1
|
Cordani M, Michetti F, Zarrabi A, Zarepour A, Rumio C, Strippoli R, Marcucci F. The role of glycolysis in tumorigenesis: From biological aspects to therapeutic opportunities. Neoplasia 2024; 58:101076. [PMID: 39476482 PMCID: PMC11555605 DOI: 10.1016/j.neo.2024.101076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 11/11/2024]
Abstract
Glycolytic metabolism generates energy and intermediates for biomass production. Tumor-associated glycolysis is upregulated compared to normal tissues in response to tumor cell-autonomous or non-autonomous stimuli. The consequences of this upregulation are twofold. First, the metabolic effects of glycolysis become predominant over those mediated by oxidative metabolism. Second, overexpressed components of the glycolytic pathway (i.e. enzymes or metabolites) acquire new functions unrelated to their metabolic effects and which are referred to as "moonlighting" functions. These functions include induction of mutations and other tumor-initiating events, effects on cancer stem cells, induction of increased expression and/or activity of oncoproteins, epigenetic and transcriptional modifications, bypassing of senescence and induction of proliferation, promotion of DNA damage repair and prevention of DNA damage, antiapoptotic effects, inhibition of drug influx or increase of drug efflux. Upregulated metabolic functions and acquisition of new, non-metabolic functions lead to biological effects that support tumorigenesis: promotion of tumor initiation, stimulation of tumor cell proliferation and primary tumor growth, induction of epithelial-mesenchymal transition, autophagy and metastasis, immunosuppressive effects, induction of drug resistance and effects on tumor accessory cells. These effects have negative consequences on the prognosis of tumor patients. On these grounds, it does not come to surprise that tumor-associated glycolysis has become a target of interest in antitumor drug discovery. So far, however, clinical results with glycolysis inhibitors have fallen short of expectations. In this review we propose approaches that may allow to bypass some of the difficulties that have been encountered so far with the therapeutic use of glycolysis inhibitors.
Collapse
Affiliation(s)
- Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, Madrid 28040, Spain; Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid 28040, Spain
| | - Federica Michetti
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, Rome 00161, Italy; Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, Rome 00149, Italy
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Türkiye; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
| | - Cristiano Rumio
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Trentacoste 2, Milan 20134, Italy
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, Rome 00161, Italy; Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, Rome 00149, Italy.
| | - Fabrizio Marcucci
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Trentacoste 2, Milan 20134, Italy.
| |
Collapse
|
2
|
Gholamzad A, Khakpour N, Khosroshahi EM, Asadi S, Koohpar ZK, Matinahmadi A, Jebali A, Rashidi M, Hashemi M, Sadi FH, Gholamzad M. Cancer stem cells: The important role of CD markers, Signaling pathways, and MicroRNAs. Pathol Res Pract 2024; 256:155227. [PMID: 38490099 DOI: 10.1016/j.prp.2024.155227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/17/2024]
Abstract
For the first time, a subset of small cancer cells identified in acute myeloid leukemia has been termed Cancer Stem Cells (CSCs). These cells are notorious for their robust proliferation, self-renewal abilities, significant tumor-forming potential, spread, and resistance to treatments. CSCs are a global concern, as it found in numerous types of cancer, posing a real-world challenge today. Our review encompasses research on key CSC markers, signaling pathways, and MicroRNA in three types of cancer: breast, colon, and liver. These factors play a critical role in either promoting or inhibiting cancer cell growth. The reviewed studies have shown that as cells undergo malignant transformation, there can be an increase or decrease in the expression of different Cluster of Differentiation (CD) markers on their surface. Furthermore, alterations in essential signaling pathways, such as Wnt and Notch1, may impact CSC proliferation, survival, and movement, while also providing potential targets for cancer therapies. Additionally, some research has focused on MicroRNAs due to their dual role as potential therapeutic biomarkers and their ability to enhance CSCs' response to anti-cancer drugs. MicroRNAs also regulate a wide array of cellular processes, including the self-renewal and pluripotency of CSCs, and influence gene transcription. Thus, these studies indicate that MicroRNAs play a significant role in the malignancy of various tumors. Although the gathered information suggests that specific CSC markers, signaling pathways, and MicroRNAs are influential in determining the destiny of cancer cells and could be advantageous for therapeutic strategies, their precise roles and impacts remain incompletely defined, necessitating further investigation.
Collapse
Affiliation(s)
- Amir Gholamzad
- Department of Microbiology and Immunology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Niloofar Khakpour
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences,Tonekabon Branch,Islamic Azad University, Tonekabon, Iran
| | - Arash Matinahmadi
- Department of Cellular and Molecular Biology, Nicolaus Copernicus,Torun,Poland
| | - Ali Jebali
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Deprtment of Medical Nanotechnology,Faculty of Advanced Sciences and Technology,Tehran Medical Sciences,Islamic Azad University, Tehran, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran.
| | | | - Mehrdad Gholamzad
- Department of Microbiology and Immunology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
3
|
Szczepanek J, Tretyn A. MicroRNA-Mediated Regulation of Histone-Modifying Enzymes in Cancer: Mechanisms and Therapeutic Implications. Biomolecules 2023; 13:1590. [PMID: 38002272 PMCID: PMC10669115 DOI: 10.3390/biom13111590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
In the past decade, significant advances in molecular research have provided a deeper understanding of the intricate regulatory mechanisms involved in carcinogenesis. MicroRNAs, short non-coding RNA sequences, exert substantial influence on gene expression by repressing translation or inducing mRNA degradation. In the context of cancer, miRNA dysregulation is prevalent and closely associated with various stages of carcinogenesis, including initiation, progression, and metastasis. One crucial aspect of the cancer phenotype is the activity of histone-modifying enzymes that govern chromatin accessibility for transcription factors, thus impacting gene expression. Recent studies have revealed that miRNAs play a significant role in modulating these histone-modifying enzymes, leading to significant implications for genes related to proliferation, differentiation, and apoptosis in cancer cells. This article provides an overview of current research on the mechanisms by which miRNAs regulate the activity of histone-modifying enzymes in the context of cancer. Both direct and indirect mechanisms through which miRNAs influence enzyme expression are discussed. Additionally, potential therapeutic implications arising from miRNA manipulation to selectively impact histone-modifying enzyme activity are presented. The insights from this analysis hold significant therapeutic promise, suggesting the utility of miRNAs as tools for the precise regulation of chromatin-related processes and gene expression. A contemporary focus on molecular regulatory mechanisms opens therapeutic pathways that can effectively influence the control of tumor cell growth and dissemination.
Collapse
Affiliation(s)
- Joanna Szczepanek
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, ul. Wilenska 4, 87-100 Torun, Poland
| | - Andrzej Tretyn
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, ul. Lwowska 1, 87-100 Torun, Poland;
| |
Collapse
|
4
|
Epi-miRNAs: Regulators of the Histone Modification Machinery in Human Cancer. JOURNAL OF ONCOLOGY 2022; 2022:4889807. [PMID: 35087589 PMCID: PMC8789461 DOI: 10.1155/2022/4889807] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022]
Abstract
Cancer is a leading cause of death and disability worldwide. Epigenetic deregulation is one of the most critical mechanisms in carcinogenesis and can be classified into effects on DNA methylation and histone modification. MicroRNAs are small noncoding RNAs involved in fine-tuning their target genes after transcription. Various microRNAs control the expression of histone modifiers and are involved in a variety of cancers. Therefore, overexpression or downregulation of microRNAs can alter cell fate and cause malignancies. In this review, we discuss the role of microRNAs in regulating the histone modification machinery in various cancers, with a focus on the histone-modifying enzymes such as acetylases, deacetylases, methyltransferases, demethylases, kinases, phosphatases, desumoylases, ubiquitinases, and deubiquitinases. Understanding of microRNA-related aberrations underlying histone modifiers in pathogenesis of different cancers can help identify novel therapeutic targets or early detection approaches that allow better management of patients or monitoring of treatment response.
Collapse
|
5
|
Zhao SP, Yu C, Yang MS, Liu ZL, Yang BC, Xiao XF. Long Non-coding RNA FENDRR Modulates Autophagy Through Epigenetic Suppression of ATG7 via Binding PRC2 in Acute Pancreatitis. Inflammation 2021; 44:999-1013. [PMID: 33417179 DOI: 10.1007/s10753-020-01395-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/19/2020] [Accepted: 12/07/2020] [Indexed: 11/30/2022]
Abstract
Acute pancreatitis (AP) is an inflammatory, complicated pancreatic disease, carrying significant morbidity and mortality. However, the molecular and cellular mechanisms involved in AP pathogenesis remain to be elucidated. Here, we explore the role of FOXF1 adjacent non-coding developmental regulatory RNA (FENDRR) in AP progression. Caerulein with or without LPS- induced or taurolithocholic acid 3-sulfate (TLC-S)-induced AP mouse models and cell models were performed for the validation of FENDRR expression in vivo and in vitro, respectively. Histopathological examinations of pancreatic tissues were performed to evaluate the severity of AP. Transmission electron microscopy was utilized to visualize the autophagic vacuoles. siRNA specifically targeting FENDRR was further applied. Flow cytometry was employed to assess cell apoptosis. ELISA, immunoflureoscence, and western blotting analysis were also performed to determine the levels of inflammatory cytokines and autophagy activity. RNA immunoprecipitation (RIP) and chromatin immunoprecipitation (ChIP) assays were carried out to reveal the epigenetic regulation of FENDRR on ATG7. Additionally, silencing FENDRR was also verified in AP mouse models. Higher FENDRR and impaired autophagy were displayed in both AP mouse models and cell models. FENDRR knockdown dramatically attenuated caerulein- or TLC-S-induced AR42J cells apoptosis and autophagy suppression. Further mechanistic experiments implied that the action of FENDRR is moderately attributable to its repression of ATG7 via direct interaction with the epigenetic repressor PRC2. Moreover, the silencing of FENDRR significantly induced the promotion of ATG7, thus alleviating the development of AP in vivo. Our study highlights FENDRR as a novel target that may contribute to AP progression, suggesting a therapeutic target for AP treatment.
Collapse
Affiliation(s)
- Shang-Ping Zhao
- The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, People's Republic of China
| | - Can Yu
- The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, People's Republic of China
| | - Ming-Shi Yang
- The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, People's Republic of China
| | - Zuo-Liang Liu
- The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, People's Republic of China
| | - Bing-Chang Yang
- The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, People's Republic of China
| | - Xue-Fei Xiao
- The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, People's Republic of China.
| |
Collapse
|
6
|
Yu Z, Wang D, Tang Y. PKM2 promotes cell metastasis and inhibits autophagy via the JAK/STAT3 pathway in hepatocellular carcinoma. Mol Cell Biochem 2021; 476:2001-2010. [PMID: 33512635 DOI: 10.1007/s11010-020-04041-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/22/2020] [Indexed: 12/30/2022]
Abstract
Pyruvate kinase M2 (PKM2) is a member of the pyruvate kinase family. It has been recently reported that PKM2 displays non-metabolic activities. Nevertheless, understanding of the role of PKM2 in hepatocellular carcinoma (HCC) is insufficient. Therefore, our study aimed at exploring the impact of PKM2 on malignant growth, autophagy as well as invasion in HCC. Expression of PKM2 in HCC specimens was examined by qRT-PCR and western blot. PKM2 knock down was generated in vitro by shRNA. Activities of malignant cells as well as downstream pathways were assessed. The MTT assay was carried out to evaluate HCC proliferation, and the FACS assay was conducted to study cell death. Elevated PKM2 levels were observed in HCC samples. Knockdown (KD) of PKM2 triggered apoptosis as well as autophagy and inhibited migration and proliferation of HCC cells. Furthermore, PKM2 KD reinforced JAK/STAT3 pathway stimulation. STAT3 inhibition counteracted the impact of PKM2 on proliferation, autophagy, migration as well as cell death in HCC. To conclude, the findings of our research suggest that PKM2 reinforced metastasis and inhibited autophagy in HCC through the JAK/STAT3 pathway, and that PKM2 could serve as a promising target for HCC treatment.
Collapse
Affiliation(s)
- Zhi Yu
- Digestive Department, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, No. 100 Hong Kong Road, Jiang'an District, Wuhan, 430015, China
| | - Dan Wang
- Digestive Department, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, No. 100 Hong Kong Road, Jiang'an District, Wuhan, 430015, China
| | - Yingying Tang
- Digestive Department, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, No. 100 Hong Kong Road, Jiang'an District, Wuhan, 430015, China.
| |
Collapse
|
7
|
Sharma A, Batra J, Stuchlik O, Reed MS, Pohl J, Chow VTK, Sambhara S, Lal SK. Influenza A Virus Nucleoprotein Activates the JNK Stress-Signaling Pathway for Viral Replication by Sequestering Host Filamin A Protein. Front Microbiol 2020; 11:581867. [PMID: 33101257 PMCID: PMC7546217 DOI: 10.3389/fmicb.2020.581867] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/07/2020] [Indexed: 12/28/2022] Open
Abstract
Influenza A virus (IAV) poses a major threat to global public health and is known to employ various strategies to usurp the host machinery for survival. Due to its fast-evolving nature, IAVs tend to escape the effect of available drugs and vaccines thus, prompting the development of novel antiviral strategies. High-throughput mass spectrometric screen of host-IAV interacting partners revealed host Filamin A (FLNA), an actin-binding protein involved in regulating multiple signaling pathways, as an interaction partner of IAV nucleoprotein (NP). In this study, we found that the IAV NP interrupts host FLNA-TRAF2 interaction by interacting with FLNA thus, resulting in increased levels of free, displaced TRAF2 molecules available for TRAF2-ASK1 mediated JNK pathway activation, a pathway critical to maintaining efficient viral replication. In addition, siRNA-mediated FLNA silencing was found to promote IAV replication (87% increase) while FLNA-overexpression impaired IAV replication (65% decrease). IAV NP was observed to be a crucial viral factor required to attain FLNA mRNA and protein attenuation post-IAV infection for efficient viral replication. Our results reveal FLNA to be a host factor with antiviral potential hitherto unknown to be involved in the IAV replication cycle thus, opening new possibilities of FLNA-NP interaction as a candidate anti-influenza drug development target.
Collapse
Affiliation(s)
- Anshika Sharma
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia
| | - Jyoti Batra
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia
| | - Olga Stuchlik
- National Center for Emerging Zoonotic and Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Matthew S Reed
- National Center for Emerging Zoonotic and Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Jan Pohl
- National Center for Emerging Zoonotic and Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Vincent T K Chow
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Suryaprakash Sambhara
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Sunil K Lal
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia.,Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Subang Jaya, Malaysia
| |
Collapse
|
8
|
Zhang T, Lei F, Jiang T, Xie L, Huang P, Li P, Huang Y, Tang X, Gong J, Lin Y, Cheng A, Huang W. H19/miR-675-5p Targeting SFN Enhances the Invasion and Metastasis of Nasalpharyngeal Cancer Cells. Curr Mol Pharmacol 2020; 12:324-333. [PMID: 31677258 DOI: 10.2174/1874467212666190719120446] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/27/2019] [Accepted: 06/18/2019] [Indexed: 12/25/2022]
Abstract
AIMS The aim is to study the role of miR-675-5p coded by long non-coding RNA H19 in the development of Nasopharyngeal Cancer (NPC) and whether miR-675-5p regulates the invasion and metastasis of NPC through targeting SFN (14-3-3σ). The study further validated the relationship between H19, miR-675-5p and SFN in NPC and their relationship with the invasion and metastasis of NPC. METHODS Western blot was used to detect the expression of 14-3-3σ protein in immortalized normal nasopharyngeal epithelial cells NP69 and different metastatic potential NPC cells, 6-10B and 5-8F. At the same time, to find out the relationship between 14-3-3σ protein and the expression of H19 and miR-675-5p, the expression of H19 and miR-675-5p in normal nasopharynx epithelial cells NP69 and varied nasopharyngeal carcinoma cells 6-10B and 5-8F were quantified by real-time PCR. MiR-675-5p mimic and inhibitor were transfected into NPC 6-10B to over-express and down-express miR-675-5p; miR-675-5p mimic negative control and inhibitor negative control were transfected into NPC 6-10B as control groups. The effect of over-expression and down-expression by miR-675-5p on the expression of 14-3-3σ protein was detected by Western blotting. The 3'-UTR segments of SFN, containing miR-675-5p binding sites were amplified by PCR and the luciferase activity in the transfected cells was assayed to detect whether SFN is the direct target of miR-675-5p. Transwell and scratch assays were used to verify the changes in NPC invasion and metastasis ability of mimics and inhibitors transfected with miR-675-5p. RESULTS The expression of 14-3-3σ protein in normal nasopharynx epithelial cells NP69 is significantly higher than in varied nasopharyngeal carcinoma cells, 6-10B and 5-8F (P<0.05), and the 14-3-3σ protein levels in low-metastatic nasopharyngeal carcinoma cell 6-10B is higher than in high-metastatic nasopharyngeal carcinoma cell 5-8F. The expression of H19 and miR-675-5p are significantly higher in NPC cells than in NP69 cell (P<0.05). The expression of H19 and miR-675-5p in high-Metastatic nasopharyngeal carcinoma cell 5-8F was higher than in low-Metastatic nasopharyngeal carcinoma cell 6-10B. The expression of 14-3-3σ protein in miR-675-5p mimic cells was significantly lower than in mimic NC (negative control) group and blank control group. However, compared with the blank control group, mimic NC showed no significant difference in 14-3-3σ protein between the two groups. The miR-675-5p inhibitor group was significantly higher than the inhibitor NC group and the blank control group (p<0.05), but there was no significant difference in the expression of 14-3-3σ protein in the inhibitor NC group and the blank control group (p>0.05). Dual-luciferase reporter assay system shows the 3'-UTR segments of SFN containing miR-675-5p binding sites. SFN was the target gene of miR-675-5p. CONCLUSION 14-3-3σ is downregulated in NPC and is involved in the development of NPC. H19 and miR- 675-5p are upregulated in NPC, which is related to the development of NPC. The over-expression of miR- 675-5p inhibits the expression of 14-3-3σ protein. SFN is the target gene of miR-675-5p. MiR-675-5p targets SFN, downregulates its protein expression and promotes the invasion and metastasis of NPC.
Collapse
Affiliation(s)
- Ting Zhang
- Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang 421001, Hunan Province, China
| | - Fanghong Lei
- Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang 421001, Hunan Province, China
| | - Tao Jiang
- Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang 421001, Hunan Province, China
| | - Lisha Xie
- Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang 421001, Hunan Province, China
| | - Pin Huang
- Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang 421001, Hunan Province, China
| | - Pei Li
- Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang 421001, Hunan Province, China
| | - Yun Huang
- Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang 421001, Hunan Province, China
| | - Xia Tang
- Hengyang Medical College of University of South China, Hengyang 421001, Hunan Province, China
| | - Jie Gong
- Hengyang Medical College of University of South China, Hengyang 421001, Hunan Province, China
| | - Yunpeng Lin
- Hengyang Medical College of University of South China, Hengyang 421001, Hunan Province, China
| | - Ailan Cheng
- Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang 421001, Hunan Province, China.,Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology (2016TP1015), Hengyang 421001, Hunan Province, China
| | - Weiguo Huang
- Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang 421001, Hunan Province, China.,Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology (2016TP1015), Hengyang 421001, Hunan Province, China
| |
Collapse
|
9
|
Wang F, Zhang Z, Li Q, Yu T, Ma C. Untargeted LC-MS/MS analysis reveals metabolomics feature of osteosarcoma stem cell response to methotrexate. Cancer Cell Int 2020; 20:269. [PMID: 32587477 PMCID: PMC7313215 DOI: 10.1186/s12935-020-01356-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 06/16/2020] [Indexed: 02/08/2023] Open
Abstract
Background Cancer stem cell (CSC) is identified in osteosarcoma (OS) and considered resistant to chemotherapeutic agents. However, the mechanism of osteosarcoma stem cell (OSC) resistant to chemotherapy remains debatable and vague, and the metabolomics feature of OSC is not clarified. Materials and methods OSC was isolated by using sphere forming assay and identified. Untargeted LC-MS/MS analysis was performed to reveal the metabolomics feature of OSC and underlying mechanisms of OSC resistant to methotrexate (MTX). Results OSC was efficiently isolated and identified from human OS 143B and MG63 cell lines with enhanced chemo-resistance to MTX. The untargeted LC-MS analysis revealed that OSC showed differential metabolites and perturbed signaling pathways, mainly involved in metabolisms of fatty acid, amino acid, carbohydrate metabolism and nucleic acid. After treated with MTX, metabolomics feature of OSC was mainly involved metabolisms of amino acid, fatty acid, energy and nucleic acid. Moreover, compared with their parental OS cells response to MTX, the differential metabolites and perturbed signaling pathways were mainly involved in metabolism of amino acid, fatty acid and nucleic acid. What's more, Rap1 signaling pathway and Ras signaling pathway were involved in OS cells and their SCs response to MTX. Conclusion Sphere-forming assay was able to efficiently isolate OSC from human OS cell lines and the untargeted LC-MS/MS analysis was suggested a sufficient methodology to investigate metabolomics features of OS cells and OSCs. Moreover, the metabolomics features of OSCs response to MTX might reveal a further understanding of chemotherapeutic resistance in OS.
Collapse
Affiliation(s)
- Feng Wang
- Department of Orthopedics, the Fourth Affiliated Hospital of China Medical University, Chongshan Road, Shenyang, 110032 Liaoning People's Republic of China
| | - Zhiyu Zhang
- Department of Orthopedics, the Fourth Affiliated Hospital of China Medical University, Chongshan Road, Shenyang, 110032 Liaoning People's Republic of China
| | - Qin Li
- Center for Translational Medicine, the Fourth Affiliated Hospital of China Medical University, Chongshan Road, Shenyang, 110032 Liaoning People's Republic of China
| | - Tao Yu
- Center for Translational Medicine, the Fourth Affiliated Hospital of China Medical University, Chongshan Road, Shenyang, 110032 Liaoning People's Republic of China
| | - Chengbin Ma
- Department of Orthopedics, the Fourth Affiliated Hospital of China Medical University, Chongshan Road, Shenyang, 110032 Liaoning People's Republic of China
| |
Collapse
|
10
|
Wang L, Li X, Zhang W, Yang Y, Meng Q, Wang C, Xin X, Jiang X, Song S, Lu Y, Pu H, Gui X, Li T, Xu J, Li J, Jia S, Lu D. miR24-2 Promotes Malignant Progression of Human Liver Cancer Stem Cells by Enhancing Tyrosine Kinase Src Epigenetically. Mol Ther 2020; 28:572-586. [PMID: 31732298 PMCID: PMC7001004 DOI: 10.1016/j.ymthe.2019.10.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/23/2019] [Accepted: 10/18/2019] [Indexed: 12/26/2022] Open
Abstract
MicroRNA24-2 (miR24-2) is associated with human tumorigenesis; however, its molecular mechanisms are poorly understood. Herein, our findings demonstrate that miR24-2 promotes the proliferation ability in vitro and the tumorigenic ability in vivo in human liver cancer stem cells (hLCSCs). Mechanically, the miR24-2 targets for 3' UTR (2,627-2,648) of protein arginine methyltransferase 7 (PRMT7) inhibit the translational ability of prmt7 gene. Moreover, miR24-2 inhibits the di-/tri-methylation of histone H4 arginine 3 by reducing PRMT7 and then promotes the expression of Nanog via long noncoding RNA HULC. Notably, miR24-2 inhibits histone deacetylase HDAC3 through miR675, which promotes the acetylation of histone H4 at lysine 16. Subsequently, miR24-2 enhances the interaction between LC3 and ATG4 dependent on PI3K and triggers cellular autophagy. Strikingly, miR24-2 inhibits the degradation of pyruvate kinase M1 via autophagosome-P62 in hLCSCs. Furthermore, miR24-2 enhances the activity of Src by promoting the binding of PKM1 to the Src promoter regions in hLCSCs. In particular, our results also indicate that src gene determines the oncogenic functions of miR24-2. These results provided a valuable theoretical basis for the discovery of liver cancer therapeutic targets and diagnosis markers based on miR24-2.
Collapse
Affiliation(s)
- Liyan Wang
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Xiaonan Li
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Wei Zhang
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Yuxin Yang
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Qiuyu Meng
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Chen Wang
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Xiaoru Xin
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Xiaoxue Jiang
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Shuting Song
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Yanan Lu
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Hu Pu
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Xin Gui
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Tianming Li
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Jie Xu
- School of Medicine, Tongji University, Shanghai 200092, China
| | - Jiao Li
- School of Medicine, Tongji University, Shanghai 200092, China
| | - Song Jia
- School of Medicine, Tongji University, Shanghai 200092, China
| | - Dongdong Lu
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
11
|
Holly JMP, Biernacka K, Perks CM. The Neglected Insulin: IGF-II, a Metabolic Regulator with Implications for Diabetes, Obesity, and Cancer. Cells 2019; 8:cells8101207. [PMID: 31590432 PMCID: PMC6829378 DOI: 10.3390/cells8101207] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 02/07/2023] Open
Abstract
When originally discovered, one of the initial observations was that, when all of the insulin peptide was depleted from serum, the vast majority of the insulin activity remained and this was due to a single additional peptide, IGF-II. The IGF-II gene is adjacent to the insulin gene, which is a result of gene duplication, but has evolved to be considerably more complicated. It was one of the first genes recognised to be imprinted and expressed in a parent-of-origin specific manner. The gene codes for IGF-II mRNA, but, in addition, also codes for antisense RNA, long non-coding RNA, and several micro RNA. Recent evidence suggests that each of these have important independent roles in metabolic regulation. It has also become clear that an alternatively spliced form of the insulin receptor may be the principle IGF-II receptor. These recent discoveries have important implications for metabolic disorders and also for cancer, for which there is renewed acknowledgement of the importance of metabolic reprogramming.
Collapse
Affiliation(s)
- Jeff M P Holly
- Department of Translational Health Science, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Learning & Research Building, Southmead Hospital, Bristol, BS10 5NB, UK.
| | - Kalina Biernacka
- Department of Translational Health Science, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Learning & Research Building, Southmead Hospital, Bristol, BS10 5NB, UK
| | - Claire M Perks
- Department of Translational Health Science, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Learning & Research Building, Southmead Hospital, Bristol, BS10 5NB, UK
| |
Collapse
|
12
|
Zhang X, Gao B, Huang Y, Zhang Y, Li Z, Zhao D, Ma B, Xue D, Zhang W. miR‑92a‑3p regulates trypsinogen activation via Egr1 in AR42J cells. Mol Med Rep 2019; 20:4140-4150. [PMID: 31545429 PMCID: PMC6797994 DOI: 10.3892/mmr.2019.10673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 07/15/2019] [Indexed: 12/29/2022] Open
Abstract
Acute pancreatitis (AP) exhibits high morbidity and mortality rates. The onset of AP is characterized by early trypsinogen activation. The present study aimed to investigate the expression of microRNA (miR)-92a-3p and early growth response protein 1 (Egr1), and the effect of miR-92a-3p on trypsinogen activation in the pancreatic exocrine cell line AR42J. mRNA and miRNA microarrays were used to identify differentially expressed mRNAs and miRNAs in AR42J cells. A miRNA-mRNA network was constructed using bioinformatics software, and Egr1 and its regulated miRNA subnetworks were identified by reviewing previous literature. The results suggested that miR-92a-3p could bind to Egr1 3′untranslated region sequence. Subsequently, miR-92a-3p mimic and inhibitor were used to transfect AR42J cells. Following transfection, reverse transcription-quantitative PCR and western blotting were performed to detect Egr1 expression. Furthermore, AR42J cells were cotransfected with miR-92a-3p inhibitor and small interfering (si)-Egr1. The trypsinogen activation rate of AR42J cells was measured by flow cytometry. Microarrays and bioinformatics results indicated that Egr1 may be a target gene of miR-92a-3p. In addition, the present study suggested that miR-92a-3p downregulated Egr1 in vitro and that miR-92a-3p and Egr1 expression was associated with trypsinogen activation. Furthermore, miR-92a-3p inhibitor reversed the effect of si-Egr1 on trypsinogen activation. In conclusion, miR-92a-3p may negatively regulate the activation of trypsinogen in AR42J cells via Egr1.
Collapse
Affiliation(s)
- Xueming Zhang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Bo Gao
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yang Huang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yong Zhang
- Department of Hepatopancreatobiliary Surgery, Weifang Traditional Chinese Medicine Hospital, Weifang, Shandong 261041, P.R. China
| | - Zhituo Li
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Dali Zhao
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Biao Ma
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Dongbo Xue
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Weihui Zhang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
13
|
Li B, Zheng Y, Yang L. The Oncogenic Potential of SUV39H2: A Comprehensive and Perspective View. J Cancer 2019; 10:721-729. [PMID: 30719171 PMCID: PMC6360419 DOI: 10.7150/jca.28254] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/09/2018] [Indexed: 02/07/2023] Open
Abstract
Epigenetic modifications at the histone level have attracted significant attention because of their roles in tumorigenesis. Suppressor of variegation 3-9 homolog 2 (SUV39H2, also known as KMT1B) is a member of the SUV39 subfamily of lysine methyltransferases (KMTs) that plays a significant role in histone H3-K9 di-/tri-methylation, transcriptional regulation and cell cycle. Overexpressions of SUV39H2 at gene, mRNA and protein levels are known to be associated with a range of cancers: leukemia, lymphomas, lung cancer, breast cancer, colorectal cancer, gastric cancer, hepatocellular cancer and so on. Accumulating evidence indicates that SUV39H2 acts as an oncogene and contributes to the initiation and progression of cancers. It could, therefore, be a promising target for anti-cancer treatment. In this review, we focus on the dysregulation of SUV39H2 in cancers, including its clinical prognostic predictor role, molecular mechanism involved in cancer occurrence and development, relevant inhibitors against cancer, and its epigenetic modification interaction with immunotherapy. A better understanding of the SUV39H2 will be beneficial to the development of molecular-targeted therapies in cancer.
Collapse
Affiliation(s)
- Baihui Li
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Yu Zheng
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Lili Yang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| |
Collapse
|