enzyme followed by bisulfite conversion. Enhanced Reduced Representation Bisulfite Sequencing (ERRBS) increases the biologically relevant genomic loci covered and has been used to profile cytosine methylation in DNA from human, mouse and other organisms. ERRBS initiates with restriction enzyme digestion of DNA to generate low molecular weight fragments for use in library preparation. These fragments are subjected to standard library construction for next generation sequencing. Bisulfite conversion of unmethylated cytosines prior to the final amplification step allows for quantitative base resolution of cytosine methylation levels in covered genomic loci. The protocol can be completed within four days. Despite low complexity in the first three bases sequenced, ERRBS libraries yield high quality data when using a designated sequencing control lane. Mapping and bioinformatics analysis is then performed and yields data that can be easily integrated with a variety of genome-wide platforms. ERRBS can utilize small input material quantities making it feasible to process human clinical samples and applicable in a range of research applications. The video produced demonstrates critical steps of the ERRBS protocol.
Collapse
Affiliation(s)
| | | | | | | | - Doron Betel
- Department of Medicine, Weill Cornell Medical College; Institute for Computational Biomedicine, Weill Cornell Medical College
| | - Alicia Alonso
- Department of Medicine, Weill Cornell Medical College
| | | | | | - Ari M Melnick
- Department of Medicine, Weill Cornell Medical College
| |
Collapse
|
40
|
DLEC1, a 3p tumor suppressor, represses NF-κB signaling and is methylated in prostate cancer. J Mol Med (Berl) 2015; 93:691-701. [DOI: 10.1007/s00109-015-1255-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 12/07/2014] [Accepted: 01/22/2015] [Indexed: 12/31/2022]
|
41
|
Citartan M, Gopinath SC, Chen Y, Lakshmipriya T, Tang TH. Monitoring recombinant human erythropoietin abuse among athletes. Biosens Bioelectron 2015; 63:86-98. [DOI: 10.1016/j.bios.2014.06.068] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 06/02/2014] [Accepted: 06/27/2014] [Indexed: 11/16/2022]
|
42
|
Abstract
Colorectal cancer (CRC) results from a stepwise accumulation of genetic and epigenetic alterations that transform the normal colonic epithelium into cancer. DNA methylation represents one of the most studied epigenetic marks in CRC, and three common epigenotypes have been identified characterized by high, intermediate and low methylation profiles, respectively. Combining DNA methylation data with gene mutations and cytogenetic alterations occurring in CRC is nowadays allowing the characterization of different CRC subtypes, but the crosstalk between DNA methylation and other epigenetic mechanisms, such as histone tail modifications and the deregulated expression of non-coding RNAs is not yet clearly defined. Epigenetic biomarkers are increasingly recognized as promising diagnostic and prognostic tools in CRC, and the potential of therapeutic applications aimed at targeting the epigenome is under investigation.
Collapse
Affiliation(s)
- Fabio Coppedè
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Medical School, Via Roma 55, 56126 Pisa, Italy
| |
Collapse
|
43
|
Fang M, Ou J, Hutchinson L, Green MR. The BRAF oncoprotein functions through the transcriptional repressor MAFG to mediate the CpG Island Methylator phenotype. Mol Cell 2014; 55:904-915. [PMID: 25219500 PMCID: PMC4170521 DOI: 10.1016/j.molcel.2014.08.010] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/14/2014] [Accepted: 08/06/2014] [Indexed: 12/16/2022]
Abstract
Most colorectal cancers (CRCs) containing activated BRAF (BRAF[V600E]) have a CpG island methylator phenotype (CIMP) characterized by aberrant hypermethylation of many genes, including the mismatch repair gene MLH1. MLH1 silencing results in microsatellite instability and a hypermutable phenotype. Through an RNAi screen, here we identify the transcriptional repressor MAFG as the pivotal factor required for MLH1 silencing and CIMP in CRCs containing BRAF(V600E). In BRAF-positive human CRC cell lines and tumors, MAFG is bound at the promoters of MLH1 and other CIMP genes, and recruits a corepressor complex that includes its heterodimeric partner BACH1, the chromatin remodeling factor CHD8, and the DNA methyltransferase DNMT3B, resulting in hypermethylation and transcriptional silencing. BRAF(V600E) increases BRAF/MEK/ERK signaling resulting in phosphorylation and elevated levels of MAFG, which drives DNA binding. Analysis of transcriptionally silenced CIMP genes in KRAS-positive CRCs indicates that different oncoproteins direct the assembly of distinct repressor complexes on common promoters.
Collapse
Affiliation(s)
- Minggang Fang
- Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA; Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jianhong Ou
- Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Lloyd Hutchinson
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Michael R Green
- Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA; Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
44
|
DNA methylation biomarkers: cancer and beyond. Genes (Basel) 2014; 5:821-64. [PMID: 25229548 PMCID: PMC4198933 DOI: 10.3390/genes5030821] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 08/17/2014] [Accepted: 09/01/2014] [Indexed: 12/23/2022] Open
Abstract
Biomarkers are naturally-occurring characteristics by which a particular pathological process or disease can be identified or monitored. They can reflect past environmental exposures, predict disease onset or course, or determine a patient's response to therapy. Epigenetic changes are such characteristics, with most epigenetic biomarkers discovered to date based on the epigenetic mark of DNA methylation. Many tissue types are suitable for the discovery of DNA methylation biomarkers including cell-based samples such as blood and tumor material and cell-free DNA samples such as plasma. DNA methylation biomarkers with diagnostic, prognostic and predictive power are already in clinical trials or in a clinical setting for cancer. Outside cancer, strong evidence that complex disease originates in early life is opening up exciting new avenues for the detection of DNA methylation biomarkers for adverse early life environment and for estimation of future disease risk. However, there are a number of limitations to overcome before such biomarkers reach the clinic. Nevertheless, DNA methylation biomarkers have great potential to contribute to personalized medicine throughout life. We review the current state of play for DNA methylation biomarkers, discuss the barriers that must be crossed on the way to implementation in a clinical setting, and predict their future use for human disease.
Collapse
|
45
|
Zhang ZM, Wang Y, Huang R, Liu YP, Li X, Hu FL, Zhu L, Wang F, Cui BB, Dong XS, Zhao YS. TFAP2E hypermethylation was associated with survival advantage in patients with colorectal cancer. J Cancer Res Clin Oncol 2014; 140:2119-27. [PMID: 24996990 DOI: 10.1007/s00432-014-1766-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 06/26/2014] [Indexed: 12/20/2022]
Abstract
PURPOSE Hypermethylation of TFAP2E (AP-2E) is associated with the chemotherapy-resistant in patients with colorectal cancer (CRC), but its implications on prognosis directly remain unknown. This study was aimed to investigate the role of AP-2E methylation status and other clinicopathologic parameters as predictors of prognosis. METHODS We detected the methylation status of AP-2E in tumor and adjacent non-tumor tissues from 311 sporadic CRC patients by methylation-sensitive high-resolution melting analysis. Log-rank tests and multivariate Cox analyses were performed to evaluate the role of AP-2E methylation status and other clinicopathologic parameters as predictors of prognosis. RESULTS Hypermethylation of AP-2E was detected in 61 % (190/311) tumor tissues. It occurred more frequently in tumors in earlier stages (I/II; P = 0.02), lower levels of tumor invasion (T1-T3; P = 0.04), fewer lymph nodes involved (N0; P < 0.01), and higher histologic grades (G1/G2; P < 0.01). The overall 5-year survival rates in hypermethylation and hypomethylation group were 76.91 and 47.17 % (P < 0.0001), respectively. AP-2E hypermethylation was significantly associated with a favorable clinical outcome with a hazard ratio of 0.486 (95 % CI 0.342-0.692, P < 0.0001) after controlling for age, gender, tumor location, histologic type, TNM staging, and histologic grade. CONCLUSIONS AP-2E was frequently hypermethylated in tumors from patients with CRC. Aberrant hypermethylation of AP-2E occurred more frequently in tumors with earlier stages, lower levels of tumor invasion, fewer lymph nodes involved, and higher histologic grades. AP-2E hypermethylation might be an independent predictor of survival advantage in patients with CRC.
Collapse
Affiliation(s)
- Zuo-Ming Zhang
- Department of Epidemiology, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, 150086, Heilongjiang Province, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Vaiopoulos AG, Athanasoula KC, Papavassiliou AG. Epigenetic modifications in colorectal cancer: Molecular insights and therapeutic challenges. Biochim Biophys Acta Mol Basis Dis 2014; 1842:971-80. [DOI: 10.1016/j.bbadis.2014.02.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 02/12/2014] [Accepted: 02/15/2014] [Indexed: 12/11/2022]
|
47
|
McNally B, Linder M, Valdes R. Epigenetic primer for diagnostic applications: a window into personalized medicine. Per Med 2014; 11:323-337. [DOI: 10.2217/pme.14.21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epigenetic testing, primarily in the form of DNA methylation analysis, is currently being used in healthcare settings to help identify and manage disease conditions and to develop and select drugs that specifically target epigenetic machinery. Yet, the clinical application of epigenetic analysis is still in its infancy. With a number of large-scale national and international epigenomic consortia projects in progress to identify tissue-specific epigenomes in normal and disease conditions, we are now poised for a new era of understanding disease processes based upon genetic changes that do not involve alterations to the DNA sequence. The developing epigenetic knowledge base will significantly advance the practice of personalized medicine and precision therapeutics. In this article, we provide a primer on the fundamentals of epigenetics with an emphasis on DNA methylation and review the prospective uses of epigenetic testing in advancing healthcare.
Collapse
Affiliation(s)
| | - Mark Linder
- PGXL Laboratories, Louisville, KY 40202, USA
- Department of Pathology & Laboratory Medicine, University of Louisville School of Medicine, MDR Building, 511 S Flloyd Street, Room 222, Louisville KY 40292, USA
| | - Roland Valdes
- PGXL Laboratories, Louisville, KY 40202, USA
- Department of Pathology & Laboratory Medicine, University of Louisville School of Medicine, MDR Building, 511 S Flloyd Street, Room 222, Louisville KY 40292, USA
| |
Collapse
|
48
|
Ganepola GAP, Nizin J, Rutledge JR, Chang DH. Use of blood-based biomarkers for early diagnosis and surveillance of colorectal cancer. World J Gastrointest Oncol 2014; 6:83-97. [PMID: 24734154 PMCID: PMC3981973 DOI: 10.4251/wjgo.v6.i4.83] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 03/08/2014] [Accepted: 03/17/2014] [Indexed: 02/05/2023] Open
Abstract
Early screening for colorectal cancer (CRC) holds the key to combat and control the increasing global burden of CRC morbidity and mortality. However, the current available screening modalities are severely inadequate because of their high cost and cumbersome preparatory procedures that ultimately lead to a low participation rate. People simply do not like to have colonoscopies. It would be ideal, therefore, to develop an alternative modality based on blood biomarkers as the first line screening test. This will allow for the differentiation of the general population from high risk individuals. Colonoscopy would then become the secondary test, to further screen the high risk segment of the population. This will encourage participation and therefore help to reach the goal of early detection and thereby reduce the anticipated increasing global CRC incidence rate. A blood-based screening test is an appealing alternative as it is non-invasive and poses minimal risk to patients. It is easy to perform, can be repeated at shorter intervals, and therefore would likely lead to a much higher participation rate. This review surveys various blood-based test strategies currently under investigation, discusses the potency of what is available, and assesses how new technology may contribute to future test design.
Collapse
|
49
|
Serra RW, Fang M, Park SM, Hutchinson L, Green MR. A KRAS-directed transcriptional silencing pathway that mediates the CpG island methylator phenotype. eLife 2014; 3:e02313. [PMID: 24623306 PMCID: PMC3949416 DOI: 10.7554/elife.02313] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Approximately 70% of KRAS-positive colorectal cancers (CRCs) have a CpG island methylator phenotype (CIMP) characterized by aberrant DNA hypermethylation and transcriptional silencing of many genes. The factors involved in, and the mechanistic basis of, CIMP is not understood. Among the CIMP genes are the tumor suppressors p14ARF, p15INK4B, and p16INK4A, encoded by the INK4-ARF locus. In this study, we perform an RNA interference screen and identify ZNF304, a zinc-finger DNA-binding protein, as the pivotal factor required for INK4-ARF silencing and CIMP in CRCs containing activated KRAS. In KRAS-positive human CRC cell lines and tumors, ZNF304 is bound at the promoters of INK4-ARF and other CIMP genes. Promoter-bound ZNF304 recruits a corepressor complex that includes the DNA methyltransferase DNMT1, resulting in DNA hypermethylation and transcriptional silencing. KRAS promotes silencing through upregulation of ZNF304, which drives DNA binding. Finally, we show that ZNF304 also directs transcriptional silencing of INK4-ARF in human embryonic stem cells. DOI:http://dx.doi.org/10.7554/eLife.02313.001 Colorectal cancer, which affects the large intestine, is a leading cause of cancer deaths worldwide, ranking fourth after cancers of the lung, stomach, and liver. Like these other cancers, this disease is caused by mutations to genes that allow cells to multiply in an out of control manner. Mutations that change the gene encoding a protein called KRAS are found in many different types of cancer. Moreover, about 70% of colorectal cancers with a KRAS mutation also have an excess of small chemical marks on other genes, some of which are known to suppress the growth of tumors. These marks ‘switch off’ these genes, and although the identities of the enzymes that typically leave these marks on DNA are known, the link between these enzymes and the KRAS protein is unknown. Now Serra, Fang et al. have identified a protein, called ZNF304, that is required by KRAS to switch off a large number of genes, including multiple tumor suppressors. In the absence of ZNF304, these tumor suppressor genes remained switched on in cancer cells with the KRAS mutation, so the growth of the tumor was slowed down. ZNF304 is a protein that binds to stretches of DNA, including regions of DNA at the start of several tumor suppressor genes, and it recruits the enzymes that add the chemical marks that switch off these genes. Serra, Fang et al. found that the levels of ZNF304 protein were elevated in colorectal cancer cells with the mutated KRAS, and showed that this was due to the combined activities of two other proteins that prevented ZNF304 from being broken down in the cell. Mutant KRAS caused an increase in the levels of these two proteins, which in turn caused the elevated ZNF304 levels and the excessive marking of the DNA in the tumor suppressor genes. Furthermore, some of these same tumor suppressor genes are switched off in the earliest cells in a human embryo—which have the potential to become any of 200 or so cell types in the human body. In these embryonic stem cells, Serra, Fang et al. showed that ZNF304, but not KRAS, was also involved in keeping these genes switched off until the stem cells started changing into specific types of cells. Since they are a crucial part of the pathway linking a cancer-causing mutation to increased tumor growth, the proteins identified by Serra, Fang et al. could represent promising targets for the development of new anti-cancer drugs. DOI:http://dx.doi.org/10.7554/eLife.02313.002
Collapse
Affiliation(s)
- Ryan W Serra
- Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| | | | | | | | | |
Collapse
|
50
|
Stirzaker C, Taberlay PC, Statham AL, Clark SJ. Mining cancer methylomes: prospects and challenges. Trends Genet 2013; 30:75-84. [PMID: 24368016 DOI: 10.1016/j.tig.2013.11.004] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 11/22/2013] [Accepted: 11/26/2013] [Indexed: 12/31/2022]
Abstract
There are over 28 million CpG sites in the human genome. Assessing the methylation status of each of these sites will be required to understand fully the role of DNA methylation in health and disease. Genome-wide analysis, using arrays and high-throughput sequencing, has enabled assessment of large fractions of the methylome, but each protocol comes with unique advantages and disadvantages. Notably, except for whole-genome bisulfite sequencing, most commonly used genome-wide methods detect <5% of all CpG sites. Here, we discuss approaches for methylome studies and compare genome coverage of promoters, genes, and intergenic regions, and capacity to quantitate individual CpG methylation states. Finally, we examine the extent of published cancer methylomes that have been generated using genome-wide approaches.
Collapse
Affiliation(s)
- Clare Stirzaker
- Epigenetics Program, Garvan Institute of Medical Research, The Kinghorn Cancer Centre, Sydney 2010, NSW, Australia; St Vincent's Clinical School, University of NSW, Sydney 2010, NSW, Australia
| | - Phillippa C Taberlay
- Epigenetics Program, Garvan Institute of Medical Research, The Kinghorn Cancer Centre, Sydney 2010, NSW, Australia; St Vincent's Clinical School, University of NSW, Sydney 2010, NSW, Australia
| | - Aaron L Statham
- Epigenetics Program, Garvan Institute of Medical Research, The Kinghorn Cancer Centre, Sydney 2010, NSW, Australia
| | - Susan J Clark
- Epigenetics Program, Garvan Institute of Medical Research, The Kinghorn Cancer Centre, Sydney 2010, NSW, Australia; St Vincent's Clinical School, University of NSW, Sydney 2010, NSW, Australia.
| |
Collapse
|