1
|
Zou J, Xu B, Luo P, Chen T, Duan H. Non-coding RNAs in bladder cancer, a bridge between gut microbiota and host? Front Immunol 2024; 15:1482765. [PMID: 39628486 PMCID: PMC11611751 DOI: 10.3389/fimmu.2024.1482765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/30/2024] [Indexed: 12/06/2024] Open
Abstract
In recent years, the role of gut microbiota (GM) in bladder cancer has attracted significant attention. Research indicates that GM not only contributes to bladder carcinogenesis but also influences the efficacy of adjuvant therapies for bladder cancer. Despite this, interventions targeting GM have not been widely employed in the prevention and treatment of bladder cancer, mainly due to the incomplete understanding of the complex interactions between the host and gut flora. Simultaneously, aberrantly expressed non-coding RNAs (ncRNAs) have been frequently associated with bladder cancer, playing crucial roles in processes such as cell proliferation, invasion, and drug resistance. It is widely known that the regulation of GM-mediated host pathophysiological processes is partly regulated through epigenetic pathways. At the same time, ncRNAs are increasingly regarded as GM signaling molecules involved in GM-mediated epigenetic regulation. Accordingly, this review analyzes the ncRNAs that are closely related to the GM in the context of bladder cancer occurrence and treatment, and summarizes the role of their interaction with the GM in bladder cancer-related phenotypes. The aim is to delineate a regulatory network between GM and ncRNAs and provide a new perspective for the study and prevention of bladder cancer.
Collapse
Affiliation(s)
- Jun Zou
- Department of Otorhinolaryngology, The Affiliated Fengcheng Hospital of Yichun University, Fengcheng, Jiangxi, China
| | - Baisheng Xu
- Department of Urology, The First People's Hospital of Xiushui, Jiujiang, Jiangxi, China
| | - Peiyue Luo
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Tao Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Huanglin Duan
- Department of Urology, The First People's Hospital of Xiushui, Jiujiang, Jiangxi, China
| |
Collapse
|
2
|
Monasterio G, Morales RA, Bejarano DA, Abalo XM, Fransson J, Larsson L, Schlitzer A, Lundeberg J, Das S, Villablanca EJ. A versatile tissue-rolling technique for spatial-omics analyses of the entire murine gastrointestinal tract. Nat Protoc 2024; 19:3085-3137. [PMID: 38906985 DOI: 10.1038/s41596-024-01001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 02/19/2024] [Indexed: 06/23/2024]
Abstract
Tissues are dynamic and complex biological systems composed of specialized cell types that interact with each other for proper biological function. To comprehensively characterize and understand the cell circuitry underlying biological processes within tissues, it is crucial to preserve their spatial information. Here we report a simple mounting technique to maximize the area of the tissue to be analyzed, encompassing the whole length of the murine gastrointestinal (GI) tract, from mouth to rectum. Using this method, analysis of the whole murine GI tract can be performed in a single slide not only by means of histological staining, immunohistochemistry and in situ hybridization but also by multiplexed antibody staining and spatial transcriptomic approaches. We demonstrate the utility of our method in generating a comprehensive gene and protein expression profile of the whole GI tract by combining the versatile tissue-rolling technique with a cutting-edge transcriptomics method (Visium) and two cutting-edge proteomics methods (ChipCytometry and CODEX-PhenoCycler) in a systematic and easy-to-follow step-by-step procedure. The entire process, including tissue rolling, processing and sectioning, can be achieved within 2-3 d for all three methods. For Visium spatial transcriptomics, an additional 2 d are needed, whereas for spatial proteomics assays (ChipCytometry and CODEX-PhenoCycler), another 3-4 d might be considered. The whole process can be accomplished by researchers with skills in performing murine surgery, and standard histological and molecular biology methods.
Collapse
Affiliation(s)
- Gustavo Monasterio
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institute and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Rodrigo A Morales
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institute and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - David A Bejarano
- Quantitative Systems Biology, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Xesús M Abalo
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Jennifer Fransson
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institute and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Ludvig Larsson
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Andreas Schlitzer
- Quantitative Systems Biology, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Joakim Lundeberg
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Srustidhar Das
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institute and University Hospital, Stockholm, Sweden.
- Center of Molecular Medicine, Stockholm, Sweden.
| | - Eduardo J Villablanca
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institute and University Hospital, Stockholm, Sweden.
- Center of Molecular Medicine, Stockholm, Sweden.
| |
Collapse
|
3
|
Kim H, Kim CY, Kim D, Kim E, Ma L, Park K, Liu Z, Huang KE, Wen W, Ko J, Lim SG, Sung Y, Ryoo ZY, Yi JK, Jang S, Kim MO. Protective Effects of Imatinib on a DSS-induced Colitis Model Through Regulation of Apoptosis and Inflammation. In Vivo 2024; 38:2310-2317. [PMID: 39187319 PMCID: PMC11363774 DOI: 10.21873/invivo.13696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND/AIM Inflammatory bowel disease (IBD) is characterized by dysregulated immune responses and a multifactorial etiology. While imatinib has demonstrated efficacy in the treatment of immune-related diseases, its potential effects in IBD treatment remain underexplored. MATERIALS AND METHODS This study aimed to investigate the therapeutic effects of imatinib in colitis treatment. A dextran sulfate sodium (DSS)-induced colitis model was used to mimic IBD in mice. Imatinib was administered orally to mice simultaneously with DSS treatment. The effects of imatinib on DSS-induced colitis were evaluated by analyzing colitis-related pathology, including the disease activity index (DAI), histological lesions, inflammatory markers, and tight junction integrity. Additionally, western blot analysis and quantitative real-time polymerase chain reaction were used to assess inflammatory markers, tight-junction proteins, and cell death. RESULTS In the DSS-induced colitis model, imatinib treatment exerted protective effects by attenuating weight loss, restoring colon length, reducing spleen weight, and improving the DAI score and histological lesions. Additionally, imatinib reduced the level of proinflammatory cytokines, including TNF-α, IL-6, and IL-1β. Furthermore, imatinib treatment restored tight-junction integrity and decreased the expression of apoptosis marker proteins. CONCLUSION Overall, imatinib treatment significantly alleviated the symptoms of DSS-induced colitis by influencing the expression of proinflammatory cytokines, tight junction proteins, and apoptotic markers in mice. These findings highlight imatinib as a potential therapeutic candidate for IBD.
Collapse
Affiliation(s)
- Hyeonjin Kim
- Department of Animal Science and Biotechnology, Research Institute for Innovative Animal Science, Kyungpook National University, Sangju, Republic of Korea
| | - Chae Yeon Kim
- Department of Animal Science and Biotechnology, Research Institute for Innovative Animal Science, Kyungpook National University, Sangju, Republic of Korea
| | - Dongwook Kim
- Department of Animal Science and Biotechnology, Research Institute for Innovative Animal Science, Kyungpook National University, Sangju, Republic of Korea
| | - Eungyung Kim
- Department of Animal Science and Biotechnology, Research Institute for Innovative Animal Science, Kyungpook National University, Sangju, Republic of Korea
| | - Lei Ma
- Department of Animal Science and Biotechnology, Research Institute for Innovative Animal Science, Kyungpook National University, Sangju, Republic of Korea
| | - Kanghyun Park
- Department of Animal Science and Biotechnology, Research Institute for Innovative Animal Science, Kyungpook National University, Sangju, Republic of Korea
| | - Zhibin Liu
- Department of Animal Science and Biotechnology, Research Institute for Innovative Animal Science, Kyungpook National University, Sangju, Republic of Korea
- Department of Dental Hygiene, Kyungpook National University, Sangju, Republic of Korea
| | - K E Huang
- Department of Animal Science and Biotechnology, Research Institute for Innovative Animal Science, Kyungpook National University, Sangju, Republic of Korea
- Department of Dental Hygiene, Kyungpook National University, Sangju, Republic of Korea
| | - Weihong Wen
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, P.R. China
| | - Jiwon Ko
- School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Su-Geun Lim
- School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Younghun Sung
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, Republic of Korea
| | - Zae Young Ryoo
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Jun Koo Yi
- School of Animal Life Convergence Science, Hankyong National University, Anseong, Republic of Korea
| | - Soyoung Jang
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea;
| | - Myoung Ok Kim
- Department of Animal Science and Biotechnology, Research Institute for Innovative Animal Science, Kyungpook National University, Sangju, Republic of Korea;
| |
Collapse
|
4
|
Hovhannisyan P, Stelzner K, Keicher M, Paprotka K, Neyazi M, Pauzuolis M, Ali WM, Rajeeve K, Bartfeld S, Rudel T. Infection of human organoids supports an intestinal niche for Chlamydia trachomatis. PLoS Pathog 2024; 20:e1012144. [PMID: 39172739 PMCID: PMC11340892 DOI: 10.1371/journal.ppat.1012144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/15/2024] [Indexed: 08/24/2024] Open
Abstract
Several reports suggest that intestinal tissue may be a natural niche for Chlamydia trachomatis infection and a reservoir for persistent infections in the human body. Due to the human specificity of the pathogen and the lack of suitable host models, there is limited knowledge on this topic. In our study, we modelled the course of the chlamydial infection in human primary gastrointestinal (GI) epithelial cells originating from patient-derived organoids. We show that GI cells are resistant to apical infection and C. trachomatis needs access to the basolateral membrane to establish an infection. Transmission electron microscopy analysis reveals the presence of both normal as well as aberrant chlamydial developmental forms in the infected cells, suggesting a possible cell-type specific nature of the infection. Furthermore, we show that the plasmid-encoded Pgp3 is an important virulence factor for the infection of human GI cells. This is the first report of C. trachomatis infection in human primary intestinal epithelial cells supporting a possible niche for chlamydial infection in the human intestinal tissue.
Collapse
Affiliation(s)
| | - Kathrin Stelzner
- Chair of Microbiology, University of Würzburg, Würzburg, Germany
| | - Markus Keicher
- Chair of Microbiology, University of Würzburg, Würzburg, Germany
| | - Kerstin Paprotka
- Chair of Microbiology, University of Würzburg, Würzburg, Germany
| | - Mastura Neyazi
- Research Centre for Infectious Diseases, Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Mindaugas Pauzuolis
- Research Centre for Infectious Diseases, Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | | | - Karthika Rajeeve
- Chair of Microbiology, University of Würzburg, Würzburg, Germany
- Infection Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
| | - Sina Bartfeld
- Research Centre for Infectious Diseases, Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
- Institute of Biotechnology, Technical University Berlin, Berlin, Germany
- Si-M/‘Der Simulierte Mensch’, Technische Universität Berlin and Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Rudel
- Chair of Microbiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
5
|
Ambrogi M, Vezina CM. Roles of airway and intestinal epithelia in responding to pathogens and maintaining tissue homeostasis. Front Cell Infect Microbiol 2024; 14:1346087. [PMID: 38736751 PMCID: PMC11082347 DOI: 10.3389/fcimb.2024.1346087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/10/2024] [Indexed: 05/14/2024] Open
Abstract
Epithelial cells form a resilient barrier and orchestrate defensive and reparative mechanisms to maintain tissue stability. This review focuses on gut and airway epithelia, which are positioned where the body interfaces with the outside world. We review the many signaling pathways and mechanisms by which epithelial cells at the interface respond to invading pathogens to mount an innate immune response and initiate adaptive immunity and communicate with other cells, including resident microbiota, to heal damaged tissue and maintain homeostasis. We compare and contrast how airway and gut epithelial cells detect pathogens, release antimicrobial effectors, collaborate with macrophages, Tregs and epithelial stem cells to mount an immune response and orchestrate tissue repair. We also describe advanced research models for studying epithelial communication and behaviors during inflammation, tissue injury and disease.
Collapse
Affiliation(s)
| | - Chad M. Vezina
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
6
|
Nguyen OTP, Misun PM, Hierlemann A, Lohasz C. A Versatile Intestine-on-Chip System for Deciphering the Immunopathogenesis of Inflammatory Bowel Disease. Adv Healthc Mater 2024; 13:e2302454. [PMID: 38253407 PMCID: PMC11468350 DOI: 10.1002/adhm.202302454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/21/2023] [Indexed: 01/24/2024]
Abstract
The multifactorial nature of inflammatory bowel disease (IBD) necessitates reliable and practical experimental models to elucidate its etiology and pathogenesis. To model the intestinal microenvironment at the onset of IBD in vitro, it is important to incorporate relevant cellular and noncellular components before inducing stepwise pathogenic developments. A novel intestine-on-chip system for investigating multiple aspects of IBD's immunopathogenesis is presented. The system includes an array of tight and polarized barrier models formed from intestinal epithelial cells on an in-vivo-like subepithelial matrix within one week. The dynamic remodeling of the subepithelial matrix by cells or their secretome demonstrates the physiological relevance of the on-chip barrier models. The system design enables introduction of various immune cell types and inflammatory stimuli at specific locations in the same barrier model, which facilitates investigations of the distinct roles of each cell type in intestinal inflammation development. It is showed that inflammatory behavior manifests in an upregulated expression of inflammatory markers and cytokines (TNF-α). The neutralizing effect of the anti-inflammatory antibody Infliximab on levels of TNF-α and its inducible cytokines could be explicitly shown. Overall, an innovative approach to systematically developing a microphysiological system to comprehend immune-system-mediated disorders of IBD and to identify new therapeutic strategies is presented.
Collapse
Affiliation(s)
- Oanh T. P. Nguyen
- Bio Engineering LaboratoryDepartment of Biosystems Science and EngineeringETH ZurichKlingelbergstrasse 48BaselCH‐4056Switzerland
| | - Patrick M. Misun
- Bio Engineering LaboratoryDepartment of Biosystems Science and EngineeringETH ZurichKlingelbergstrasse 48BaselCH‐4056Switzerland
| | - Andreas Hierlemann
- Bio Engineering LaboratoryDepartment of Biosystems Science and EngineeringETH ZurichKlingelbergstrasse 48BaselCH‐4056Switzerland
| | - Christian Lohasz
- Bio Engineering LaboratoryDepartment of Biosystems Science and EngineeringETH ZurichKlingelbergstrasse 48BaselCH‐4056Switzerland
| |
Collapse
|
7
|
Silva Lagos L, Klostermann CE, López-Velázquez G, Fernández-Lainez C, Leemhuis H, Oudhuis AACML, Buwalda P, Schols HA, de Vos P. Crystal type, chain length and polydispersity impact the resistant starch type 3 immunomodulatory capacity via Toll-like receptors. Carbohydr Polym 2024; 324:121490. [PMID: 37985084 DOI: 10.1016/j.carbpol.2023.121490] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 11/22/2023]
Abstract
Food ingredients that can activate and improve immunological defense, against e.g., pathogens, have become a major field of research. Resistant starches (RSs) can resist enzymes in the upper gastrointestinal (GI) tract and induce health benefits. RS-3 physicochemical characteristics such as chain length (DP), A- or B-type crystal, and polydispersity index (PI) might be crucial for immunomodulation by activating human toll-like receptors (hTLRs). We hypothesize that crystal type, DP and PI, alone or in combination, impact the recognition of RS-3 preparations by hTLRs leading to different RS-3 immunomodulatory effects. We studied the activation of hTLR2, hTLR4, and hTLR5 by 0.5, 1 and 2 mg/mL of RS-3. We found strong activation of hTLR2-dependent NF-kB activation with PI <1.25, DP 18 as an A- or B-type crystal. At different doses, NF-kB activation was increased from 6.8 to 7.1 and 10-fold with A-type and 6.2 to 10.2 and 14.4-fold with B-type. This also resulted in higher cytokine production in monocytes. Molecular docking, using amylose-A and B, demonstrated that B-crystals bind hTLR2 promoting hTLR2-1 dimerization, supporting the stronger effects of B-type crystals. Immunomodulatory effects of RS-3 are predominantly hTLR2-dependent, and activation can be tailored by managing crystallinity, chain length, and PI.
Collapse
Affiliation(s)
- Luis Silva Lagos
- Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, the Netherlands.
| | - Cynthia E Klostermann
- Biobased Chemistry and Technology, Wageningen University & Research, Wageningen, the Netherlands
| | - Gabriel López-Velázquez
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Cuidad de México, Mexico
| | - Cynthia Fernández-Lainez
- Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, the Netherlands; Laboratorio de Errores innatos del Metabolismo y Tamiz, Instituto Nacional de Pediatría, Ciudad de México, Mexico
| | - Hans Leemhuis
- Innovation Center, Royal Avebe, Groningen, the Netherlands
| | | | - Piet Buwalda
- Biobased Chemistry and Technology, Wageningen University & Research, Wageningen, the Netherlands; Innovation Center, Royal Avebe, Groningen, the Netherlands
| | - Henk A Schols
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, the Netherlands
| | - Paul de Vos
- Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
8
|
Bernard-Raichon L, Cadwell K. Immunomodulation by Enteric Viruses. Annu Rev Virol 2023; 10:477-502. [PMID: 37380186 DOI: 10.1146/annurev-virology-111821-112317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Enteric viruses display intricate adaptations to the host mucosal immune system to successfully reproduce in the gastrointestinal tract and cause maladies ranging from gastroenteritis to life-threatening disease upon extraintestinal dissemination. However, many viral infections are asymptomatic, and their presence in the gut is associated with an altered immune landscape that can be beneficial or adverse in certain contexts. Genetic variation in the host and environmental factors including the bacterial microbiota influence how the immune system responds to infections in a remarkably viral strain-specific manner. This immune response, in turn, determines whether a given virus establishes acute versus chronic infection, which may have long-lasting consequences such as susceptibility to inflammatory disease. In this review, we summarize our current understanding of the mechanisms involved in the interaction between enteric viruses and the immune system that underlie the impact of these ubiquitous infectious agents on our health.
Collapse
Affiliation(s)
- Lucie Bernard-Raichon
- Cell Biology Department, New York University Grossman School of Medicine, New York, NY, USA
| | - Ken Cadwell
- Division of Gastroenterology and Hepatology, Department of Medicine; Department of Systems Pharmacology and Translational Therapeutics; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA;
| |
Collapse
|
9
|
Rutherford D, Ho GT. Therapeutic Potential of Human Intestinal Organoids in Tissue Repair Approaches in Inflammatory Bowel Diseases. Inflamm Bowel Dis 2023; 29:1488-1498. [PMID: 37094358 PMCID: PMC10472753 DOI: 10.1093/ibd/izad044] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Indexed: 04/26/2023]
Abstract
Inflammatory bowel diseases (IBDs) are chronic immune-mediated conditions characterized by significant gut tissue damage due to uncontrolled inflammation. Anti-inflammatory treatments have improved, but there are no current prorepair approaches. Organoids have developed into a powerful experimental platform to study mechanisms of human diseases. Here, we specifically focus on its role as a direct tissue repair modality in IBD. We discuss the scientific rationale for this, recent parallel advances in scientific technologies (CRISPR [clustered regularly interspaced short palindromic repeats]/Cas9 and metabolic programming), and in addition, the clinical IBD context in which this therapeutic approach is tractable. Finally, we review the translational roadmap for the application of organoids and the need for this as a novel direction in IBD.
Collapse
Affiliation(s)
- Duncan Rutherford
- Gut Research Unit, Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Gwo-Tzer Ho
- Gut Research Unit, Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
10
|
Innate immune activation and modulatory factors of Helicobacter pylori towards phagocytic and nonphagocytic cells. Curr Opin Immunol 2023; 82:102301. [PMID: 36933362 DOI: 10.1016/j.coi.2023.102301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/17/2023] [Indexed: 03/18/2023]
Abstract
Helicobacter pylori is an intriguing obligate host-associated human pathogen with a specific host interaction biology, which has been shaped by thousands of years of host-pathogen coevolution. Molecular mechanisms of interaction of H. pylori with the local immune cells in the human system are less well defined than epithelial cell interactions, although various myeloid cells, including neutrophils and other phagocytes, are locally present or attracted to the sites of infection and interact with H. pylori. We have recently addressed the question of novel bacterial innate immune stimuli, including bacterial cell envelope metabolites, that can activate and modulate cell responses via the H. pylori Cag type IV secretion system. This review article gives an overview of what is currently known about the interaction modes and mechanisms of H. pylori with diverse human cell types, with a focus on bacterial metabolites and cells of the myeloid lineage including phagocytic and antigen-presenting cells.
Collapse
|
11
|
Idowu S, Bertrand PP, Walduck AK. Gastric organoids: Advancing the study of H. pylori pathogenesis and inflammation. Helicobacter 2022; 27:e12891. [PMID: 35384141 PMCID: PMC9287064 DOI: 10.1111/hel.12891] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/14/2022] [Accepted: 03/20/2022] [Indexed: 12/13/2022]
Abstract
For decades, traditional in vitro and in vivo models used for the study of Helicobacter pylori infection have relied heavily on the use of gastric cancer cell lines and rodents. Major challenges faced by these methods have been the inability to study cancer initiation in already cancerous cell lines, and the difficulty in translating results obtained in animal models due to genetic differences. These challenges have prevented a thorough understanding of the pathogenesis of disease and slowed the development of cancer therapies and a suitable vaccine against the pathogen. In recent years, the development of gastric organoids has provided great advantages over the traditional in vivo and in vitro models due to their similarities to the human stomach in vivo, their ease of use, and the capacity for long-term culture. This review discusses the advantages and limitations of existing in vivo and in vitro models of H. pylori infection, and how gastric organoids have been applied to study H. pylori pathogenesis, with a focus on how the pathogen interacts with the gastric epithelium, inflammatory processes, epithelial repair, and cancer initiation. The potential applications of organoids to address more complex questions on the role of hormones, vaccine-induced immunity are also discussed.
Collapse
|
12
|
Choi H, Lee D, Mook-Jung I. Gut Microbiota as a Hidden Player in the Pathogenesis of Alzheimer's Disease. J Alzheimers Dis 2022; 86:1501-1526. [PMID: 35213369 DOI: 10.3233/jad-215235] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD), the most common neurodegenerative disorder, is accompanied by cognitive impairment and shows representative pathological features, including senile plaques and neurofibrillary tangles in the brain. Recent evidence suggests that several systemic changes outside the brain are associated with AD and may contribute to its pathogenesis. Among the factors that induce systemic changes in AD, the gut microbiota is increasingly drawing attention. Modulation of gut microbiome, along with continuous attempts to remove pathogenic proteins directly from the brain, is a viable strategy to cure AD. Seeking a holistic understanding of the pathways throughout the body that can affect the pathogenesis, rather than regarding AD solely as a brain disease, may be key to successful therapy. In this review, we focus on the role of the gut microbiota in causing systemic manifestations of AD. The review integrates recently emerging concepts and provides potential mechanisms about the involvement of the gut-brain axis in AD, ranging from gut permeability and inflammation to bacterial translocation and cross-seeding.
Collapse
Affiliation(s)
- Hyunjung Choi
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea.,SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Dongjoon Lee
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea.,SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Inhee Mook-Jung
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea.,Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea.,SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
13
|
Martins Garcia T, van Roest M, Vermeulen JLM, Meisner S, Koster J, Wildenberg ME, van Elburg RM, Muncan V, Renes IB. Altered Gut Structure and Anti-Bacterial Defense in Adult Mice Treated with Antibiotics during Early Life. Antibiotics (Basel) 2022; 11:antibiotics11020267. [PMID: 35203869 PMCID: PMC8868095 DOI: 10.3390/antibiotics11020267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/05/2022] [Accepted: 02/16/2022] [Indexed: 02/04/2023] Open
Abstract
The association between prolonged antibiotic (AB) use in neonates and increased incidence of later life diseases is not yet fully understood. AB treatment in early life alters intestinal epithelial cell composition, functioning, and maturation, which could be the basis for later life health effects. Here, we investigated whether AB-induced changes in the neonatal gut persisted up to adulthood and whether early life AB had additional long-term consequences for gut functioning. Mice received AB orally from postnatal day 10 to 20. Intestinal morphology, permeability, and gene and protein expression at 8 weeks were analyzed. Our data showed that the majority of the early life AB-induced gut effects did not persist into adulthood, yet early life AB did impact later life gut functioning. Specifically, the proximal small intestine (SI) of adult mice treated with AB in early life was characterized by hyperproliferative crypts, increased number of Paneth cells, and alterations in enteroendocrine cell-specific gene expression profiles. The distal SI of adult mice displayed a reduced expression of antibacterial defense markers. Together, our results suggest that early life AB leads to structural and physiological changes in the adult gut, which may contribute to disease development when homeostatic conditions are under challenge.
Collapse
Affiliation(s)
- Tânia Martins Garcia
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam UMC, AGEM, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (T.M.G.); (M.v.R.); (J.L.M.V.); (S.M.); (M.E.W.)
| | - Manon van Roest
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam UMC, AGEM, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (T.M.G.); (M.v.R.); (J.L.M.V.); (S.M.); (M.E.W.)
| | - Jacqueline L. M. Vermeulen
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam UMC, AGEM, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (T.M.G.); (M.v.R.); (J.L.M.V.); (S.M.); (M.E.W.)
| | - Sander Meisner
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam UMC, AGEM, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (T.M.G.); (M.v.R.); (J.L.M.V.); (S.M.); (M.E.W.)
| | - Jan Koster
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Cancer Center Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Manon E. Wildenberg
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam UMC, AGEM, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (T.M.G.); (M.v.R.); (J.L.M.V.); (S.M.); (M.E.W.)
| | - Ruurd M. van Elburg
- Department of Pediatrics, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (R.M.v.E.); (I.B.R.)
| | - Vanesa Muncan
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam UMC, AGEM, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (T.M.G.); (M.v.R.); (J.L.M.V.); (S.M.); (M.E.W.)
- Correspondence:
| | - Ingrid B. Renes
- Department of Pediatrics, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (R.M.v.E.); (I.B.R.)
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
14
|
Wuputra K, Ku CC, Kato K, Wu DC, Saito S, Yokoyama KK. Translational models of 3-D organoids and cancer stem cells in gastric cancer research. Stem Cell Res Ther 2021; 12:492. [PMID: 34488885 PMCID: PMC8420044 DOI: 10.1186/s13287-021-02521-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/18/2021] [Indexed: 12/11/2022] Open
Abstract
It is postulated as a general concept of cancer stem cells (CSCs) that they can produce cancer cells overtly and repopulate cancer progenitor cells indefinitely. The CSC niche is part of a specialized cancer microenvironment that is important to keep the phenotypes of CSCs. Stem cell- and induced pluripotent stem cell (iPSC)-derived organoids with genetic manipulation are beneficial to the investigation of the regulation of the microenvironment of CSCs. It would be useful to assess the efficiency of the cancer microenvironment on initiation and progression of cancers. To identify CSCs in cancer tissues, normal cell organoids and gastric cancer organoids from the cancerous areas, as well as iPSCs, were established several years ago. However, many questions remain about the extent to which these cultures recapitulate the development of the gastrointestinal tract and the mechanism of Helicobacter pylori-induced cancer progression. To clarify the fidelity of human organoid models, we have noted several key issues for the cultivation of, and differences between, normal and cancerous organoids. We developed precise culture conditions for gastric organoids in vitro to improve the accuracy of the generation of organoid models for therapeutic and medical applications. In addition, the current knowledge on gastrointestinal CSC research, including the topic of CSC markers, cancer cell reprogramming, and application to target cancer cell plasticity through niches, should be reinforced. We discuss the progression of cancers derived from human gastric organoids and the identification of CSCs.
Collapse
Affiliation(s)
- Kenly Wuputra
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan
| | - Chia-Chen Ku
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan
| | - Kohsuke Kato
- Department of Infection Biology, Graduate School of Comprehensive Human Sciences, The University of Tsukuba, Tsukuba, 305-8577, Japan
| | - Deng-Chyang Wu
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan.,Department of Gastroenterology, Department of Internal Medicines, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan
| | - Shigeo Saito
- Waseda Research Institute of Science and Engineering, Waseda University, Tokyo, 169-0051, Japan. .,Saito Laboratory of Cell Technology, Yaita, Tochigi, 329-1571, Japan.
| | - Kazunari K Yokoyama
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan. .,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan. .,Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan. .,Waseda Research Institute of Science and Engineering, Waseda University, Tokyo, 169-0051, Japan.
| |
Collapse
|
15
|
Koo BK, Bartfeld S, Alev C. Organoids: ready for the revolution? J Mol Med (Berl) 2021; 99:441-442. [PMID: 33782721 DOI: 10.1007/s00109-021-02063-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 10/21/2022]
Affiliation(s)
- Bon-Kyoung Koo
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria.
| | - Sina Bartfeld
- Research Centre for Infectious Diseases, Institute for Molecular Infection Biology, Julius Maximilian University of Wuerzburg, Wuerzburg, Germany.
| | - Cantas Alev
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.
| |
Collapse
|