1
|
Amin R, Ha NH, Qiu T, Holewinski R, Lam KC, Lopès A, Liu H, Tran AD, Lee MP, Gamage ST, Andresson T, Goldszmid RS, Meier JL, Hunter KW. Loss of NAT10 disrupts enhancer organization via p300 mislocalization and suppresses transcription of genes necessary for metastasis progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.24.577116. [PMID: 38410432 PMCID: PMC10896336 DOI: 10.1101/2024.01.24.577116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Acetylation of protein and RNA represent a critical event for development and cancer progression. NAT10 is the only known RNA acetylase that catalyzes the N4-actylcytidine (ac4C) modification of RNAs. Here, we show that the loss of NAT10 significantly decreases lung metastasis in allograft and genetically engineered mouse models of breast cancer. NAT10 interacts with a mechanosensitive, metastasis susceptibility protein complex at the nuclear pore. In addition to its canonical role in RNA acetylation, we find that NAT10 interacts with p300 at gene enhancers. NAT10 loss is associated with p300 mislocalization into heterochromatin regions. NAT10 depletion disrupts enhancer organization, leading to alteration of gene transcription necessary for metastatic progression, including reduced myeloid cell-recruiting chemokines that results in a less metastasis-prone tumor microenvironment. Our study uncovers a distinct role of NAT10 in enhancer organization of metastatic tumor cells and suggests its involvement in the tumor-immune crosstalk dictating metastatic outcomes.
Collapse
|
2
|
Santonja Á, Moya-García AA, Ribelles N, Jiménez-Rodríguez B, Pajares B, Fernández-De Sousa CE, Pérez-Ruiz E, Del Monte-Millán M, Ruiz-Borrego M, de la Haba J, Sánchez-Rovira P, Romero A, González-Neira A, Lluch A, Alba E. Role of germline variants in the metastasis of breast carcinomas. Oncotarget 2022; 13:843-862. [PMID: 35782051 PMCID: PMC9245581 DOI: 10.18632/oncotarget.28250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022] Open
Abstract
Most cancer-related deaths in breast cancer patients are associated with metastasis, a multistep, intricate process that requires the cooperation of tumour cells, tumour microenvironment and metastasis target tissues. It is accepted that metastasis does not depend on the tumour characteristics but the host’s genetic makeup. However, there has been limited success in determining the germline genetic variants that influence metastasis development, mainly because of the limitations of traditional genome-wide association studies to detect the relevant genetic polymorphisms underlying complex phenotypes. In this work, we leveraged the extreme discordant phenotypes approach and the epistasis networks to analyse the genotypes of 97 breast cancer patients. We found that the host’s genetic makeup facilitates metastases by the dysregulation of gene expression that can promote the dispersion of metastatic seeds and help establish the metastatic niche—providing a congenial soil for the metastatic seeds.
Collapse
Affiliation(s)
- Ángela Santonja
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospitales Universitarios Regional y Virgen de la Victoria de Málaga, Spain.,Laboratorio de Biología Molecular del Cáncer, Centro de Investigaciones Médico-Sanitarias (CIMES), Universidad de Málaga, Málaga, Spain.,These authors contributed equally to this work
| | - Aurelio A Moya-García
- Laboratorio de Biología Molecular del Cáncer, Centro de Investigaciones Médico-Sanitarias (CIMES), Universidad de Málaga, Málaga, Spain.,Departmento de Biología Molecular y Bioquímica, Universidad de Málaga, Málaga, Spain.,These authors contributed equally to this work
| | - Nuria Ribelles
- Unidad de Gestión Clínica Intercentro de Oncología, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospitales Universitarios Regional y Virgen de la Victoria de Málaga, Málaga, Spain.,Centro de Investigación Biomédica en Red de Oncología, CIBERONC-ISCIII, Madrid, Spain
| | - Begoña Jiménez-Rodríguez
- Unidad de Gestión Clínica Intercentro de Oncología, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospitales Universitarios Regional y Virgen de la Victoria de Málaga, Málaga, Spain
| | - Bella Pajares
- Unidad de Gestión Clínica Intercentro de Oncología, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospitales Universitarios Regional y Virgen de la Victoria de Málaga, Málaga, Spain
| | - Cristina E Fernández-De Sousa
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospitales Universitarios Regional y Virgen de la Victoria de Málaga, Spain.,Laboratorio de Biología Molecular del Cáncer, Centro de Investigaciones Médico-Sanitarias (CIMES), Universidad de Málaga, Málaga, Spain
| | | | - María Del Monte-Millán
- Centro de Investigación Biomédica en Red de Oncología, CIBERONC-ISCIII, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain
| | | | - Juan de la Haba
- Centro de Investigación Biomédica en Red de Oncología, CIBERONC-ISCIII, Madrid, Spain.,Biomedical Research Institute, Complejo Hospitalario Reina Sofía, Córdoba, Spain
| | | | - Atocha Romero
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - Anna González-Neira
- Human Genotyping-CEGEN Unit, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ana Lluch
- Centro de Investigación Biomédica en Red de Oncología, CIBERONC-ISCIII, Madrid, Spain.,Department of Oncology and Hematology, Hospital Clínico Universitario, Valencia, Spain.,INCLIVA Biomedical Research Institute, Universidad de Valencia, Valencia, Spain
| | - Emilio Alba
- Laboratorio de Biología Molecular del Cáncer, Centro de Investigaciones Médico-Sanitarias (CIMES), Universidad de Málaga, Málaga, Spain.,Unidad de Gestión Clínica Intercentro de Oncología, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospitales Universitarios Regional y Virgen de la Victoria de Málaga, Málaga, Spain.,Centro de Investigación Biomédica en Red de Oncología, CIBERONC-ISCIII, Madrid, Spain
| |
Collapse
|
3
|
Sousa JFD, Serafim RB, Freitas LMD, Fontana CR, Valente V. DNA repair genes in astrocytoma tumorigenesis, progression and therapy resistance. Genet Mol Biol 2019; 43:e20190066. [PMID: 31930277 PMCID: PMC7198033 DOI: 10.1590/1678-4685-gmb-2019-0066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/21/2019] [Indexed: 12/26/2022] Open
Abstract
Glioblastoma (GBM) is the most common and malignant type of primary brain tumor,
showing rapid development and resistance to therapies. On average, patients
survive 14.6 months after diagnosis and less than 5% survive five years or more.
Several pieces of evidence have suggested that the DNA damage signaling and
repair activities are directly correlated with GBM phenotype and exhibit
opposite functions in cancer establishment and progression. The functions of
these pathways appear to present a dual role in tumorigenesis and cancer
progression. Activation and/or overexpression of ATRX, ATM and RAD51 genes were
extensively characterized as barriers for GBM initiation, but paradoxically the
exacerbated activity of these genes was further associated with cancer
progression to more aggressive stages. Excessive amounts of other DNA repair
proteins, namely HJURP, EXO1, NEIL3, BRCA2, and BRIP, have also been connected
to proliferative competence, resistance and poor prognosis. This scenario
suggests that these networks help tumor cells to manage replicative stress and
treatment-induced damage, diminishing genome instability and conferring therapy
resistance. Finally, in this review we address promising new drugs and
therapeutic approaches with potential to improve patient survival. However,
despite all technological advances, the prognosis is still dismal and further
research is needed to dissect such complex mechanisms.
Collapse
Affiliation(s)
- Juliana Ferreira de Sousa
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Rodolfo Bortolozo Serafim
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Laura Marise de Freitas
- Universidade de São Paulo, Instituto de Química, Departamento de Bioquímica, São Paulo, SP, Brazil
| | - Carla Raquel Fontana
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Araraquara, SP, Brazil
| | - Valeria Valente
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.,Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Araraquara, SP, Brazil.,Centro de Terapia Celular (CEPID-FAPESP), Ribeirão Preto, SP, Brazil
| |
Collapse
|
4
|
Saha A, Harowicz MR, Cain EH, Hall AH, Hwang ESS, Marks JR, Marcom PK, Mazurowski MA. Intra-tumor molecular heterogeneity in breast cancer: definitions of measures and association with distant recurrence-free survival. Breast Cancer Res Treat 2018; 172:123-132. [PMID: 29992418 PMCID: PMC6588400 DOI: 10.1007/s10549-018-4879-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 07/05/2018] [Indexed: 01/22/2023]
Abstract
PURPOSE The purpose of the study was to define quantitative measures of intra-tumor heterogeneity in breast cancer based on histopathology data gathered from multiple samples on individual patients and determine their association with distant recurrence-free survival (DRFS). METHODS We collected data from 971 invasive breast cancers, from 1st January 2000 to 23rd March 2014, that underwent repeat tumor sampling at our institution. We defined and calculated 31 measures of intra-tumor heterogeneity including ER, PR, and HER2 immunohistochemistry (IHC), proliferation, EGFR IHC, grade, and histology. For each heterogeneity measure, Cox proportional hazards models were used to determine whether patients with heterogeneous disease had different distant recurrence-free survival (DRFS) than those with homogeneous disease. RESULTS The presence of heterogeneity in ER percentage staining was prognostic of reduced DRFS with a hazard ratio of 4.26 (95% CI 2.22-8.18, p < 0.00002). It remained significant after controlling for the ER status itself (p < 0.00062) and for patients that had chemotherapy (p < 0.00032). Most of the heterogeneity measures did not show any association with DRFS despite the considerable sample size. CONCLUSIONS Intra-tumor heterogeneity of ER receptor status may be a predictor of patient DRFS. Histopathologic data from multiple tissue samples may offer a view of tumor heterogeneity and assess recurrence risk.
Collapse
Affiliation(s)
- Ashirbani Saha
- Department of Radiology, Duke University School of Medicine, Durham, NC, 27705, USA.
- Department of Radiology, Duke University School of Medicine, 2424 Erwin Road, Suite 302, Durham, NC, 27705, USA.
| | - Michael R Harowicz
- Department of Radiology, Duke University School of Medicine, Durham, NC, 27705, USA
| | - Elizabeth Hope Cain
- Department of Radiology, Duke University School of Medicine, Durham, NC, 27705, USA
| | - Allison H Hall
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Eun-Sil Shelley Hwang
- Department of Surgical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jeffrey R Marks
- Department of Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Paul Kelly Marcom
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Maciej A Mazurowski
- Department of Radiology, Duke University School of Medicine, Durham, NC, 27705, USA
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, 27705, USA
- Duke University Medical Physics Program, Durham, NC, 27705, USA
| |
Collapse
|
5
|
Chai F, Li Y, Liu K, Li Q, Sun H. Caveolin enhances hepatocellular carcinoma cell metabolism, migration, and invasion in vitro via a hexokinase 2‐dependent mechanism. J Cell Physiol 2018; 234:1937-1946. [PMID: 30144070 DOI: 10.1002/jcp.27074] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/28/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Fang Chai
- Department of General Surgery Affiliated Hospital of Jinzhou Medical University Jinzhou China
| | - Yan Li
- Department of General Surgery The Fourth Affiliated Hospital of China Medical University Shenyang China
| | - Keyi Liu
- Department of General Surgery Affiliated Hospital of Jinzhou Medical University Jinzhou China
| | - Qiang Li
- Department of General Surgery Affiliated Hospital of Jinzhou Medical University Jinzhou China
| | - Hongzhi Sun
- Department of General Surgery Affiliated Hospital of Jinzhou Medical University Jinzhou China
| |
Collapse
|
6
|
Lee M, Crawford NPS. Defining the Influence of Germline Variation on Metastasis Using Systems Genetics Approaches. Adv Cancer Res 2016; 132:73-109. [PMID: 27613130 DOI: 10.1016/bs.acr.2016.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cancer is estimated to be responsible for 8 million deaths worldwide and over half a million deaths every year in the United States. The majority of cancer-related deaths in solid tumors is directly associated with the effects of metastasis. While the influence of germline factors on cancer risk and development has long been recognized, the contribution of hereditary variation to tumor progression and metastasis has only gained acceptance more recently. A variety of approaches have been used to define how hereditary variation influences tumor progression and metastasis. One approach that garnered much early attention was epidemiological studies of cohorts of cancer patients, which demonstrated that specific loci within the human genome are associated with a differential propensity for aggressive tumor development. However, a powerful, and somewhat underutilized approach has been the use of systems genetics approaches in transgenic mouse models of human cancer. Such approaches are typically multifaceted, and involve integration of multiple lines of evidence derived, for example, from genetic and transcriptomic screens of genetically diverse mouse models of cancer, coupled with bioinformatics analysis of human cancer datasets, and functional analysis of candidate genes. These methodologies have allowed for the identification of multiple hereditary metastasis susceptibility genes, with wide-ranging cellular functions including regulation of gene transcription, cell proliferation, and cell-cell adhesion. In this chapter, we review how each of these approaches have facilitated the identification of these hereditary metastasis modifiers, the molecular functions of these metastasis-associated genes, and the implications of these findings upon patient survival.
Collapse
Affiliation(s)
- M Lee
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, NIH, Bethesda, MD, United States
| | - N P S Crawford
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, NIH, Bethesda, MD, United States.
| |
Collapse
|
7
|
Ali M, Heyob K, Jacob NK, Rogers LK. Alterative Expression and Localization of Profilin 1/VASPpS157 and Cofilin 1/VASPpS239 Regulates Metastatic Growth and Is Modified by DHA Supplementation. Mol Cancer Ther 2016; 15:2220-31. [PMID: 27496138 DOI: 10.1158/1535-7163.mct-16-0092] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/23/2016] [Indexed: 01/26/2023]
Abstract
Profilin 1, cofilin 1, and vasodialator-stimulated phosphoprotein (VASP) are actin-binding proteins (ABP) that regulate actin remodeling and facilitate cancer cell metastases. miR-17-92 is highly expressed in metastatic tumors and profilin1 and cofilin1 are predicted targets. Docosahexaenoic acid (DHA) inhibits cancer cell proliferation and adhesion. These studies tested the hypothesis that the metastatic phenotype is driven by changes in ABPs including alternative phosphorylation and/or changes in subcellular localization. In addition, we tested the efficacy of DHA supplementation to attenuate or inhibit these changes. Human lung cancer tissue sections were analyzed for F-actin content and expression and cellular localization of profilin1, cofilin1, and VASP (S157 or S239 phosphorylation). The metastatic phenotype was investigated in A549 and MLE12 cells lines using 8 Br-cAMP as a metastasis inducer and DHA as a therapeutic agent. Migration was assessed by wound assay and expression measured by Western blot and confocal analysis. miR-17-92 expression was measured by qRT-PCR. Results indicated increased expression and altered cellular distribution of profilin1/VASP(pS157), but no changes in cofilin1/VASP(pS239) in the human malignant tissues compared with normal tissues. In A549 and MLE12 cells, the expression patterns of profilin1/VASP(pS157) or cofilin1/VASP(pS239) suggested an interaction in regulation of actin dynamics. Furthermore, DHA inhibited cancer cell migration and viability, ABP expression and cellular localization, and modulated expression of miR-17-92 in A549 cells with minimal effects in MLE12 cells. Further investigations are warranted to understand ABP interactions, changes in cellular localization, regulation by miR-17-92, and DHA as a novel therapeutic. Mol Cancer Ther; 15(9); 2220-31. ©2016 AACR.
Collapse
Affiliation(s)
- Mehboob Ali
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio.
| | - Kathryn Heyob
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | | | - Lynette K Rogers
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio. Department of Pediatrics, The Ohio State University, Columbus, Ohio
| |
Collapse
|
8
|
Ali M, Heyob K, Rogers LK. DHA-mediated regulation of lung cancer cell migration is not directly associated with Gelsolin or Vimentin expression. Life Sci 2016; 155:1-9. [PMID: 27157519 PMCID: PMC4900460 DOI: 10.1016/j.lfs.2016.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/25/2016] [Accepted: 05/04/2016] [Indexed: 10/21/2022]
Abstract
AIMS Deaths associated with cancer metastasis have steadily increased making the need for newer, anti-metastatic therapeutics imparative. Gelsolin and vimentin, actin binding proteins expressed in metastatic tumors, participate in actin remodelling and regulate cell migration. Docosahexaenoic acid (DHA) limits cancer cell proliferation and adhesion but the mechanisms involved in reducing metastatic phenotypes are unknown. We aimed to investigate the effects of DHA on gelsolin and vimentin expression, and ultimately cell migration and proliferation, in this context. MAIN METHODS Non-invasive lung epithelial cells (MLE12) and invasive lung cancer cells (A549) were treated with DHA (30μmol/ml) or/and 8 bromo-cyclic adenosine monophosphate (8 Br-cAMP) (300μmol/ml) for 6 or 24h either before (pre-treatment) or after (post-treatment) plating in transwells. Migration was assessed by the number of cells that progressed through the transwell. Gelsolin and vimentin expression were measured by Western blot and confocal microscopy in cells, and by immunohistochemistry in human lung cancer biopsy samples. KEY FINDINGS A significant decrease in cell migration was detected for A549 cells treated with DHA verses control but this same decrease was not seen in MLE12 cells. DHA and 8 Br-cAMP altered gelsolin and vimentin expression but no clear pattern of change was observed. Immunofluorescence staining indicated slightly higher vimentin expression in human lung tissue that was malignant compared to control. SIGNIFICANCE Collectively, our data indicate that DHA inhibits cancer cell migration and further suggests that vimentin and gelsolin may play secondary roles in cancer cell migration and proliferation, but are not the primary regulators.
Collapse
Affiliation(s)
- Mehboob Ali
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
| | - Kathryn Heyob
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Lynette K Rogers
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
9
|
Wrobel JK, Toborek M. Blood-brain Barrier Remodeling during Brain Metastasis Formation. Mol Med 2016; 22:32-40. [PMID: 26837070 DOI: 10.2119/molmed.2015.00207] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 01/13/2016] [Indexed: 12/22/2022] Open
Abstract
Our understanding of the process of metastatic progression has improved markedly over the past decades, yet metastasis remains the most enigmatic component of cancer pathogenesis. This lack of knowledge has serious health-related implications, since metastasis is responsible for 90% of all cancer-related mortalities. The brain is considered a sanctuary site for metastatic tumor growth, where the blood-brain barrier (BBB) and other components of the brain microenvironment, provide protection to the tumor cells from immune surveillance, chemotherapeutics and other potentially harmful substances. The interactions between tumor cells and the brain microenvironment, principally brain vascular endothelium, are the critical determinants in their progression toward metastasis, dormancy, or clearance. This review discusses current knowledge of the biology of metastatic progression, with a particular focus on the tumor cell migration and colonization in the brain.
Collapse
Affiliation(s)
- Jagoda K Wrobel
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, United States of America.,Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| |
Collapse
|