1
|
Singh S, Bruder-Nascimento A, Costa RM, Alves JV, Bharathi S, Goetzman ES, Bruder-Nascimento T. Adjusted vascular contractility relies on integrity of progranulin pathway: Insights into mitochondrial function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.27.564485. [PMID: 37961631 PMCID: PMC10634918 DOI: 10.1101/2023.10.27.564485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Objective Cardiovascular disease (CVD) is a global health crisis and a leading cause of mortality. The intricate interplay between vascular contractility and mitochondrial function is central to CVD pathogenesis. The progranulin gene (GRN) encodes glycoprotein progranulin (PGRN), a ubiquitous molecule with known anti-inflammatory property. However, the role of PGRN in CVD remains enigmatic. In this study, we sought to dissect the significance of PGRN in the regulation vascular contractility and investigate the interface between PGRN and mitochondrial quality. Method Our investigation utilized aortae from male and female C57BL6/J wild-type (PGRN+/+) and B6(Cg)-Grntm1.1Aidi/J (PGRN-/-) mice, encompassing wire myograph assays to assess vascular contractility and primary aortic vascular smooth muscle cells (VSMCs) for mechanistic insights. Results Our results showed suppression of contractile activity in PGRN-/- VSMCs and aorta, followed by reduced α-smooth muscle actin expression. Mechanistically, PGRN deficiency impaired mitochondrial oxygen consumption rate (OCR), complex I activity, mitochondrial turnover, and mitochondrial redox signaling, while restoration of PGRN levels in aortae from PGRN-/- mice via lentivirus delivery ameliorated contractility and boosted OCR. In addition, VSMC overexpressing PGRN displayed higher mitochondrial respiration and complex I activity accompanied by cellular hypercontractility. Furthermore, increased PGRN triggered lysosome biogenesis by regulating transcription factor EB and accelerated mitophagy flux in VSMC, while treatment with spermidine, an autophagy inducer, improved mitochondrial phenotype and enhanced vascular contractility. Finally, angiotensin II failed to induce vascular contractility in PGRN-/- suggesting a key role of PGRN to maintain the vascular tone. Conclusion Our findings suggest that PGRN preserves the vascular contractility via regulating mitophagy flux, mitochondrial complex I activity, and redox signaling. Therefore, loss of PGRN function appears as a pivotal risk factor in CVD development.
Collapse
Affiliation(s)
- Shubhnita Singh
- Department of Pediatrics at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM) at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Endocrinology Division at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, USA
| | - Ariane Bruder-Nascimento
- Department of Pediatrics at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM) at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Endocrinology Division at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rafael M Costa
- Department of Pediatrics at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM) at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Endocrinology Division at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Juliano V Alves
- Department of Pediatrics at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM) at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Endocrinology Division at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Sivakama Bharathi
- Department of Pediatrics at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eric S Goetzman
- Department of Pediatrics at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, USA
- Genetic and Genomic Medicine Division at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Thiago Bruder-Nascimento
- Department of Pediatrics at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM) at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Endocrinology Division at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Vascular Medicine Institute (VMI), University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Du J, Sudlow LC, Shahverdi K, Zhou H, Michie M, Schindler TH, Mitchell JD, Mollah S, Berezin MY. Oxaliplatin-induced cardiotoxicity in mice is connected to the changes in energy metabolism in the heart tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.24.542198. [PMID: 37292714 PMCID: PMC10245950 DOI: 10.1101/2023.05.24.542198] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Oxaliplatin is a platinum-based alkylating chemotherapeutic agent used for cancer treatment. At high cumulative dosage, the negative effect of oxaliplatin on the heart becomes evident and is linked to a growing number of clinical reports. The aim of this study was to determine how chronic oxaliplatin treatment causes the changes in energy-related metabolic activity in the heart that leads to cardiotoxicity and heart damage in mice. C57BL/6 male mice were treated with a human equivalent dosage of intraperitoneal oxaliplatin (0 and 10 mg/kg) once a week for eight weeks. During the treatment, mice were followed for physiological parameters, ECG, histology and RNA sequencing of the heart. We identified that oxaliplatin induces strong changes in the heart and affects the heart's energy-related metabolic profile. Histological post-mortem evaluation identified focal myocardial necrosis infiltrated with a small number of associated neutrophils. Accumulated doses of oxaliplatin led to significant changes in gene expression related to energy related metabolic pathways including fatty acid (FA) oxidation, amino acid metabolism, glycolysis, electron transport chain, and NAD synthesis pathway. At high accumulative doses of oxaliplatin, the heart shifts its metabolism from FAs to glycolysis and increases lactate production. It also leads to strong overexpression of genes in NAD synthesis pathways such as Nmrk2. Changes in gene expression associated with energy metabolic pathways can be used to develop diagnostic methods to detect oxaliplatin-induced cardiotoxicity early on as well as therapy to compensate for the energy deficit in the heart to prevent heart damage.
Collapse
Affiliation(s)
- Junwei Du
- Mallinckrodt Institute of Radiology, Washington University School of Medicine St. Louis, MO 63110, USA
- Institute of Materials Science & Engineering Washington University, St. Louis, MO 63130, USA
| | - Leland C Sudlow
- Mallinckrodt Institute of Radiology, Washington University School of Medicine St. Louis, MO 63110, USA
| | - Kiana Shahverdi
- Mallinckrodt Institute of Radiology, Washington University School of Medicine St. Louis, MO 63110, USA
| | - Haiying Zhou
- Mallinckrodt Institute of Radiology, Washington University School of Medicine St. Louis, MO 63110, USA
| | - Megan Michie
- Mallinckrodt Institute of Radiology, Washington University School of Medicine St. Louis, MO 63110, USA
| | - Thomas H Schindler
- Mallinckrodt Institute of Radiology, Washington University School of Medicine St. Louis, MO 63110, USA
| | - Joshua D Mitchell
- Cardio-Oncology Center of Excellence, Washington University School of Medicine, St. Louis, MO 63110
| | - Shamim Mollah
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| | - Mikhail Y Berezin
- Mallinckrodt Institute of Radiology, Washington University School of Medicine St. Louis, MO 63110, USA
- Institute of Materials Science & Engineering Washington University, St. Louis, MO 63130, USA
| |
Collapse
|
3
|
Alkhaldi HA, Vik SB. Analysis of compound heterozygous and homozygous mutations found in peripheral subunits of human respiratory Complex I, NDUFS1, NDUFS2, NDUFS8 and NDUFV1, by modeling in the E. coli enzyme. Mitochondrion 2023; 68:87-104. [PMID: 36462614 PMCID: PMC9805526 DOI: 10.1016/j.mito.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/14/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022]
Abstract
Respiratory Complex I (NADH:ubiquinone oxidoreductase) is composed of 45 subunits, seven mitochondrially-encoded and 38 imported. Mutations in the nuclearly-encoded subunits have been regularly discovered in humans in recent years, and many lead to cardiomyopathy, Leigh Syndrome, and early death. From the literature, we have identified mutations at 17 different sites and constructed 31 mutants in a bacterial model system. Many of these mutations, found in NDUFS1, NDUFS2, NDUFS8, and NDUFV1, map to subunit interfaces, and we hypothesized that they would disrupt assembly of Complex I. The mutations were constructed in the homologous E. coli genes, nuoG, nuoCD, nuoI and nuoF, respectively, and expressed from a plasmid containing all Complex I genes. Membrane vesicles were prepared and rates of deamino-NADH oxidase activity measured, which indicated a range of reduced activity. Some mutants were also analyzed using recently developed assays of assembly, time-delayed expression, and co-immunoprecipitation, which showed that assembly was disrupted. With compound heterozygotes, we determined which mutation was more deleterious. Construction of alanine mutations allowed us to distinguish between phenotypes that were caused by loss of the original amino acid or introduction of the mutant residue.
Collapse
Affiliation(s)
- Hind A Alkhaldi
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA
| | - Steven B Vik
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA.
| |
Collapse
|
4
|
Alkhaldi HA, Phan DH, Vik SB. Analysis of Human Clinical Mutations of Mitochondrial ND1 in a Bacterial Model System for Complex I. Life (Basel) 2022; 12:1934. [PMID: 36431069 PMCID: PMC9696053 DOI: 10.3390/life12111934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
The most common causes of mitochondrial dysfunction and disease include mutations in subunits and assembly factors of Complex I. Numerous mutations in the mitochondrial gene ND1 have been identified in humans. Currently, a bacterial model system provides the only method for rapid construction and analysis of mutations in homologs of human ND1. In this report, we have identified nine mutations in human ND1 that are reported to be pathogenic and are located at subunit interfaces. Our hypothesis was that these mutations would disrupt Complex I assembly. Seventeen mutations were constructed in the homologous nuoH gene in an E. coli model system. In addition to the clinical mutations, alanine substitutions were constructed in order to distinguish between a deleterious effect from the introduction of the mutant residue and the loss of the original residue. The mutations were moved to an expression vector containing all thirteen genes of the E. coli nuo operon coding for Complex I. Membrane vesicles were prepared and rates of deamino-NADH oxidase activity and proton translocation were measured. Samples were also tested for assembly by native gel electrophoresis and for expression of NuoH by immunoblotting. A range of outcomes was observed: Mutations at four of the sites allow normal assembly with moderate activity (50−76% of wild type). Mutations at the other sites disrupt assembly and/or activity, and in some cases the outcomes depend upon the amino acid introduced. In general, the outcomes are consistent with the proposed pathogenicity in humans.
Collapse
Affiliation(s)
| | | | - Steven B. Vik
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275, USA
| |
Collapse
|
5
|
miR-211-5p Alleviates the Myocardial Ischemia Injury Induced by Ischemic Reperfusion Treatment via Targeting FBXW7. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5423929. [PMID: 35692592 PMCID: PMC9187464 DOI: 10.1155/2022/5423929] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/06/2022] [Accepted: 05/14/2022] [Indexed: 01/31/2023]
Abstract
Cardiovascular diseases, a class of the most common diseases, seriously threaten human health, which is a direct inducement of death in most countries. The restoration of blood supply is an impactful intervention way for cardiovascular disease treatments while the injury induced by oxygen-glucose deprivation and ischemic reperfusion (I/R) may further impact the tissues of the patients. Myocardial reperfusion is a precondition for saving ischemic myocardial tissues in acute myocardial infarction while the injury induced by immediate reperfusion takes a great challenge for cardiovascular disease treatment. Howbeit, the reperfusion of coronary blood could aggravate the injury triggered by ischemia. At present, several studies have focused on the etiopathogenesis and therapeutic strategies of ischemia-reperfusion injury of the myocardium. The report has verified that miR-211-5p was elevated in the pathological specimens, while the influence of miR-211-5p in I/R-mediated injury of myocardial cells remains unclear. This research is aimed at illustrating the role of miR-211-5p in the progression of I/R injury of myocardial cells, and qRT-PCR, western blot, CCK-8, and TUNEL assay were used to investigate the functions of miR-211-5p on I/R-mediated injury of myocardial cells. The result mirrored that miR-211-5p was distinctly reduced in the I/R-induced AC16, and reduced miR-211-5p could evidently improve the viability of I/R-induced AC16. miR-211-5p could directly target FBXW7, and FBXW7 upregulation could reverse the improvement of AC16 in viability and apoptosis level after suffering I/R. Moreover, it was also proved that miR-211-5p can mediate the activation of Wnt/β-catenin via attenuating FBXW7. Consequently, this investigation identified miR-211-5p as a positive role to attenuate the injury of myocardial cells when suffering I/R treatment.
Collapse
|
6
|
Oulehri W, Collange O, Tacquard C, Bellou A, Graff J, Charles AL, Geny B, Mertes PM. Impaired Myocardial Mitochondrial Function in an Experimental Model of Anaphylactic Shock. BIOLOGY 2022; 11:730. [PMID: 35625458 PMCID: PMC9139016 DOI: 10.3390/biology11050730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/30/2022] [Accepted: 05/06/2022] [Indexed: 12/07/2022]
Abstract
Anaphylactic shock (AS) is associated with a profound vasodilation and cardiac dysfunction. The cellular mechanisms underlying AS-related cardiac dysfunction are unknown. We hypothesized that myocardial mitochondrial dysfunction may be associated with AS cardiac dysfunction. In controls and sensitized Brown Norway rats, shock was induced by ovalbumin i.v bolus, and abdominal aortic blood flow (ABF), systemic mean arterial pressure (MAP), and lactatemia were measured for 15 min. Myocardial mitochondrial function was assessed with the evaluation of mitochondrial respiration, oxidative stress production by reactive oxygen species (ROS), reactive nitrogen species (RNS), and the measurement of superoxide dismutases (SODs) activity. Oxidative damage was assessed by lipid peroxidation. The mitochondrial ultrastructure was assessed using transmission electronic microscopy. AS was associated with a dramatic drop in ABF and MAP combined with a severe hyperlactatemia 15 min after shock induction. CI-linked substrate state (197 ± 21 vs. 144 ± 21 pmol/s/mg, p < 0.05), OXPHOS activity by complexes I and II (411 ± 47 vs. 246 ± 33 pmol/s/mg, p < 0.05), and OXPHOS activity through complex II (316 ± 40 vs. 203 ± 28 pmol/s/mg, p < 0.05) were significantly impaired. ROS and RNS production was not significantly increased, but SODs activity was significantly higher in the AS group (11.15 ± 1.02 vs. 15.50 ± 1.40 U/mL/mg protein, p = 0.02). Finally, cardiac lipid peroxidation was significantly increased in the AS group (8.50 ± 0.67 vs. 12.17 ± 1.44 µM/mg protein, p < 0.05). No obvious changes were observed in the mitochondrial ultrastructure between CON and AS groups. Our experimental model of AS results in rapid and deleterious hemodynamic effects and was associated with a myocardial mitochondrial dysfunction with oxidative damage and without mitochondrial ultrastructural injury.
Collapse
Affiliation(s)
- Walid Oulehri
- Pôle Anesthésie, Réanimation Chirurgicale, Hôpitaux Universitaires de Strasbourg, 67091 Strasbourg, France; (W.O.); (O.C.); (C.T.)
- Faculté de Médecine de Strasbourg, UR 3072 Institut de Physiologie, FMTS (Fédération de Médecine Translationnelle de Strasbourg), Université de Strasbourg, 67091 Strasbourg, France; (A.-L.C.); (B.G.)
| | - Olivier Collange
- Pôle Anesthésie, Réanimation Chirurgicale, Hôpitaux Universitaires de Strasbourg, 67091 Strasbourg, France; (W.O.); (O.C.); (C.T.)
- Faculté de Médecine de Strasbourg, UR 3072 Institut de Physiologie, FMTS (Fédération de Médecine Translationnelle de Strasbourg), Université de Strasbourg, 67091 Strasbourg, France; (A.-L.C.); (B.G.)
| | - Charles Tacquard
- Pôle Anesthésie, Réanimation Chirurgicale, Hôpitaux Universitaires de Strasbourg, 67091 Strasbourg, France; (W.O.); (O.C.); (C.T.)
- Faculté de Médecine de Strasbourg, UR 3072 Institut de Physiologie, FMTS (Fédération de Médecine Translationnelle de Strasbourg), Université de Strasbourg, 67091 Strasbourg, France; (A.-L.C.); (B.G.)
| | - Abdelouahab Bellou
- Institute of Sciences in Emergency Medicine, Academy of Medical Sciences, Guangdong General People Hospital, Guangzhou 510060, China;
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Global Healthcare Network & Research Innovation Institute LLC, Brookline, MA 02446, USA
| | - Julien Graff
- Faculté de Médecine de Strasbourg, Institut d’Histologie, Service Central de Microscopie Électronique, FMTS (Fédération de Médecine Translationnelle de Strasbourg), Université de Strasbourg, 67091 Strasbourg, France;
| | - Anne-Laure Charles
- Faculté de Médecine de Strasbourg, UR 3072 Institut de Physiologie, FMTS (Fédération de Médecine Translationnelle de Strasbourg), Université de Strasbourg, 67091 Strasbourg, France; (A.-L.C.); (B.G.)
- Service de Physiologie et d’Explorations Fonctionnelles, Pôle de Pathologie Thoracique, Hôpitaux Universitaires de Strasbourg, 67091 Strasbourg, France
| | - Bernard Geny
- Faculté de Médecine de Strasbourg, UR 3072 Institut de Physiologie, FMTS (Fédération de Médecine Translationnelle de Strasbourg), Université de Strasbourg, 67091 Strasbourg, France; (A.-L.C.); (B.G.)
- Service de Physiologie et d’Explorations Fonctionnelles, Pôle de Pathologie Thoracique, Hôpitaux Universitaires de Strasbourg, 67091 Strasbourg, France
| | - Paul-Michel Mertes
- Pôle Anesthésie, Réanimation Chirurgicale, Hôpitaux Universitaires de Strasbourg, 67091 Strasbourg, France; (W.O.); (O.C.); (C.T.)
- Faculté de Médecine de Strasbourg, UR 3072 Institut de Physiologie, FMTS (Fédération de Médecine Translationnelle de Strasbourg), Université de Strasbourg, 67091 Strasbourg, France; (A.-L.C.); (B.G.)
| |
Collapse
|
7
|
An Overview of the Molecular Mechanisms Associated with Myocardial Ischemic Injury: State of the Art and Translational Perspectives. Cells 2022; 11:cells11071165. [PMID: 35406729 PMCID: PMC8998015 DOI: 10.3390/cells11071165] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease is the leading cause of death in western countries. Among cardiovascular diseases, myocardial infarction represents a life-threatening condition predisposing to the development of heart failure. In recent decades, much effort has been invested in studying the molecular mechanisms underlying the development and progression of ischemia/reperfusion (I/R) injury and post-ischemic cardiac remodeling. These mechanisms include metabolic alterations, ROS overproduction, inflammation, autophagy deregulation and mitochondrial dysfunction. This review article discusses the most recent evidence regarding the molecular basis of myocardial ischemic injury and the new potential therapeutic interventions for boosting cardioprotection and attenuating cardiac remodeling.
Collapse
|
8
|
Chen WJ, Cheng Y, Li W, Dong XK, Wei JL, Yang CH, Jiang YH. Quercetin Attenuates Cardiac Hypertrophy by Inhibiting Mitochondrial Dysfunction Through SIRT3/PARP-1 Pathway. Front Pharmacol 2021; 12:739615. [PMID: 34776960 PMCID: PMC8581039 DOI: 10.3389/fphar.2021.739615] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/15/2021] [Indexed: 11/13/2022] Open
Abstract
Cardiac hypertrophy is an important characteristic in the development of hypertensive heart disease. Mitochondrial dysfunction plays an important role in the pathology of cardiac hypertrophy. Recent studies have shown that sirtuin 3 (SIRT3)/poly (ADP-ribose) polymerase-1 (PARP-1) pathway modulation inhibits cardiac hypertrophy. Quercetin, a natural flavonol agent, has been reported to attenuate cardiac hypertrophy. However, the molecular mechanism is not completely elucidated. In this study, we aimed to explore the mechanism underlying the protective effect of quercetin on cardiac hypertrophy. Spontaneously hypertensive rats (SHRs) were treated with quercetin (20 mg/kg/d) for 8 weeks to evaluate the effects of quercetin on blood pressure and cardiac hypertrophy. Additionally, the mitochondrial protective effect of quercetin was assessed in H9c2 cells treated with Ang II. SHRs displayed aggravated cardiac hypertrophy and fibrosis, which were attenuated by quercetin treatment. Quercetin also improved cardiac function, reduced mitochondrial superoxide and protected mitochondrial structure in vivo. In vitro, Ang II increased the mRNA level of hypertrophic markers including atrial natriuretic factor (ANF) and β-myosin heavy chain (β-MHC), whereas quercetin ameliorated this hypertrophic response. Moreover, quercetin prevented mitochondrial function against Ang II induction. Importantly, mitochondrial protection and PARP-1 inhibition by quercetin were partly abolished after SIRT3 knockdown. Our results suggested that quercetin protected mitochondrial function by modulating SIRT3/PARP-1 pathway, contributing to the inhibition of cardiac hypertrophy.
Collapse
Affiliation(s)
- Wen-Jing Chen
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China.,Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Cheng
- Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wen Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao-Kang Dong
- Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jian-Liang Wei
- Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chuan-Hua Yang
- Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yue-Hua Jiang
- Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
9
|
Lee S, Ko E, Lee H, Kim KT, Choi M, Shin S. Mixed Exposure of Persistent Organic Pollutants Alters Oxidative Stress Markers and Mitochondrial Function in the Tail of Zebrafish Depending on Sex. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18189539. [PMID: 34574462 PMCID: PMC8469042 DOI: 10.3390/ijerph18189539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/04/2021] [Accepted: 09/05/2021] [Indexed: 12/14/2022]
Abstract
Persistent organic pollutants (POPs) are lipid-soluble toxins that are not easily degraded; therefore, they accumulate in the environment and the human body. Several studies have indicated a correlation between POPs and metabolic diseases; however, their effects on mitochondria as a central organelle in cellular metabolism and the usage of mitochondria as functional markers for metabolic disease are barely understood. In this study, a zebrafish model system was exposed to two subclasses of POPs, organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs), under two different conditions (solitary OCPs or OCPs with PCBs (Aroclor 1254)), and changes in the oxidative stress marker levels and mitochondrial enzyme activities in the electron transport chain of the tail were measured to observe the correlation between POPs and representative biomarkers for metabolic disease. The results indicated different responses upon exposure to OCPs and OCPs with Aroclor 1254, and accelerated toxicity was observed following exposure to mixed POPs (OCPs with Aroclor 1254). Males were more sensitive to changes in the levels of oxidative stress markers induced by POP exposure, whereas females were more susceptible to the toxic effects of POPs on the levels of mitochondrial activity markers. These results demonstrate that the study reflects real environmental conditions, with low-dose and multiple-toxin exposure for a long period, and that POPs alter major mitochondrial enzymes’ functions with an imbalance of redox homeostasis in a sex-dependent manner.
Collapse
Affiliation(s)
- Songhee Lee
- Interdisciplinary Program of Bioenergy and Biomaterials Graduate School, College of Engineering, Chonnam National University, Gwangju 61186, Korea;
| | - Eun Ko
- Department of Biotechnology and Bioengineering, College of Engineering, Chonnam National University, Gwangju 61186, Korea;
| | - Hyojin Lee
- Department of Environmental Energy Engineering, College of Energy and Biotechnology, Seoul National University of Science and Technology, Seoul 01811, Korea; (H.L.); (K.-T.K.)
| | - Ki-Tae Kim
- Department of Environmental Energy Engineering, College of Energy and Biotechnology, Seoul National University of Science and Technology, Seoul 01811, Korea; (H.L.); (K.-T.K.)
| | - Moonsung Choi
- Department of Optometry, College of Energy and Biotechnology, Seoul National University of Science and Technology, Seoul 01811, Korea
- Convergence Institute of Biomaterials and Bioengineering, Seoul National University of Science and Technology, Seoul 01811, Korea
- Correspondence: (M.C.); (S.S.)
| | - Sooim Shin
- Interdisciplinary Program of Bioenergy and Biomaterials Graduate School, College of Engineering, Chonnam National University, Gwangju 61186, Korea;
- Department of Biotechnology and Bioengineering, College of Engineering, Chonnam National University, Gwangju 61186, Korea;
- Correspondence: (M.C.); (S.S.)
| |
Collapse
|
10
|
Li D, Yang S, Xing Y, Pan L, Zhao R, Zhao Y, Liu L, Wu M. Novel Insights and Current Evidence for Mechanisms of Atherosclerosis: Mitochondrial Dynamics as a Potential Therapeutic Target. Front Cell Dev Biol 2021; 9:673839. [PMID: 34307357 PMCID: PMC8293691 DOI: 10.3389/fcell.2021.673839] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease (CVD) is the main cause of death worldwide. Atherosclerosis is the underlying pathological basis of CVD. Mitochondrial homeostasis is maintained through the dynamic processes of fusion and fission. Mitochondria are involved in many cellular processes, such as steroid biosynthesis, calcium homeostasis, immune cell activation, redox signaling, apoptosis, and inflammation, among others. Under stress conditions, mitochondrial dynamics, mitochondrial cristae remodeling, and mitochondrial ROS (mitoROS) production increase, mitochondrial membrane potential (MMP) decreases, calcium homeostasis is imbalanced, and mitochondrial permeability transition pore open (mPTP) and release of mitochondrial DNA (mtDNA) are activated. mtDNA recognized by TLR9 can lead to NF-κB pathway activation and pro-inflammatory factor expression. At the same time, TLR9 can also activate NLRP3 inflammasomes and release interleukin, an event that eventually leads to tissue damage and inflammatory responses. In addition, mitochondrial dysfunction may amplify the activation of NLRP3 through the production of mitochondrial ROS, which together aggravate accumulating mitochondrial damage. In addition, mtDNA defects or gene mutation can lead to mitochondrial oxidative stress. Finally, obesity, diabetes, hypertension and aging are risk factors for the progression of CVD, which are closely related to mitochondrial dynamics. Mitochondrial dynamics may represent a new target in the treatment of atherosclerosis. Antioxidants, mitochondrial inhibitors, and various new therapies to correct mitochondrial dysfunction represent a few directions for future research on therapeutic intervention and amelioration of atherosclerosis.
Collapse
Affiliation(s)
- Dan Li
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shengjie Yang
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanwei Xing
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Limin Pan
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ran Zhao
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yixi Zhao
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Longtao Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Wu
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Bisaccia G, Ricci F, Gallina S, Di Baldassarre A, Ghinassi B. Mitochondrial Dysfunction and Heart Disease: Critical Appraisal of an Overlooked Association. Int J Mol Sci 2021; 22:ijms22020614. [PMID: 33435429 PMCID: PMC7827742 DOI: 10.3390/ijms22020614] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/03/2021] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
The myocardium is among the most energy-consuming tissues in the body, burning from 6 to 30 kg of ATP per day within the mitochondria, the so-called powerhouse of the cardiomyocyte. Although mitochondrial genetic disorders account for a small portion of cardiomyopathies, mitochondrial dysfunction is commonly involved in a broad spectrum of heart diseases, and it has been implicated in the development of heart failure via maladaptive circuits producing and perpetuating mitochondrial stress and energy starvation. In this bench-to-bedside review, we aimed to (i) describe the key functions of the mitochondria within the myocardium, including their role in ischemia/reperfusion injury and intracellular calcium homeostasis; (ii) examine the contribution of mitochondrial dysfunction to multiple cardiac disease phenotypes and their transition to heart failure; and (iii) discuss the rationale and current evidence for targeting mitochondrial function for the treatment of heart failure, including via sodium-glucose cotransporter 2 inhibitors.
Collapse
Affiliation(s)
- Giandomenico Bisaccia
- MIUR Department of Excellence, Department of Neuroscience, Imaging and Clinical Sciences, University “G.d’Annunzio” of Chieti-Pescara, Via Luigi Polacchi, 11-66100 Chieti, Italy; (G.B.); (S.G.)
| | - Fabrizio Ricci
- MIUR Department of Excellence, Department of Neuroscience, Imaging and Clinical Sciences, University “G.d’Annunzio” of Chieti-Pescara, Via Luigi Polacchi, 11-66100 Chieti, Italy; (G.B.); (S.G.)
- Department of Clinical Sciences, Lund University, E-205 02 Malmö, Sweden
- Casa di Cura Villa Serena, Città Sant’Angelo, 65013 Pescara, Italy
- Correspondence: ; Tel./Fax: +39-871-355-6922
| | - Sabina Gallina
- MIUR Department of Excellence, Department of Neuroscience, Imaging and Clinical Sciences, University “G.d’Annunzio” of Chieti-Pescara, Via Luigi Polacchi, 11-66100 Chieti, Italy; (G.B.); (S.G.)
| | - Angela Di Baldassarre
- Department of Medicine and Aging Sciences, University “G.d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (A.D.B.); (B.G.)
| | - Barbara Ghinassi
- Department of Medicine and Aging Sciences, University “G.d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (A.D.B.); (B.G.)
| |
Collapse
|
12
|
Human Mitochondrial Pathologies of the Respiratory Chain and ATP Synthase: Contributions from Studies of Saccharomyces cerevisiae. Life (Basel) 2020; 10:life10110304. [PMID: 33238568 PMCID: PMC7700678 DOI: 10.3390/life10110304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022] Open
Abstract
The ease with which the unicellular yeast Saccharomyces cerevisiae can be manipulated genetically and biochemically has established this organism as a good model for the study of human mitochondrial diseases. The combined use of biochemical and molecular genetic tools has been instrumental in elucidating the functions of numerous yeast nuclear gene products with human homologs that affect a large number of metabolic and biological processes, including those housed in mitochondria. These include structural and catalytic subunits of enzymes and protein factors that impinge on the biogenesis of the respiratory chain. This article will review what is currently known about the genetics and clinical phenotypes of mitochondrial diseases of the respiratory chain and ATP synthase, with special emphasis on the contribution of information gained from pet mutants with mutations in nuclear genes that impair mitochondrial respiration. Our intent is to provide the yeast mitochondrial specialist with basic knowledge of human mitochondrial pathologies and the human specialist with information on how genes that directly and indirectly affect respiration were identified and characterized in yeast.
Collapse
|
13
|
Boran T, Akyildiz AG, Jannuzzi AT, Alpertunga B. Extended regorafenib treatment can be linked with mitochondrial damage leading to cardiotoxicity. Toxicol Lett 2020; 336:39-49. [PMID: 33166663 DOI: 10.1016/j.toxlet.2020.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 12/22/2022]
Abstract
Regorafenib (RGF) has a great success in the treatment of colorectal cancer, gastrointestinal stromal tumours and hepatocellular carcinoma by inhibiting angiogenic, stromal and oncogenic kinases. However, RGF can induce life-threatening cardiotoxicity including hypertension and cardiac ischemia/infarction. The molecular mechanism of the adverse effects has not been elucidated. Mitochondrial dysfunction is one of the major causes of cardiac diseases since cardiac cells highly need ATP for their contractility. Therefore, we aimed to investigate molecular mechanisms of RGF-induced cardiac adverse effects using H9c2 cell model by focusing on mitochondria. Cells were treated with 0-20 μM RGF for 48 and 72 h. According to our results, RGF inhibited cell proliferation and decreased the ATP content of the cells depending on the exposure time and concentration. Loss of mitochondrial membrane potential was also observed at high dose. Mitochondrial fusion/fission genes and antioxidant SOD2 (superoxide dismutase) gene expression levels increased at high doses in both treatments. Mitochondrial DNA content decreased as exposure time and concentration increased. Also, protein expression levels of mitochondrial complex I and V have reduced and stress protein HSP70 level has increased following RGF treatment. Structural abnormalities in mitochondria was seen with transmission electron microscopy at the applied higher doses. Our findings suggest that RGF-induced cardiotoxicity may be associated with mitochondrial damage in cardiac cells.
Collapse
Affiliation(s)
- Tugce Boran
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 34116, Beyazıt, Istanbul, Turkey
| | - Aysenur Gunaydin Akyildiz
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 34116, Beyazıt, Istanbul, Turkey; Bezmialem Vakif University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Vatan Street, 34093, Fatih, Istanbul, Turkey
| | - Ayse Tarbin Jannuzzi
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 34116, Beyazıt, Istanbul, Turkey
| | - Buket Alpertunga
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 34116, Beyazıt, Istanbul, Turkey.
| |
Collapse
|
14
|
Wu Y, Liu H, Wang X. Cardioprotection of pharmacological postconditioning on myocardial ischemia/reperfusion injury. Life Sci 2020; 264:118628. [PMID: 33131670 DOI: 10.1016/j.lfs.2020.118628] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/08/2020] [Accepted: 10/16/2020] [Indexed: 12/26/2022]
Abstract
Acute myocardial infarction is associated with high rates of morbidity and mortality and can cause irreversible myocardial damage. Timely reperfusion is critical to limit infarct size and salvage the ischemic myocardium. However, reperfusion may exacerbate lethal tissue injury, a phenomenon known as myocardial ischemia/reperfusion (I/R) injury. Pharmacological postconditioning (PPC), a strategy involving medication administration before or during the early minutes of reperfusion, is more efficient and flexible than preconditioning or ischemic conditioning. Previous studies have shown that various mechanisms are involved in the effects of PPC. In this review, we summarize the relative effects and potential underlying mechanisms of PPC to provide a foundation for future research attempting to develop novel treatments against myocardial I/R injury.
Collapse
Affiliation(s)
- Yushi Wu
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, NO. 253, Gongye Avenue, 510282 Guangzhou, China; Guangdong Provincial Biomedical Engineering Technology Research Center for cardiovascular Disease, 510282 Guangzhou, China; Sino-Japanese cooperation Platform for Translational Research in Heart Failure, 510282 Guangzhou, China; Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, 510282 Guangzhou, China
| | - Haiqiong Liu
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, NO. 253, Gongye Avenue, 510282 Guangzhou, China; Guangdong Provincial Biomedical Engineering Technology Research Center for cardiovascular Disease, 510282 Guangzhou, China; Sino-Japanese cooperation Platform for Translational Research in Heart Failure, 510282 Guangzhou, China; Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, 510282 Guangzhou, China
| | - Xianbao Wang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, NO. 253, Gongye Avenue, 510282 Guangzhou, China; Guangdong Provincial Biomedical Engineering Technology Research Center for cardiovascular Disease, 510282 Guangzhou, China; Sino-Japanese cooperation Platform for Translational Research in Heart Failure, 510282 Guangzhou, China; Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, 510282 Guangzhou, China.
| |
Collapse
|
15
|
Forte M, Schirone L, Ameri P, Basso C, Catalucci D, Modica J, Chimenti C, Crotti L, Frati G, Rubattu S, Schiattarella GG, Torella D, Perrino C, Indolfi C, Sciarretta S. The role of mitochondrial dynamics in cardiovascular diseases. Br J Pharmacol 2020; 178:2060-2076. [DOI: 10.1111/bph.15068] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/22/2022] Open
Affiliation(s)
- Maurizio Forte
- Department of AngioCardioNeurology IRCCS Neuromed Pozzili Italy
| | - Leonardo Schirone
- Department of Medical and Surgical Sciences and Biotechnologies Sapienza University of Rome Latina Italy
- Department of Internal, Anesthetic and Cardiovascular Clinical Sciences “La Sapienza” University of Rome Rome Italy
| | - Pietro Ameri
- Cardiovascular Disease Unit IRCCS Ospedale Policlinico Genova Italy
- Department of Internal Medicine University of Genova Genova Italy
| | - Cristina Basso
- Cardiovascular Pathology Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health University of Padua Medical School Padova Italy
| | - Daniele Catalucci
- Humanitas Clinical and Research Center IRCCS Rozzano Italy
- National Research Council Institute of Genetic and Biomedical Research ‐ UOS Milan Italy
| | - Jessica Modica
- Humanitas Clinical and Research Center IRCCS Rozzano Italy
- National Research Council Institute of Genetic and Biomedical Research ‐ UOS Milan Italy
| | - Cristina Chimenti
- Department of Cardiovascular, Respiratory, Nephrologic, and Geriatric Sciences Sapienza University of Rome Rome Italy
| | - Lia Crotti
- Istituto Auxologico Italiano IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics Milan Italy
- Istituto Auxologico Italiano, IRCCS, Department of Cardiovascular, Neural and Metabolic Sciences San Luca Hospital Milan Italy
- Department of Medicine and Surgery Università Milano‐Bicocca Milan Italy
| | - Giacomo Frati
- Department of AngioCardioNeurology IRCCS Neuromed Pozzili Italy
- Department of Medical and Surgical Sciences and Biotechnologies Sapienza University of Rome Latina Italy
| | - Speranza Rubattu
- Department of AngioCardioNeurology IRCCS Neuromed Pozzili Italy
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology Sapienza University of Rome Rome Italy
| | - Gabriele Giacomo Schiattarella
- Department of Internal Medicine (Cardiology) University of Texas Southwestern Medical Center Dallas TX USA
- Division of Cardiology, Department of Advanced Biomedical Sciences Federico II University of Naples Naples Italy
| | - Daniele Torella
- Molecular and Cellular Cardiology Laboratory, Department of Experimental and Clinical Medicine Magna Graecia University Catanzaro Italy
| | - Cinzia Perrino
- Division of Cardiology, Department of Advanced Biomedical Sciences Federico II University of Naples Naples Italy
| | - Ciro Indolfi
- Molecular and Cellular Cardiology Laboratory, Department of Experimental and Clinical Medicine Magna Graecia University Catanzaro Italy
| | - Sebastiano Sciarretta
- Department of AngioCardioNeurology IRCCS Neuromed Pozzili Italy
- Department of Medical and Surgical Sciences and Biotechnologies Sapienza University of Rome Latina Italy
| | | |
Collapse
|
16
|
Stanzione R, Cotugno M, Bianchi F, Marchitti S, Forte M, Volpe M, Rubattu S. Pathogenesis of Ischemic Stroke: Role of Epigenetic Mechanisms. Genes (Basel) 2020; 11:genes11010089. [PMID: 31941075 PMCID: PMC7017187 DOI: 10.3390/genes11010089] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/29/2019] [Accepted: 01/09/2020] [Indexed: 12/17/2022] Open
Abstract
Epigenetics is the branch of molecular biology that studies modifications able to change gene expression without altering the DNA sequence. Epigenetic modulations include DNA methylation, histone modifications, and noncoding RNAs. These gene modifications are heritable and modifiable and can be triggered by lifestyle and nutritional factors. In recent years, epigenetic changes have been associated with the pathogenesis of several diseases such as diabetes, obesity, renal pathology, and different types of cancer. They have also been related with the pathogenesis of cardiovascular diseases including ischemic stroke. Importantly, since epigenetic modifications are reversible processes they could assist with the development of new therapeutic approaches for the treatment of human diseases. In the present review article, we aim to collect the most recent evidence concerning the impact of epigenetic modifications on the pathogenesis of ischemic stroke in both animal models and humans.
Collapse
Affiliation(s)
- Rosita Stanzione
- IRCCS Neuromed, Via Atinense, 18, 86077 Pozzilli IS, Italy; (M.C.); (F.B.); (S.M.); (M.F.); (M.V.); (S.R.)
- Correspondence: ; Tel.: +86-5915224
| | - Maria Cotugno
- IRCCS Neuromed, Via Atinense, 18, 86077 Pozzilli IS, Italy; (M.C.); (F.B.); (S.M.); (M.F.); (M.V.); (S.R.)
| | - Franca Bianchi
- IRCCS Neuromed, Via Atinense, 18, 86077 Pozzilli IS, Italy; (M.C.); (F.B.); (S.M.); (M.F.); (M.V.); (S.R.)
| | - Simona Marchitti
- IRCCS Neuromed, Via Atinense, 18, 86077 Pozzilli IS, Italy; (M.C.); (F.B.); (S.M.); (M.F.); (M.V.); (S.R.)
| | - Maurizio Forte
- IRCCS Neuromed, Via Atinense, 18, 86077 Pozzilli IS, Italy; (M.C.); (F.B.); (S.M.); (M.F.); (M.V.); (S.R.)
| | - Massimo Volpe
- IRCCS Neuromed, Via Atinense, 18, 86077 Pozzilli IS, Italy; (M.C.); (F.B.); (S.M.); (M.F.); (M.V.); (S.R.)
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
| | - Speranza Rubattu
- IRCCS Neuromed, Via Atinense, 18, 86077 Pozzilli IS, Italy; (M.C.); (F.B.); (S.M.); (M.F.); (M.V.); (S.R.)
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
| |
Collapse
|
17
|
Wang HW, Zhu SQ, Liu J, Miao CY, Zhang Y, Zhou BH. Fluoride-induced renal dysfunction via respiratory chain complex abnormal expression and fusion elevation in mice. CHEMOSPHERE 2020; 238:124607. [PMID: 31524603 DOI: 10.1016/j.chemosphere.2019.124607] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
A fluoride exposure mouse model is established to evaluate the relationship between mitochondrial respiratory chain complexes and renal dysfunction. Morphological changes in kidney tissues were observed. Renal function and cell proliferation in the kidneys were evaluated. The expression of mitochondrial fusion protein including mitofusin-1 (Mfn1) and optic atrophy 1 (OPA1), and mitochondrial respiratory chain complex subunits, including NDUFV2, SDHA, CYC1 and COX Ⅳ, were detected via real-time polymerase chain reaction, immunohistochemistry staining and Western blot, respectively. Results showed that the structures of renal tubule, renal glomerulus and renal papilla were seriously damaged. Renal function was impaired, and cell proliferation was remarkably inhibited by excessive fluoride in kidney. The mRNA and protein expression levels of Mfn1, OPA1, NDUFV2, CYC1 and COX Ⅳ were significantly increased after excessive fluoride exposure. However, the mRNA and protein expression of SDHA significantly decreased. Overall, our findings revealed that excessive fluoride can damage kidney structure, inhibit renal cell proliferation, interfere with the expression of mitochondrial respiratory chain complexes and elevate mitochondrial fusion. Consequently, renal function disorder occurred.
Collapse
Affiliation(s)
- Hong-Wei Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, People's Republic of China.
| | - Shi-Quan Zhu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, People's Republic of China.
| | - Jing Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, People's Republic of China.
| | - Cheng-Yi Miao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, People's Republic of China.
| | - Yan Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, People's Republic of China.
| | - Bian-Hua Zhou
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, People's Republic of China.
| |
Collapse
|
18
|
Circulating Leukocytes and Oxidative Stress in Cardiovascular Diseases: A State of the Art. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2650429. [PMID: 31737166 PMCID: PMC6815586 DOI: 10.1155/2019/2650429] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023]
Abstract
Increased oxidative stress from both mitochondrial and cytosolic sources contributes to the development and the progression of cardiovascular diseases (CVDs), and it is a target of therapeutic interventions. The numerous efforts made over the last decades in order to develop tools able to monitor the oxidative stress level in patients affected by CVDs rely on the need to gain information on the disease state. However, this goal has not been satisfactorily accomplished until now. Among others, the isolation of circulating leukocytes to measure their oxidant level offers a valid, noninvasive challenge that has been tested in few pathological contexts, including hypertension, atherosclerosis and its clinical manifestations, and heart failure. Since leukocytes circulate in the blood stream, it is expected that they might reflect quite closely both systemic and cardiovascular oxidative stress and provide useful information on the pathological condition. The results of the studies discussed in the present review article are promising. They highlight the importance of measuring oxidative stress level in circulating mononuclear cells in different CVDs with a consistent correlation between degree of oxidative stress and severity of CVD and of its complications. Importantly, they also point to a double role of leukocytes, both as a marker of disease condition and as a direct contributor to disease progression. Finally, they show that the oxidative stress level of leukocytes reflects the impact of therapeutic interventions. It is likely that the isolation of leukocytes and the measurement of oxidative stress, once adequately developed, may represent an eligible tool for both research and clinical purposes to monitor the role of oxidative stress on the promotion and progression of CVDs, as well as the impact of therapies.
Collapse
|