1
|
Parekh M, Miall A, Chou A, Buhl L, Deshpande N, Price MO, Price FW, Jurkunas UV. Enhanced Migration of Fuchs Corneal Endothelial Cells by Rho Kinase Inhibition: A Novel Ex Vivo Descemet's Stripping Only Model. Cells 2024; 13:1218. [PMID: 39056800 PMCID: PMC11274477 DOI: 10.3390/cells13141218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Descemet's Stripping Only (DSO) is a surgical technique that utilizes the peripheral corneal endothelial cell (CEnC) migration for wound closure. Ripasudil, a Rho-associated protein kinase (ROCK) inhibitor, has shown potential in DSO treatment; however, its mechanism in promoting CEnC migration remains unclear. We observed that ripasudil-treated immortalized normal and Fuchs endothelial corneal dystrophy (FECD) cells exhibited significantly enhanced migration and wound healing, particularly effective in FECD cells. Ripasudil upregulated mRNA expression of Snail Family Transcriptional Repressor (SNAI1/2) and Vimentin (VIM) while decreasing Cadherin (CDH1), indicating endothelial-to-mesenchymal transition (EMT) activation. Ripasudil activated Rac1, driving the actin-related protein complex (ARPC2) to the leading edge, facilitating enhanced migration. Ex vivo studies on cadaveric and FECD Descemet's membrane (DM) showed increased migration and proliferation of CEnCs after ripasudil treatment. An ex vivo DSO model demonstrated enhanced migration from the DM to the stroma with ripasudil. Coating small incision lenticule extraction (SMILE) tissues with an FNC coating mix and treating the cells in conjunction with ripasudil further improved migration and resulted in a monolayer formation, as detected by the ZO-1 junctional marker, thereby leading to the reduction in EMT. In conclusion, ripasudil effectively enhanced cellular migration, particularly in a novel ex vivo DSO model, when the stromal microenvironment was modulated. This suggests ripasudil as a promising adjuvant for DSO treatment, highlighting its potential clinical significance.
Collapse
Affiliation(s)
- Mohit Parekh
- Schepens Eye Research Institute of Mass Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA; (M.P.)
| | - Annie Miall
- Schepens Eye Research Institute of Mass Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA; (M.P.)
| | - Ashley Chou
- Faculty of Arts and Sciences, Harvard College, Boston, MA 02138, USA
| | - Lara Buhl
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Neha Deshpande
- Schepens Eye Research Institute of Mass Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA; (M.P.)
| | | | - Francis W. Price
- Cornea Research Foundation of America, Indianapolis, IN 46260, USA
| | - Ula V. Jurkunas
- Schepens Eye Research Institute of Mass Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA; (M.P.)
- Cornea and Refractive Surgery Service, Massachusetts Eye and Ear Infirmary, 243 Charles Street, Boston, MA 02114, USA
| |
Collapse
|
2
|
Jin L, Zhou S, Zhao S, Long J, Huang Z, Zhou J, Zhang Y. Early short-term hypoxia promotes epidermal cell migration by activating the CCL2-ERK1/2 pathway and epithelial-mesenchymal transition during wound healing. BURNS & TRAUMA 2024; 12:tkae017. [PMID: 38887221 PMCID: PMC11182653 DOI: 10.1093/burnst/tkae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/05/2024] [Indexed: 06/20/2024]
Abstract
Background Due to vasculature injury and increased oxygen consumption, the early wound microenvironment is typically in a hypoxic state. We observed enhanced cell migration ability under early short-term hypoxia. CCL2 belongs to the CC chemokine family and was found to be increased in early hypoxic wounds and enriched in the extracellular signal-regulated kinase (ERK)1/2 pathway in our previous study. However, the underlying mechanism through which the CCL2-ERK1/2 pathway regulates wound healing under early short-term hypoxia remains unclear. Activation of epithelial-mesenchymal transition (EMT) is a key process in cancer cell metastasis, during which epithelial cells acquire the characteristics of mesenchymal cells and enhance cell motility and migration ability. However, the relationship between epithelial cell migration and EMT under early short-term hypoxia has yet to be explored. Methods HaCaT cells were cultured to verify the effect of early short-term hypoxia on migration through cell scratch assays. Lentiviruses with silenced or overexpressed CCL2 were used to explore the relationship between CCL2 and migration under short-term hypoxia. An acute full-thickness cutaneous wound rat model was established with the application of an ERK inhibitor to reveal the hidden role of the ERK1/2 pathway in the early stage of wound healing. The EMT process was verified in all the above experiments through western blotting. Results In our study, we found that short-term hypoxia promoted cell migration. Mechanistically, hypoxia promoted cell migration through mediating CCL2. Overexpression of CCL2 via lentivirus promoted cell migration, while silencing CCL2 via lentivirus inhibited cell migration and the production of related downstream proteins. In addition, we found that CCL2 was enriched in the ERK1/2 pathway, and the application of an ERK inhibitor in vivo and in vitro verified the upstream and downstream relationships between the CCL2 pathway and ERK1/2. Western blot results both in vivo and in vitro demonstrated that early short-term hypoxia promotes epidermal cell migration by activating the CCL2-ERK1/2 pathway and EMT during wound healing. Conclusions Our work demonstrated that hypoxia in the early stage serves as a stimulus for triggering wound healing through activating the CCL2-ERK1/2 pathway and EMT, which promote epidermal cell migration and accelerate wound closure. These findings provide additional detailed insights into the mechanism of wound healing and new targets for clinical treatment.
Collapse
Affiliation(s)
- Linbo Jin
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Shiqi Zhou
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Shihan Zhao
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Junhui Long
- Department of Dermatology, Southwest Hospital Jiangbei Area (The 958th hospital of Chinese People’s Liberation Army), Chongqing, China
| | - Zhidan Huang
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Junli Zhou
- Department of Burn and Plastic Surgery, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, China
| | - Yiming Zhang
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| |
Collapse
|
3
|
Vercammen H, Miron A, Oellerich S, Melles GRJ, Ní Dhubhghaill S, Koppen C, Van Den Bogerd B. Corneal endothelial wound healing: understanding the regenerative capacity of the innermost layer of the cornea. Transl Res 2022; 248:111-127. [PMID: 35609782 DOI: 10.1016/j.trsl.2022.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/14/2022] [Accepted: 05/18/2022] [Indexed: 12/13/2022]
Abstract
Currently, there are very few well-established treatments to stimulate corneal endothelial cell regeneration in vivo as a cure for corneal endothelial dysfunctions. The most frequently performed intervention for a damaged or dysfunctional corneal endothelium nowadays is corneal endothelial keratoplasty, also known as lamellar corneal transplantation surgery. Newer medical therapies are emerging and are targeting the regeneration of the corneal endothelium, helping the patients regain their vision without the need for donor tissue. Alternatives to donor tissues are needed as the aging population requiring transplants, has further exacerbated the pressure on the corneal eye banking system. Significant ongoing research efforts in the field of corneal regenerative medicine have been made to elucidate the underlying pathways and effector proteins involved in corneal endothelial regeneration. However, the literature offers little guidance and selective attention to the question of how to fully exploit these pathways. The purpose of this paper is to provide an overview of wound healing characteristics from a biochemical level in the lab to the regenerative features seen in the clinic. Studying the pathways involved in corneal wound healing together with their key effector proteins, can help explain the effect on the proliferation and migration capacity of the corneal endothelial cells.
Collapse
Affiliation(s)
- Hendrik Vercammen
- Antwerp Research Group for Ocular Science (ARGOS), Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Alina Miron
- Netherlands Institute for Innovative Ocular Surgery (NIIOS), Rotterdam, The Netherlands
| | - Silke Oellerich
- Netherlands Institute for Innovative Ocular Surgery (NIIOS), Rotterdam, The Netherlands
| | - Gerrit R J Melles
- Netherlands Institute for Innovative Ocular Surgery (NIIOS), Rotterdam, The Netherlands; Melles Cornea Clinic Rotterdam, The Netherlands
| | - Sorcha Ní Dhubhghaill
- Antwerp Research Group for Ocular Science (ARGOS), Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium; Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium; Netherlands Institute for Innovative Ocular Surgery (NIIOS), Rotterdam, The Netherlands
| | - Carina Koppen
- Antwerp Research Group for Ocular Science (ARGOS), Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium; Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium
| | - Bert Van Den Bogerd
- Antwerp Research Group for Ocular Science (ARGOS), Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium.
| |
Collapse
|
4
|
Large extracellular vesicles do not mitigate the harmful effect of hyperglycemia on endothelial cell mobility. Eur J Cell Biol 2022; 101:151266. [PMID: 35952497 DOI: 10.1016/j.ejcb.2022.151266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 07/22/2022] [Accepted: 08/01/2022] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles, especially the larger fraction (LEVs - large extracellular vesicles), are believed to be an important means of intercellular communication. Earlier studies on LEVs have shown their healing properties, especially in the vascular cells of diabetic patients. Uptake of LEVs by endothelial cells and internalization of their cargo have also been demonstrated. Endothelial cells change their properties under hyperglycemic conditions (HGC), which reduces their activity and is the cause of endothelial dysfunction. The aim of our study was to investigate how human umbilical vein endothelial cells (HUVECs) change their biological properties: shape, mobility, cell surface stiffness, as well as describe the activation of metabolic pathways after exposure to the harmful effects of HGC and the administration of LEVs released by endothelial cells. We obtained LEVs from HUVEC cultures in HGC and normoglycemia (NGC) using the filtration and ultracentrifugation methods. We assessed the size of LEVs and the presence of biomarkers such as phosphatidylserine, CD63, beta-actin and HSP70. We analyzed the LEVs uptake efficiency by HUVECs, HUVEC shape, actin cytoskeleton remodeling, surface stiffness and finally gene expression by mRNA analysis. Under HGC conditions, HUVECs were larger and had a stiffened surface and a strengthened actin cortex compared to cells under NGC condition. HGC also altered the activation of metabolic pathways, especially those related to intracellular transport, metabolism, and organization of cellular components. The most interesting observation in our study is that LEVs did not restore cell motility disturbed by HGC. Although, LEVs were not able to reverse this deleterious effect of HGC, they activated transcription of genes involved in protein synthesis and vesicle trafficking in HUVECs.
Collapse
|
5
|
Ho WT, Chang JS, Chen TC, Wang JK, Chang SW, Yang MH, Jou TS, Wang IJ. Inhibition of Rho-associated protein kinase activity enhances oxidative phosphorylation to support corneal endothelial cell migration. FASEB J 2022; 36:e22397. [PMID: 35661268 DOI: 10.1096/fj.202101442rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 11/11/2022]
Abstract
Corneal endothelial cell (CEC) dysfunction causes corneal edema and severe visual impairment that require transplantation to restore vision. To address the unmet need of organ shortage, descemetorhexis without endothelial keratoplasty has been specifically employed to treat early stage Fuchs endothelial corneal dystrophy, which is pathophysiologically related to oxidative stress and exhibits centrally located corneal guttae. After stripping off central Descemet's membrane, rho-associated protein kinase (ROCK) inhibitor has been found to facilitate CEC migration, an energy-demanding task, thereby achieving wound closure. However, the correlation between ROCK inhibition and the change in bioenergetic status of CECs remained to be elucidated. Through transcriptomic profiling, we found that the inhibition of ROCK activity by the selective inhibitor, ripasudil or Y27632, promoted enrichment of oxidative phosphorylation (OXPHOS) gene set in bovine CECs (BCECs). Functional analysis revealed that ripasudil, a clinically approved anti-glaucoma agent, enhanced mitochondrial respiration, increased spare respiratory capacity, and induced overexpression of electron transport chain components through upregulation of AMP-activated protein kinase (AMPK) pathway. Accelerated BCEC migration and in vitro wound healing by ripasudil were diminished by OXPHOS and AMPK inhibition, but not by glycolysis inhibition. Correspondingly, lamellipodial protrusion and actin assembly that were augmented by ripasudil became reduced with additional OXPHOS or AMPK inhibition. These results indicate that ROCK inhibition induces metabolic reprogramming toward OXPHOS to support migration of CECs.
Collapse
Affiliation(s)
- Wei-Ting Ho
- Department of Ophthalmology, Far Eastern Memorial Hospital, New Taipei City, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Jung-Shen Chang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Tsan-Chi Chen
- Department of Ophthalmology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Jia-Kang Wang
- Department of Ophthalmology, Far Eastern Memorial Hospital, New Taipei City, Taiwan.,Department of Electrical Engineering, Yuan Ze University, Taoyuan, Taiwan
| | - Shu-Wen Chang
- Department of Ophthalmology, Far Eastern Memorial Hospital, New Taipei City, Taiwan.,College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Muh-Hwa Yang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.,Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tzuu-Shuh Jou
- College of Medicine, National Taiwan University, Taipei, Taiwan.,Center of Precision Medicine, College of Medicine, National Taiwan University, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - I-Jong Wang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan.,College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
6
|
Hatamie S, Shih PJ, Chen BW, Shih HJ, Wang IJ, Young TH, Yao DJ. Effects of Electromagnets on Bovine Corneal Endothelial Cells Treated with Dendrimer Functionalized Magnetic Nanoparticles. Polymers (Basel) 2021; 13:3306. [PMID: 34641122 PMCID: PMC8512180 DOI: 10.3390/polym13193306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/17/2022] Open
Abstract
To improve bovine corneal endothelial cell (BCEC) migration, enhance cell energy, and facilitate symmetric cell distribution in corneal surfaces, an electromagnet device was fabricated. Twenty nanometer superparamagnetic iron oxide nanoparticles (SPIONs) functionalized with fourth-generation dendrimer macromolecules were synthesized, and their size and structure were evaluated using transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FTIR). The results confirmed the configuration of the dendrimer on the SPION surfaces. In vitro biocompatibility was assessed using the 3-[4,5-dimethylthiazol-2yl]-2,5-diphenyl tetrazolium bromide assay. No significant toxicity was noted on BCECs within 24 h of incubation. In the cell migration assay, cells treated with dendrimer-coated SPIONs exhibited a relatively high wound healing rate under sample addition (1 μg/mL) under a magnetic field. Real-time PCR on BCECs treated with dendrimer-coated SPIONs revealed upregulation of specific genes, including AT1P1 and NCAM1, for BCECs-dendrimer-coated SPIONs under a magnetic field. The three-dimensional dispersion of BCECs containing dendrimer-coated SPIONs under a magnetic field was evaluated using COMSOL Multiphysics software. The results revealed the BCECs-SPION vortex pattern layers in the corneal surface corresponded to the electromagnet's displacement from the ocular surface. Magnetic resonance imaging (MRI) indicated that dendrimer-coated SPIONs can be used as a T2 contrast agent.
Collapse
Affiliation(s)
- Shadie Hatamie
- College of Medicine, National Taiwan University, Taipei 10048, Taiwan;
- Department of Biomedical Engineering, National Taiwan University, Taipei 10617, Taiwan;
| | - Po-Jen Shih
- Department of Biomedical Engineering, National Taiwan University, Taipei 10617, Taiwan;
| | - Bo-Wei Chen
- Institute of Nanoengineering and Microsystem, National Tsing Hua University, Hsinchu 30013, Taiwan; (B.-W.C.); (D.-J.Y.)
| | - Hua-Ju Shih
- Institute of Applied Mechanics, National Taiwan University, Taipei 10617, Taiwan;
| | - I-Jong Wang
- College of Medicine, National Taiwan University, Taipei 10048, Taiwan;
| | - Tai-Horng Young
- Department of Biomedical Engineering, National Taiwan University, Taipei 10617, Taiwan;
| | - Da-Jeng Yao
- Institute of Nanoengineering and Microsystem, National Tsing Hua University, Hsinchu 30013, Taiwan; (B.-W.C.); (D.-J.Y.)
| |
Collapse
|
7
|
Hatamie S, Shih PJ, Chen BW, Wang IJ, Young TH, Yao DJ. Synergic Effect of Novel WS 2 Carriers Holding Spherical Cobalt Ferrite @cubic Fe 3O 4 (WS 2/s-CoFe 2O 4@c-Fe 3O 4) Nanocomposites in Magnetic Resonance Imaging and Photothermal Therapy for Ocular Treatments and Investigation of Corneal Endothelial Cell Migration. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2555. [PMID: 33352770 PMCID: PMC7766809 DOI: 10.3390/nano10122555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/18/2022]
Abstract
The design of novel materials to use simultaneously in an ocular system for driven therapeutics and wound healing is still challenging. Here, we produced nanocomposites of tungsten disulfide carriers with spherical cobalt ferrite nanoparticles (NPs) as core inside a cubic iron oxide NPs shell (WS2/s-CoFe2O4@c-Fe3O4). Transmission electron microscopy (TEM) confirmed that 10 nm s-CoFe2O4@c-Fe3O4 NPs were attached on the WS2 sheet surfaces. The cytotoxicity of the WS2 sheets and nanocomposites were evaluated on bovine cornea endothelial cells (BCECs) using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay for a duration of three days. The MTT assay results showed low toxicity of the WS2 sheets on BCECs by 67% cell viability at 100 μg/mL in 24 h, while the nanocomposites show 50% cell viability in the same conditions. The magnetic resonance imaging (MRI) of nanocomposites revealed the excellent T2-weighted imaging with an r2 contrast of 108 mM-1 S-1. The in vitro photothermal therapy based on WS2 sheets and WS2/s-CoFe2O4 @c-Fe3O4 nanocomposites using 808 nm laser showed that the maximum thermal energy dispatched in medium at different applied power densities (1200 mw, 1800, 2200, 2600 mW) was for 0.1 mg/mL of the sample solution. The migration assay of BCECs showed that the wound healing was approximately 20% slower for the cell exposed by nanocomposites compared with the control (no exposed BCECs). We believe that WS2/s-CoFe2O4@c-Fe3O4 nanocomposites have a synergic effect as photothermal therapy agents for eye diseases and could be a target in an ocular system using MRI.
Collapse
Affiliation(s)
- Shadie Hatamie
- College of Medicine, National Taiwan University, Taipei 10048, Taiwan;
- Department of Biomedical Engineering, National Taiwan University, Taipei 10617, Taiwan;
| | - Po-Jen Shih
- Department of Biomedical Engineering, National Taiwan University, Taipei 10617, Taiwan;
| | - Bo-Wei Chen
- Institute of Nanoengineering and Microsystem, National Tsing Hua University, Hsinchu 30013, Taiwan; (B.-W.C.); (D.-J.Y.)
| | - I-Jong Wang
- College of Medicine, National Taiwan University, Taipei 10048, Taiwan;
| | - Tai-Horng Young
- Department of Biomedical Engineering, National Taiwan University, Taipei 10617, Taiwan;
| | - Da-Jeng Yao
- Institute of Nanoengineering and Microsystem, National Tsing Hua University, Hsinchu 30013, Taiwan; (B.-W.C.); (D.-J.Y.)
| |
Collapse
|