1
|
Jankowski M, Farzaneh M, Ghaedrahmati F, Shirvaliloo M, Moalemnia A, Kulus M, Ziemak H, Chwarzyński M, Dzięgiel P, Zabel M, Piotrowska-Kempisty H, Bukowska D, Antosik P, Mozdziak P, Kempisty B. Unveiling Mesenchymal Stem Cells' Regenerative Potential in Clinical Applications: Insights in miRNA and lncRNA Implications. Cells 2023; 12:2559. [PMID: 37947637 PMCID: PMC10649218 DOI: 10.3390/cells12212559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/20/2023] [Accepted: 10/28/2023] [Indexed: 11/12/2023] Open
Abstract
It is now widely recognized that mesenchymal stem cells (MSCs) possess the capacity to differentiate into a wide array of cell types. Numerous studies have identified the role of lncRNA in the regulation of MSC differentiation. It is important to elucidate the role and interplay of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in the regulation of signalling pathways that govern MSC function. Furthermore, miRNAs and lncRNAs are important clinical for innovative strategies aimed at addressing a wide spectrum of existing and emerging disease. Hence it is important to consider their impact on MSC function and differentiation. Examining the data available in public databases, we have collected the literature containing the latest discoveries pertaining to human stem cells and their potential in both fundamental research and clinical applications. Furthermore, we have compiled completed clinical studies that revolve around the application of MSCs, shedding light on the opportunities presented by harnessing the regulatory potential of miRNAs and lncRNAs. This exploration of the therapeutic possibilities offered by miRNAs and lncRNAs within MSCs unveils exciting prospects for the development of precision therapies and personalized treatment approaches. Ultimately, these advancements promise to augment the efficacy of regenerative strategies and produce positive outcomes for patients. As research in this field continues to evolve, it is imperative to explore and exploit the vast potential of miRNAs and lncRNAs as therapeutic agents. The findings provide a solid basis for ongoing investigations, fuelling the quest to fully unlock the regenerative potential of MSCs.
Collapse
Affiliation(s)
- Maurycy Jankowski
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, 60-812 Poznan, Poland;
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Milad Shirvaliloo
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Future Science Group, Unitec House, 2 Albert Place, London N3 1QB, UK
| | - Arash Moalemnia
- Faculty of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Hanna Ziemak
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Mikołaj Chwarzyński
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Department of Physiotherapy, Wroclaw University School of Physical Education, 50-038 Wroclaw, Poland
| | - Maciej Zabel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Division of Anatomy and Histology, University of Zielona Góra, 65-046 Zielona Góra, Poland
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27607, USA
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27613, USA
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27613, USA
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 602 00 Brno, Czech Republic
| |
Collapse
|
2
|
Neuroprotection of Bone Marrow-Derived Mesenchymal Stem Cell-Derived Extracellular Vesicle-Enclosed miR-410 Correlates with HDAC4 Knockdown in Hypoxic-Ischemic Brain Damage. Neurochem Res 2022; 47:3150-3166. [PMID: 36028735 DOI: 10.1007/s11064-022-03670-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 06/07/2022] [Accepted: 06/23/2022] [Indexed: 10/15/2022]
Abstract
Evidence exists reporting that miR-410 may rescue neurological deficits, neuronal injury, and neuronal apoptosis after experimental hypoxic ischemia. This study aimed to explore the mechanism by which miR-410 transferred by bone marrow-derived mesenchymal stem cell-derived extracellular vesicles (BMSC-EVs) may alleviate hypoxic-ischemic brain damage (HIBD) in newborn mice. BMSCs were isolated from total bone marrow cells of femur and tibia of newborn mice, and primary neurons were extracted from the cerebral cortex of newborn mice within 24 h of birth. EVs were extracted from BMSCs transfected with the mimic or inhibitor of miR-410. Primary neurons were subjected to hypoxia and treated with overexpression (oe)-HDAC4, small interfering RNA (siRNA)-β-catenin, or Wnt pathway inhibitor and/or EV (miR-410 mimic) or EV (miR-410 inhibitor). A neonatal mouse HIBD model was established and treated with EVs. When BMSC-EVs were endocytosed by primary neurons, miR-410 was upregulated, neuronal viability was elevated, and apoptosis was inhibited. miR-410 in BMSC-EVs targeted HDAC4, thus increasing neuronal viability and reducing apoptosis. Conversely, overexpression of HDAC4 activated the Wnt pathway and enhanced the nuclear translocation of β-catenin. Treatment with miR-410-containing BMSC-EVs improved learning and memory abilities of HIBD mice while attenuating apoptosis by inactivating the Wnt pathway via targeting HDAC4. Taken together, the findings suggest that miR-410 delivered by BMSC-EVs alleviates HIBD by inhibiting HDAC4-dependent Wnt pathway activation.
Collapse
|
3
|
Lian WS, Wu RW, Chen YS, Ko JY, Wang SY, Jahr H, Wang FS. MicroRNA-29a Mitigates Osteoblast Senescence and Counteracts Bone Loss through Oxidation Resistance-1 Control of FoxO3 Methylation. Antioxidants (Basel) 2021; 10:antiox10081248. [PMID: 34439496 PMCID: PMC8389244 DOI: 10.3390/antiox10081248] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/01/2021] [Accepted: 08/01/2021] [Indexed: 12/20/2022] Open
Abstract
Senescent osteoblast overburden accelerates bone mass loss. Little is understood about microRNA control of oxidative stress and osteoblast senescence in osteoporosis. We revealed an association between microRNA-29a (miR-29a) loss, oxidative stress marker 8-hydroxydeoxyguanosine (8-OHdG), DNA hypermethylation marker 5-methylcystosine (5mC), and osteoblast senescence in human osteoporosis. miR-29a knockout mice showed low bone mass, sparse trabecular microstructure, and osteoblast senescence. miR-29a deletion exacerbated bone loss in old mice. Old miR-29a transgenic mice showed fewer osteoporosis signs, less 5mC, and less 8-OHdG formation than age-matched wild-type mice. miR-29a overexpression reversed age-induced senescence and osteogenesis loss in bone-marrow stromal cells. miR-29a promoted transcriptomic landscapes of redox reaction and forkhead box O (FoxO) pathways, preserving oxidation resistance protein-1 (Oxr1) and FoxO3 in old mice. In vitro, miR-29a interrupted DNA methyltransferase 3b (Dnmt3b)-mediated FoxO3 promoter methylation and senescence-associated β-galactosidase activity in aged osteoblasts. Dnmt3b inhibitor 5'-azacytosine, antioxidant N-acetylcysteine, or Oxr1 recombinant protein attenuated loss in miR-29a and FoxO3 to mitigate oxidative stress, senescence, and mineralization matrix underproduction. Taken together, miR-29a promotes Oxr1, compromising oxidative stress and FoxO3 loss to delay osteoblast aging and bone loss. This study sheds light on a new antioxidation mechanism by which miR-29a protects against osteoblast aging and highlights the remedial effects of miR-29a on osteoporosis.
Collapse
Affiliation(s)
- Wei-Shiung Lian
- Core Laboratory for Phenomics and Diagnostic, Department of Medical Research, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-S.L.); (Y.-S.C.); (S.-Y.W.)
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Re-Wen Wu
- Department of Orthopedic Surgery, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (R.-W.W.); (J.-Y.K.)
| | - Yu-Shan Chen
- Core Laboratory for Phenomics and Diagnostic, Department of Medical Research, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-S.L.); (Y.-S.C.); (S.-Y.W.)
| | - Jih-Yang Ko
- Department of Orthopedic Surgery, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (R.-W.W.); (J.-Y.K.)
| | - Shao-Yu Wang
- Core Laboratory for Phenomics and Diagnostic, Department of Medical Research, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-S.L.); (Y.-S.C.); (S.-Y.W.)
| | - Holger Jahr
- Department of Anatomy and Cell Biology, University Hospital RWTH Aachen, 52074 Aachen, Germany;
- Department of Orthopedic Surgery, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands
| | - Feng-Sheng Wang
- Core Laboratory for Phenomics and Diagnostic, Department of Medical Research, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-S.L.); (Y.-S.C.); (S.-Y.W.)
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Correspondence: ; Tel.: +886-7-731-7123
| |
Collapse
|
4
|
Oligonucleotide Therapies in the Treatment of Arthritis: A Narrative Review. Biomedicines 2021; 9:biomedicines9080902. [PMID: 34440106 PMCID: PMC8389545 DOI: 10.3390/biomedicines9080902] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA) and rheumatoid arthritis (RA) are two of the most common chronic inflammatory joint diseases, for which there remains a great clinical need to develop safer and more efficacious pharmacological treatments. The pathology of both OA and RA involves multiple tissues within the joint, including the synovial joint lining and the bone, as well as the articular cartilage in OA. In this review, we discuss the potential for the development of oligonucleotide therapies for these disorders by examining the evidence that oligonucleotides can modulate the key cellular pathways that drive the pathology of the inflammatory diseased joint pathology, as well as evidence in preclinical in vivo models that oligonucleotides can modify disease progression.
Collapse
|
5
|
Yang C, Luo M, Chen Y, You M, Chen Q. MicroRNAs as Important Regulators Mediate the Multiple Differentiation of Mesenchymal Stromal Cells. Front Cell Dev Biol 2021; 9:619842. [PMID: 34164391 PMCID: PMC8215576 DOI: 10.3389/fcell.2021.619842] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 04/26/2021] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous short non-encoding RNAs which play a critical role on the output of the proteins, and influence multiple biological characteristics of the cells and physiological processes in the body. Mesenchymal stem/stromal cells (MSCs) are adult multipotent stem cells and characterized by self-renewal and multidifferentiation and have been widely used for disease treatment and regenerative medicine. Meanwhile, MSCs play a critical role in maintaining homeostasis in the body, and dysfunction of MSC differentiation leads to many diseases. The differentiation of MSCs is a complex physiological process and is the result of programmed expression of a series of genes. It has been extensively proven that the differentiation process or programmed gene expression is also regulated accurately by miRNAs. The differentiation of MSCs regulated by miRNAs is also a complex, interdependent, and dynamic process, and a full understanding of the role of miRNAs will provide clues on the appropriate upregulation or downregulation of corresponding miRNAs to mediate the differentiation efficiency. This review summarizes the roles and associated signaling pathways of miRNAs in adipogenesis, chondrogenesis, and osteogenesis of MSCs, which may provide new hints on MSCs or miRNAs as therapeutic strategies for regenerative medicine and biotherapy for related diseases.
Collapse
Affiliation(s)
- Chao Yang
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-Life Stem Cell Biotech Inc., Chengdu, China
| | - Maowen Luo
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-Life Stem Cell Biotech Inc., Chengdu, China
| | - Yu Chen
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-Life Stem Cell Biotech Inc., Chengdu, China
| | - Min You
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-Life Stem Cell Biotech Inc., Chengdu, China
| | - Qiang Chen
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-Life Stem Cell Biotech Inc., Chengdu, China.,Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Peking Union Medical College, Chengdu, China
| |
Collapse
|
6
|
Liao H, Zhang Z, Liu Z, Lin W, Huang J, Huang Y. RETRACTED: Inhibited microRNA-218-5p attenuates synovial inflammation and cartilage injury in rats with knee osteoarthritis by promoting sclerostin. Life Sci 2021; 267:118893. [PMID: 33316267 DOI: 10.1016/j.lfs.2020.118893] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/30/2020] [Accepted: 12/06/2020] [Indexed: 01/06/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Concern was raised about the reliability of the Western blot results in Figs. 1C and 7B, which appear to have the same eyebrow shaped phenotype as many other publications tabulated here (https://docs.google.com/spreadsheets/d/149EjFXVxpwkBXYJOnOHb6RhAqT4a2llhj9LM60MBffM/edit#gid=0). The journal requested the corresponding author comment on these concerns and provide the raw data. However the authors were not able to satisfactorily fulfil this request and therefore the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Hongxing Liao
- Department of Orthopedics Center, Meizhou People's Hospital, Meizhou City, Guangdong Province 514031, PR China.
| | - Zhihui Zhang
- Department of Orthopedics Center, Meizhou People's Hospital, Meizhou City, Guangdong Province 514031, PR China
| | - Zhanliang Liu
- Department of Orthopedics Center, Meizhou People's Hospital, Meizhou City, Guangdong Province 514031, PR China
| | - Weiming Lin
- Department of Orthopedics Center, Meizhou People's Hospital, Meizhou City, Guangdong Province 514031, PR China
| | - Jian Huang
- Department of Orthopedics Center, Meizhou People's Hospital, Meizhou City, Guangdong Province 514031, PR China
| | - Yingmei Huang
- Department of Orthopedics Center, Meizhou People's Hospital, Meizhou City, Guangdong Province 514031, PR China
| |
Collapse
|
7
|
Zhao Z, Wang Y, Wang Q, Liang J, Hu W, Zhao S, Li P, Zhu H, Li Z. Radial extracorporeal shockwave promotes subchondral bone stem/progenitor cell self-renewal by activating YAP/TAZ and facilitates cartilage repair in vivo. Stem Cell Res Ther 2021; 12:19. [PMID: 33413606 PMCID: PMC7792202 DOI: 10.1186/s13287-020-02076-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/07/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Radial extracorporeal shockwave (r-ESW), an innovative and noninvasive technique, is gaining increasing attention in regenerative medicine due to its mechanobiological effects. Subchondral bone stem/progenitor cells (SCB-SPCs), originating from the pivotal zone of the osteochondral unit, have been shown to have multipotency and self-renewal properties. However, thus far, little information is available regarding the influences of r-ESW on the biological properties of SCB-SPCs and their therapeutic effects in tissue regeneration. METHODS SCB-SPCs were isolated from human knee plateau osteochondral specimens and treated with gradient doses of r-ESW in a suspension stimulation system. The optimized parameters for SCB-SPC self-renewal were screened out by colony-forming unit fibroblast assay (CFU-F). Then, the effects of r-ESW on the proliferation, apoptosis, and multipotency of SCB-SPCs were evaluated. Moreover, the repair efficiency of radial shockwave-preconditioned SCB-SPCs was evaluated in vivo via an osteochondral defect model. Potential mechanisms were explored by western blotting, confocal laser scanning, and high-throughput sequencing. RESULTS The CFU-F data indicate that r-ESW could augment the self-renewal of SCB-SPCs in a dose-dependent manner. The CCK-8 and flow cytometry results showed that the optimized shockwave markedly promoted SCB-SPC proliferation but had no significant influence on cell apoptosis. Radial shockwave exerted no significant influence on osteogenic capacity but strongly suppressed adipogenic ability in the current study. For chondrogenic potentiality, the treated SCB-SPCs were mildly enhanced, while the change was not significant. Importantly, the macroscopic scores and further histological analysis strongly demonstrated that the in vivo therapeutic effects of SCB-SPCs were markedly improved post r-ESW treatment. Further analysis showed that the cartilage-related markers collagen II and proteoglycan were expressed at higher levels compared to their counterpart group. Mechanistic studies suggested that r-ESW treatment strongly increased the expression of YAP and promoted YAP nuclear translocation in SCB-SPCs. More importantly, self-renewal was partially blocked by the YAP-specific inhibitor verteporfin. Moreover, the high-throughput sequencing data indicated that other self-renewal-associated pathways may also be involved in this process. CONCLUSION We found that r-ESW is capable of promoting the self-renewal of SCB-SPCs in vitro by targeting YAP activity and strengthening its repair efficiency in vivo, indicating promising application prospects.
Collapse
Affiliation(s)
- Zhidong Zhao
- Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Medical School, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.,Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Yuxing Wang
- Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Medical School, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.,Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Qian Wang
- Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Medical School, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.,Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Jiawu Liang
- Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Medical School, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.,Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Wei Hu
- Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Medical School, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.,Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Sen Zhao
- Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Medical School, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.,Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Peilin Li
- Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Heng Zhu
- Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China. .,Graduate School of Anhui Medical University, No. 81 Meishan Road, Shu Shan District, Hefei, 230032, Anhui Province, China.
| | - Zhongli Li
- Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Medical School, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|
8
|
Long C, Cen S, Zhong Z, Zhou C, Zhong G. FOXO3 is targeted by miR-223-3p and promotes osteogenic differentiation of bone marrow mesenchymal stem cells by enhancing autophagy. Hum Cell 2020; 34:14-27. [PMID: 32920731 PMCID: PMC7788031 DOI: 10.1007/s13577-020-00421-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/24/2020] [Indexed: 02/05/2023]
Abstract
Mesenchymal stem cells (MSCs) are a promising regenerative medicine. The roles of miRNAs in osteogenic differentiation of bone marrow MSCs (BM-MSCs) remained less reported. Forkhead Box O3 (FOXO3) and alkaline phosphatase (ALP) levels in the BM-MSCs were measured on 3, 7, and 14 days after osteogenic differentiation. After transfection of FOXO3 overexpression plasmids or siFOXO3 into BM-MSCs, factors related to osteogenic differentiation or cell autophagy were determined. Besides, 3-methyladenine or rapamycin, as well as miR-223-3p mimic or inhibitor were applied to further determine the effect of FOXO3 in BM-MSCs. FOXO3 and ALP levels were increased in a time-dependent manner with osteogenic differentiation, supported by Alizarin Red Staining. Furthermore, up-regulated FOXO3 increased levels of ALP and factors related to osteogenic differentiation by increasing levels of autophagy-related factors. FOXO3, targeted by miR-223-3p, reversed the effects of miR-223-3p on factors related to BM-MSC autophagy and osteogenic differentiation. Down-regulated miR-223-3p expression promoted osteogenic differentiation of BM-MSCs by enhancing autophagy via targeting FOXO3, suggesting the potential of miR-223-3p as a therapeutic target for enhancing bone functions.
Collapse
Affiliation(s)
- Cheng Long
- Department of Orthopedic, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Shiqiang Cen
- Department of Orthopedic, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Zhou Zhong
- Department of Orthopedic, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Chang Zhou
- Department of Orthopedic, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Gang Zhong
- Department of Orthopedic, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
9
|
Nakamura A, Ali SA, Kapoor M. Antisense oligonucleotide-based therapies for the treatment of osteoarthritis: Opportunities and roadblocks. Bone 2020; 138:115461. [PMID: 32485363 DOI: 10.1016/j.bone.2020.115461] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 10/24/2022]
Abstract
Osteoarthritis (OA) is a debilitating disease with no approved disease-modifying therapies. Among the challenges for developing treatment is achieving targeted drug delivery to affected joints. This has contributed to the failure of several drug candidates for the treatment of OA. Over the past 20 years, significant advances have been made in antisense oligonucleotide (ASO) technology for achieving targeted delivery to tissues and cells both in vitro and in vivo. Since ASOs are able to bind specific gene regions and regulate protein translation, they are useful for correcting aberrant endogenous mechanisms associated with certain diseases. ASOs can be delivered locally through intra-articular injection, and can enter cells through natural cellular uptake mechanisms. Despite this, ASOs have yet to be successfully tested in clinical trials for the treatment of OA. Recent chemical modification to ASOs have further improved cellular uptake and reduced toxicity. Among these are locked nucleic acid (LNA)-based ASOs, which have shown promising results in clinical trials for diseases such as hepatitis and dyslipidemia. Recently, LNA-based ASOs have been tested both in vitro and in vivo for their therapeutic potential in OA, and some have shown promising joint-protective effects in preclinical OA animal models. In order to accelerate the testing of ASO therapies in a clinical trial setting for OA, further investigation into delivery mechanisms is required. In this review article, we discuss opportunities for viral-, particle-, biomaterial-, and chemical modification-based therapies, which are currently in preclinical testing. We also address potential roadblocks in the clinical translation of ASO-based therapies for the treatment of OA, such as the limitations associated with OA animal models and the challenges with drug toxicity. Taken together, we review what is known and what would be useful to accelerate translation of ASO-based therapies for the treatment of OA.
Collapse
Affiliation(s)
- Akihiro Nakamura
- Arthritis Program, University Health Network, Toronto, Ontario, Canada; Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Ontario, Canada; Division of Rheumatology, University Health Network, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Shabana Amanda Ali
- Arthritis Program, University Health Network, Toronto, Ontario, Canada; Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Bone & Joint Center, Department of Orthopaedic Surgery, Henry Ford Health System, Detroit, MI, USA
| | - Mohit Kapoor
- Arthritis Program, University Health Network, Toronto, Ontario, Canada; Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada.
| |
Collapse
|
10
|
Chen YS, Lian WS, Kuo CW, Ke HJ, Wang SY, Kuo PC, Jahr H, Wang FS. Epigenetic Regulation of Skeletal Tissue Integrity and Osteoporosis Development. Int J Mol Sci 2020; 21:ijms21144923. [PMID: 32664681 PMCID: PMC7404082 DOI: 10.3390/ijms21144923] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 12/22/2022] Open
Abstract
Bone turnover is sophisticatedly balanced by a dynamic coupling of bone formation and resorption at various rates. The orchestration of this continuous remodeling of the skeleton further affects other skeletal tissues through organ crosstalk. Chronic excessive bone resorption compromises bone mass and its porous microstructure as well as proper biomechanics. This accelerates the development of osteoporotic disorders, a leading cause of skeletal degeneration-associated disability and premature death. Bone-forming cells play important roles in maintaining bone deposit and osteoclastic resorption. A poor organelle machinery, such as mitochondrial dysfunction, endoplasmic reticulum stress, and defective autophagy, etc., dysregulates growth factor secretion, mineralization matrix production, or osteoclast-regulatory capacity in osteoblastic cells. A plethora of epigenetic pathways regulate bone formation, skeletal integrity, and the development of osteoporosis. MicroRNAs inhibit protein translation by binding the 3'-untranslated region of mRNAs or promote translation through post-transcriptional pathways. DNA methylation and post-translational modification of histones alter the chromatin structure, hindering histone enrichment in promoter regions. MicroRNA-processing enzymes and DNA as well as histone modification enzymes catalyze these modifying reactions. Gain and loss of these epigenetic modifiers in bone-forming cells affect their epigenetic landscapes, influencing bone homeostasis, microarchitectural integrity, and osteoporotic changes. This article conveys productive insights into biological roles of DNA methylation, microRNA, and histone modification and highlights their interactions during skeletal development and bone loss under physiological and pathological conditions.
Collapse
Affiliation(s)
- Yu-Shan Chen
- Core Laboratory for Phenomics and Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (Y.-S.C.); (W.-S.L.); (C.-W.K.); (H.-J.K.); (S.-Y.W.); (P.-C.K.)
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Wei-Shiung Lian
- Core Laboratory for Phenomics and Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (Y.-S.C.); (W.-S.L.); (C.-W.K.); (H.-J.K.); (S.-Y.W.); (P.-C.K.)
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Chung-Wen Kuo
- Core Laboratory for Phenomics and Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (Y.-S.C.); (W.-S.L.); (C.-W.K.); (H.-J.K.); (S.-Y.W.); (P.-C.K.)
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Huei-Jing Ke
- Core Laboratory for Phenomics and Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (Y.-S.C.); (W.-S.L.); (C.-W.K.); (H.-J.K.); (S.-Y.W.); (P.-C.K.)
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Shao-Yu Wang
- Core Laboratory for Phenomics and Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (Y.-S.C.); (W.-S.L.); (C.-W.K.); (H.-J.K.); (S.-Y.W.); (P.-C.K.)
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Pei-Chen Kuo
- Core Laboratory for Phenomics and Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (Y.-S.C.); (W.-S.L.); (C.-W.K.); (H.-J.K.); (S.-Y.W.); (P.-C.K.)
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Holger Jahr
- Department of Anatomy and Cell Biology, University Hospital RWTH Aachen, 52074 Aachen, Germany;
- Department of Orthopedic Surgery, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Feng-Sheng Wang
- Core Laboratory for Phenomics and Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (Y.-S.C.); (W.-S.L.); (C.-W.K.); (H.-J.K.); (S.-Y.W.); (P.-C.K.)
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Correspondence: ; Tel.: +886-7-7317123 (ext. 6404)
| |
Collapse
|
11
|
Hou F, Wei W, Qin X, Liang J, Han S, Han A, Kong Q. The posttranslational modification of HDAC4 in cell biology: Mechanisms and potential targets. J Cell Biochem 2019; 121:930-937. [PMID: 31588631 DOI: 10.1002/jcb.29365] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/20/2019] [Indexed: 12/15/2022]
Abstract
Histone deacetylase 4 (HDAC4) is a member of the HDACs family, its expression is closely related to the cell development. The cell is an independent living entity that undergoes proliferation, differentiation, senescence, apoptosis, and pathology, and each process has a strict and complex regulatory system. With deepening of its research, the expression of HDAC4 is critical in the life process. This review focuses on the posttranslational modification of HDAC4 in cell biology, providing an important target for future disease treatment.
Collapse
Affiliation(s)
- Fei Hou
- Lupus Research Institute, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China.,Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong, Jining, China
| | - Wei Wei
- Lupus Research Institute, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China.,Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong, Jining, China
| | - Xiao Qin
- Lupus Research Institute, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China.,Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong, Jining, China
| | - Jing Liang
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong, Jining, China.,College of Life Sciences, Qufu Normal University, Qufu, China
| | - Sha Han
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong, Jining, China
| | - Aizhong Han
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong, Jining, China
| | - Qingsheng Kong
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong, Jining, China
| |
Collapse
|
12
|
Lian WS, Ko JY, Chen YS, Ke HJ, Hsieh CK, Kuo CW, Wang SY, Huang BW, Tseng JG, Wang FS. MicroRNA-29a represses osteoclast formation and protects against osteoporosis by regulating PCAF-mediated RANKL and CXCL12. Cell Death Dis 2019; 10:705. [PMID: 31543513 PMCID: PMC6755134 DOI: 10.1038/s41419-019-1942-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/20/2019] [Accepted: 08/26/2019] [Indexed: 12/30/2022]
Abstract
Osteoporosis deteriorates bone mass and biomechanical strength, becoming a life-threatening cause to the elderly. MicroRNA is known to regulate tissue remodeling; however, its role in the development of osteoporosis remains elusive. In this study, we uncovered that silencing miR-29a expression decreased mineralized matrix production in osteogenic cells, whereas osteoclast differentiation and pit formation were upregulated in bone marrow macrophages as co-incubated with the osteogenic cells in transwell plates. In vivo, decreased miR-29a expression occurred in ovariectomy-mediated osteoporotic skeletons. Mice overexpressing miR-29a in osteoblasts driven by osteocalcin promoter (miR-29aTg/OCN) displayed higher bone mineral density, trabecular volume and mineral acquisition than wild-type mice. The estrogen deficiency-induced loss of bone mass, trabecular morphometry, mechanical properties, mineral accretion and osteogenesis of bone marrow mesenchymal cells were compromised in miR-29aTg/OCN mice. miR-29a overexpression also attenuated the estrogen loss-mediated excessive osteoclast surface histopathology, osteoclast formation of bone marrow macrophages, receptor activator nuclear factor-κ ligand (RANKL) and C–X–C motif chemokine ligand 12 (CXCL12) expression. Treatment with miR-29a precursor improved the ovariectomy-mediated skeletal deterioration and biomechanical property loss. Mechanistically, miR-29a inhibited RANKL secretion in osteoblasts through binding to 3′-UTR of RANKL. It also suppressed the histone acetyltransferase PCAF-mediated acetylation of lysine 27 in histone 3 (H3K27ac) and decreased the H3K27ac enrichment in CXCL12 promoters. Taken together, miR-29a signaling in osteogenic cells protects bone tissue from osteoporosis through repressing osteoclast regulators RANKL and CXCL12 to reduce osteoclastogenic differentiation. Arrays of analyses shed new light on the miR-29a regulation of crosstalk between osteogenic and osteoclastogenic cells. We also highlight that increasing miR-29a function in osteoblasts is beneficial for bone anabolism to fend off estrogen deficiency-induced excessive osteoclastic resorption and osteoporosis.
Collapse
Affiliation(s)
- Wei-Shiung Lian
- Core Laboratory for Phenomics and Diagnostic, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Jih-Yang Ko
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yu-Shan Chen
- Core Laboratory for Phenomics and Diagnostic, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Huei-Jing Ke
- Core Laboratory for Phenomics and Diagnostic, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chin-Kuei Hsieh
- Core Laboratory for Phenomics and Diagnostic, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chung-Wen Kuo
- Core Laboratory for Phenomics and Diagnostic, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Shao-Yu Wang
- Core Laboratory for Phenomics and Diagnostic, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Bo-Wun Huang
- Department of Mechanical Engineering, Cheng Shiu University, Kaohsiung, Taiwan
| | - Jung-Ge Tseng
- Department of Leisure and Sports Management, Cheng Shiu University, Kaohsiung, Taiwan
| | - Feng-Sheng Wang
- Core Laboratory for Phenomics and Diagnostic, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan. .,Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan. .,Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| |
Collapse
|
13
|
Wang P, Dong R, Wang B, Lou Z, Ying J, Xia C, Hu S, Wang W, Sun Q, Zhang P, Ge Q, Xiao L, Chen D, Tong P, Li J, Jin H. Genome-wide microRNA screening reveals miR-582-5p as a mesenchymal stem cell-specific microRNA in subchondral bone of the human knee joint. J Cell Physiol 2019; 234:21877-21888. [PMID: 31049977 PMCID: PMC6767428 DOI: 10.1002/jcp.28751] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 12/22/2022]
Abstract
Emerging evidence suggests that microRNAs (miRNAs) may be pathologically involved in osteoarthritis (OA). Subchondral bone (SCB) sclerosis is accounted for the knee osteoarthritis (KOA) development and progression. In this study, we aimed to screen the miRNA biomarkers of KOA and investigated whether these miRNAs regulate the differentiation potential of mesenchymal stem cells (MSCs) and thus contributing to SCB. We identified 48 miRNAs in the blood samples in KOA patients (n = 5) through microarray expression profiling detection. After validation with larger sample number, we confirmed hsa-miR-582-5p and hsa-miR-424-5p were associated with the pathology of SCB sclerosis. Target genes prediction and pathway analysis were implemented with online databases, indicating these two candidate miRNAs were closely related to the pathways of pluripotency of stem cells and pathology of OA. Surprisingly, mmu-miR-582-5p (homology of hsa-miR-582-5p) was downregulated in osteogenic differentiation and upregulated in adipogenic differentiation of mesenchymal progenitor C3H10T1/2 cells, whereas mmu-mir-322-5p (homology of hsa-miR-424-5p) showed no change through the in vitro study. Supplementing mmu-miR-582-5p mimics blocked osteogenic and induced adipogenic differentiation of C3H10T1/2 cells, whereas silencing of the endogenous mmu-miR-582-5p enhanced osteogenic and repressed adipogenic differentiation. Further mechanism studies showed that mmu-miR-582-5p was directly targeted to Runx2. Mutation of putative mmu-miR-582-5p binding sites in Runx2 3' untranslated region (3'UTR) could abolish the response of the 3'UTR-luciferase construct to mmu-miR-582-5p supplementation. Generally speaking, our data suggest that miR-582-5p is an important biomarker of KOA and is able to regulate osteogenic and adipogenic differentiation of MSCs via targeting Runx2. The study also suggests that miR-582-5p may play a crucial role in SCB sclerosis of human KOA.
Collapse
Affiliation(s)
- Pinger Wang
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.,Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.,Institute of Orthopaedic and Traumatology of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Rui Dong
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.,Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.,Institute of Orthopaedic and Traumatology of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Baoli Wang
- Key Laboratory of Hormones and Development, Ministry of Health, Tianjin Metabolic Diseases Hospital, Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Zhaohuan Lou
- The Pharmaceutical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jun Ying
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Chenjie Xia
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Songfeng Hu
- Department of Orthopaedics, Shaoxing Hospital of Traditional Chinese Medicine, Shaoxing, Zhejiang, China
| | - Weidong Wang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qi Sun
- Department of Orthopaedic Surgery, Fuyang Orthopaedics and Traumatology Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Peng Zhang
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qinwen Ge
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Luwei Xiao
- Institute of Orthopaedic and Traumatology of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Di Chen
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Peijian Tong
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.,Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ju Li
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.,Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Hongting Jin
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.,Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.,Institute of Orthopaedic and Traumatology of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
14
|
Glantschnig C, Koenen M, Gil‐Lozano M, Karbiener M, Pickrahn I, Williams‐Dautovich J, Patel R, Cummins CL, Giroud M, Hartleben G, Vogl E, Blüher M, Tuckermann J, Uhlenhaut H, Herzig S, Scheideler M. A miR‐29a‐driven negative feedback loop regulates peripheral glucocorticoid receptor signaling. FASEB J 2019; 33:5924-5941. [DOI: 10.1096/fj.201801385rr] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Christina Glantschnig
- Institute for Diabetes and Cancer (IDC)Helmholtz Center Munich Neuherberg Germany
- Joint Heidelberg‐IDC, Inner Medicine 1Heidelberg University Hospital Heidelberg Germany
- German Center for Diabetes Research (DZD) Neuherberg Germany
| | - Mascha Koenen
- Institute of Comparative Molecular EndocrinologyUlm University Ulm Germany
| | - Manuel Gil‐Lozano
- Institute for Diabetes and Cancer (IDC)Helmholtz Center Munich Neuherberg Germany
- Joint Heidelberg‐IDC, Inner Medicine 1Heidelberg University Hospital Heidelberg Germany
- German Center for Diabetes Research (DZD) Neuherberg Germany
| | - Michael Karbiener
- Division of Phoniatrics, Speech, and SwallowingDepartment of OtorhinolaryngologyUniversity HospitalMedical University of Graz Graz Austria
| | - Ines Pickrahn
- Department of Legal MedicineUniversity of Salzburg Salzburg Austria
| | | | - Rucha Patel
- Department of Pharmaceutical SciencesUniversity of Toronto Toronto Ontario Canada
| | - Carolyn L. Cummins
- Department of Pharmaceutical SciencesUniversity of Toronto Toronto Ontario Canada
| | - Maude Giroud
- Institute for Diabetes and Cancer (IDC)Helmholtz Center Munich Neuherberg Germany
- Joint Heidelberg‐IDC, Inner Medicine 1Heidelberg University Hospital Heidelberg Germany
- German Center for Diabetes Research (DZD) Neuherberg Germany
| | - Götz Hartleben
- Institute for Diabetes and Cancer (IDC)Helmholtz Center Munich Neuherberg Germany
- Joint Heidelberg‐IDC, Inner Medicine 1Heidelberg University Hospital Heidelberg Germany
- German Center for Diabetes Research (DZD) Neuherberg Germany
| | - Elena Vogl
- Institute for Diabetes and Cancer (IDC)Helmholtz Center Munich Neuherberg Germany
- Joint Heidelberg‐IDC, Inner Medicine 1Heidelberg University Hospital Heidelberg Germany
- German Center for Diabetes Research (DZD) Neuherberg Germany
| | - Matthias Blüher
- Clinic for Endocrinology and NephrologyMedical Research Center Leipzig Germany
| | - Jan Tuckermann
- Institute of Comparative Molecular EndocrinologyUlm University Ulm Germany
| | - Henriette Uhlenhaut
- Research Group Molecular EndocrinologyHelmholtz Center Munich Neuherberg Germany
| | - Stephan Herzig
- Institute for Diabetes and Cancer (IDC)Helmholtz Center Munich Neuherberg Germany
- Joint Heidelberg‐IDC, Inner Medicine 1Heidelberg University Hospital Heidelberg Germany
- German Center for Diabetes Research (DZD) Neuherberg Germany
- School of MedicineTechnical University Munich Munich Germany
| | - Marcel Scheideler
- Institute for Diabetes and Cancer (IDC)Helmholtz Center Munich Neuherberg Germany
- Joint Heidelberg‐IDC, Inner Medicine 1Heidelberg University Hospital Heidelberg Germany
- German Center for Diabetes Research (DZD) Neuherberg Germany
| |
Collapse
|
15
|
Tang S, Xie Z, Wang P, Li J, Wang S, Liu W, Li M, Wu X, Su H, Cen S, Ye G, Zheng G, Wu Y, Shen H. LncRNA-OG Promotes the Osteogenic Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells Under the Regulation of hnRNPK. Stem Cells 2019; 37:270-283. [PMID: 30372559 PMCID: PMC7379496 DOI: 10.1002/stem.2937] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 09/19/2018] [Accepted: 10/09/2018] [Indexed: 12/14/2022]
Abstract
Bone marrow-derived mesenchymal stem cells (BM-MSCs) are the main source of osteoblasts in vivo and are widely used in stem cell therapy. Previously, we analyzed long noncoding RNA (lncRNA) expression profiles during BM-MSC osteogenesis, and further investigation is needed to elucidate how lncRNAs regulate BM-MSC osteogenesis. Herein, we used customized microarrays to determine lncRNA expression profiles in BM-MSCs on days 0 and 10 of osteogenic differentiation. In addition, we identified a novel osteogenesis-associated lncRNA (lncRNA-OG) that is upregulated during this process. Functional assays showed that lncRNA-OG significantly promotes BM-MSC osteogenesis. Mechanistically, lncRNA-OG interacts with heterogeneous nuclear ribonucleoprotein K (hnRNPK) protein to regulate bone morphogenetic protein signaling pathway activation. Surprisingly, hnRNPK positively regulates lncRNA-OG transcriptional activity by promoting H3K27 acetylation of the lncRNA-OG promoter. Therefore, our study revealed a novel lncRNA with a positive function on BM-MSC osteogenic differentiation and proposed a new interaction between hnRNPK and lncRNA. Stem Cells 2018 Stem Cells 2019;37:270-283.
Collapse
Affiliation(s)
- Su'an Tang
- Department of OrthopedicsThe Eighth Affiliated Hospital, Sun Yat‐sen UniversityShenzhenPeople's Republic of China
- Department of OrthopedicsZhujiang Hospital, Southern Medical UniversityGuangzhouPeople's Republic of China
| | - Zhongyu Xie
- Department of OrthopedicsThe Eighth Affiliated Hospital, Sun Yat‐sen UniversityShenzhenPeople's Republic of China
- Department of OrthopedicsSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Peng Wang
- Department of OrthopedicsThe Eighth Affiliated Hospital, Sun Yat‐sen UniversityShenzhenPeople's Republic of China
- Department of OrthopedicsSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Jinteng Li
- Department of OrthopedicsSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Shan Wang
- Department of OrthopedicsSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Wenjie Liu
- Department of OrthopedicsSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Ming Li
- Department of OrthopedicsSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Xiaohua Wu
- Center for BiotherapySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Hongjun Su
- Center for BiotherapySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Shuizhong Cen
- Department of OrthopedicsSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Guiwen Ye
- Department of OrthopedicsSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Guan Zheng
- Department of OrthopedicsSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Yanfeng Wu
- Center for BiotherapySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Huiyong Shen
- Department of OrthopedicsThe Eighth Affiliated Hospital, Sun Yat‐sen UniversityShenzhenPeople's Republic of China
- Department of OrthopedicsSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| |
Collapse
|
16
|
Alterations of Subchondral Bone Progenitor Cells in Human Knee and Hip Osteoarthritis Lead to a Bone Sclerosis Phenotype. Int J Mol Sci 2018; 19:ijms19020475. [PMID: 29415458 PMCID: PMC5855697 DOI: 10.3390/ijms19020475] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 01/23/2018] [Accepted: 01/26/2018] [Indexed: 02/06/2023] Open
Abstract
Subchondral bone tissue plays a key role in the initiation and progression of human and experimental osteoarthritis and has received considerable interest as a treatment target. Elevated bone turnover and remodeling leads to subchondral bone sclerosis that is characterized by an increase in bone material that is less mineralized. The aim of this study was to investigate whether perturbations in subchondral bone-resident progenitor cells might play a role in aberrant bone formation in osteoarthritis. Colony formation assays indicated similar clonogenicity of progenitor cells from non-sclerotic and sclerotic subchondral trabecular bone tissues of osteoarthritic knee and hip joints compared with controls from iliac crest bone. However, the osteogenic potential at the clonal level was approximately two-fold higher in osteoarthritis than controls. An osteogenic differentiation assay indicated an efficient induction of alkaline phosphatase activity but blunted in vitro matrix mineralization irrespective of the presence of sclerosis. Micro-computed tomography and histology demonstrated the formation of de novo calcified tissues by osteoblast-like cells in an ectopic implantation model. The expression of bone sialoprotein, a marker for osteoblast maturation and mineralization, was significantly less in sclerotic progenitor cells. Perturbation of resident progenitor cell function is associated with subchondral bone sclerosis and may be a treatment target for osteoarthritis.
Collapse
|