1
|
Ayala-Berdon J, Medina-Bello KI. Torpor energetics are related to the interaction between body mass and climate in bats of the family Vespertilionidae. J Exp Biol 2024; 227:jeb246824. [PMID: 39206564 DOI: 10.1242/jeb.246824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Torpor is an adaptive strategy allowing heterothermic animals to cope with energy limitations. In birds and mammals, intrinsic and extrinsic factors, such as body mass and ambient temperature, are the main variables influencing torpor use. A theoretical model of the relationship between metabolic rate during torpor and ambient temperature has been proposed. Nevertheless, no empirical attempts have been made to assess the model predictions under different climates. Using open-flow respirometry, we evaluated the ambient temperature at which bats entered torpor and when torpid metabolic rate reached its minimum, the reduction in metabolic rate below basal values, and minimum torpid metabolic rate in 11 bat species of the family Vespertilionidae with different body mass from warm and cold climates. We included data on the minimum torpid metabolic rate of five species we retrieved from the literature. We tested the effects using mixed-effect phylogenetic models. All models showed a significant interaction between body mass and climate. Smaller bats went into torpor and reached minimum torpid metabolic rates at warmer temperatures, showed a higher reduction in the metabolic rate below basal values, and presented lower torpid metabolic rates than larger ones. The slopes of the models were different for bats from different climates. These results are likely explained by differences in body mass and the metabolic rate of bats, which may favor larger bats expressing torpor in colder sites and smaller bats in the warmer ones. Further studies to assess torpor use in bats from different climates are proposed.
Collapse
Affiliation(s)
- Jorge Ayala-Berdon
- CONAHCYT, Universidad Autónoma de Tlaxcala, Carretera Tlaxcala-Puebla Km. 1.5, C.P. 90062, Tlaxcala de Xicohténcatl, Tlaxcala, México
| | - Kevin I Medina-Bello
- Posgrado en Ciencias Biológicas, Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Carretera Tlaxcala-Puebla Km. 1.5, C.P. 90062, Tlaxcala de Xicohténcatl, Tlaxcala, México
| |
Collapse
|
2
|
Nowack J, Stawski C, Geiser F, Levesque DL. Rare and Opportunistic Use of Torpor in Mammals-An Echo from the Past? Integr Comp Biol 2023; 63:1049-1059. [PMID: 37328423 PMCID: PMC10714912 DOI: 10.1093/icb/icad067] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/18/2023] Open
Abstract
Torpor was traditionally seen as a winter survival mechanism employed by animals living in cold and highly seasonal habitats. Although we now know that torpor is also used by tropical and subtropical species, and in response to a variety of triggers, torpor is still largely viewed as a highly controlled, seasonal mechanism shown by Northern hemisphere species. To scrutinize this view, we report data from a macroanalysis in which we characterized the type and seasonality of torpor use from mammal species currently known to use torpor. Our findings suggest that predictable, seasonal torpor patterns reported for Northern temperate and polar species are highly derived forms of torpor expression, whereas the more opportunistic and variable forms of torpor that we see in tropical and subtropical species are likely closer to the patterns expressed by ancestral mammals. Our data emphasize that the torpor patterns observed in the tropics and subtropics should be considered the norm and not the exception.
Collapse
Affiliation(s)
- Julia Nowack
- School of Biological and Environmental Sciences, Liverpool John Moores University, L3 3AF Liverpool, UK
| | - Clare Stawski
- School of Science, Technology and Engineering, University of the Sunshine Coast (USC), Maroochydore DC, QLD 4558, Australia
| | - Fritz Geiser
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW 2351, Australia
| | | |
Collapse
|
3
|
Wacker CB, Geiser F. The Rate of Cooling during Torpor Entry Drives Torpor Patterns in a Small Marsupial. Physiol Biochem Zool 2023; 96:393-404. [PMID: 38237188 DOI: 10.1086/727975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
AbstractTo maximize energy savings, entry into torpor should involve a fast reduction of metabolic rate and body temperature (Tb); that is, animals should thermoconform. However, animals often defend against the decrease in Tb via a temporary increase in thermoregulatory heat production, slowing the cooling process. We investigated how thermoregulating or thermoconforming during torpor entry affects temporal and thermoenergetic aspects in relation to body mass and age in juvenile and adult fat-tailed dunnarts (Sminthopsis crassicaudata; Marsupialia: Dasyuridae). During torpor entry, juvenile thermoconformers cooled twice as fast as and used less energy during cooling than juvenile thermoregulators. While both juvenile and adult thermoconformers had a lower minimum Tb, a lower torpor metabolic rate, and longer torpor bouts than thermoregulators, these differences were more pronounced in the juveniles. Rewarming from torpor took approximately twice as long for juvenile thermoconformers, and the costs of rewarming were greater. To determine the difference in average daily metabolic rate between thermoconformers and thermoregulators independent of body mass, we compared juveniles of a similar size (∼13 g) and similarly sized adults (∼17 g). The average daily metabolic rate was 7% (juveniles) and 17% (adults) less in thermoconformers than in thermoregulators, even though thermoconformers were active for longer. Our data suggest that thermoconforming during torpor entry provides an energetic advantage for both juvenile and adult dunnarts and may aid growth for juveniles. While thermoregulation during torpor entry is more costly, it still saves energy, and the higher Tb permits greater alertness and mobility and reduces the energetic cost of endogenous rewarming.
Collapse
|
4
|
Jannetti MG, Tachinardi P, Valentinuzzi VS, Oda GA. Temporal Dissociation Between Activity and Body Temperature Rhythms of a Subterranean Rodent ( Ctenomys famosus) in Field Enclosures. J Biol Rhythms 2023:7487304231154715. [PMID: 36924450 DOI: 10.1177/07487304231154715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Several wild rodents, such as the subterranean tuco-tucos (Ctenomys famosus), switch their time of activity from diurnal to nocturnal when they are transferred from field to the laboratory. Nevertheless, in most studies, different methods to measure activity in each of these conditions were used, which raised the question of whether the detected change in activity timing could be an artifact. Because locomotor activity and body temperature (Tb) rhythms in rodents are tightly synchronized and because abdominal Tb loggers can provide continuous measurements across field and laboratory, we monitored Tb as a proxy of activity in tuco-tucos transferred from a semi-field enclosure to constant lab conditions. In the first stage of this study ("Tb-only group," 2012-2016), we verified high incidence (55%, n = 20) of arrhythmicity, with no consistent diurnal Tb rhythms in tuco-tucos maintained under semi-field conditions. Because these results were discrepant from subsequent findings using miniature accelerometers (portable activity loggers), which showed diurnal activity patterns in natural conditions (n = 10, "Activity-only group," 2016-2017), we also investigated, in the present study, whether the tight association between activity and Tb would be sustained outside the lab. To verify this, we measured activity and Tb simultaneously across laboratory and semi-field deploying both accelerometers and Tb loggers to each animal. These measurements (n = 11, "Tb + activity group," 2019-2022) confirmed diurnality of locomotor activity and revealed an unexpected loosening of the temporal association between Tb and activity rhythms in the field enclosures, which is otherwise robustly tight in the laboratory.
Collapse
Affiliation(s)
- Milene G Jannetti
- Laboratorio de Cronobiologia Binacional Argentina-Brasil, Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Patricia Tachinardi
- Laboratorio de Cronobiologia Binacional Argentina-Brasil, Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Veronica S Valentinuzzi
- Laboratorio de Cronobiologia Binacional Argentina-Brasil, Centro Regional de Investigaciones Cientificas y de Transferencia Tecnológica (CRILAR), Anillaco, Argentina
| | - Gisele A Oda
- Laboratorio de Cronobiologia Binacional Argentina-Brasil, Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Nowack J, Turbill C. Survivable hypothermia or torpor in a wild-living rat: rare insights broaden our understanding of endothermic physiology. J Comp Physiol B 2021; 192:183-192. [PMID: 34668054 PMCID: PMC8817056 DOI: 10.1007/s00360-021-01416-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/08/2021] [Accepted: 10/03/2021] [Indexed: 12/16/2022]
Abstract
Maintaining a high and stable body temperature as observed in endothermic mammals and birds is energetically costly. Thus, it is not surprising that we discover more and more heterothermic species that can reduce their energetic needs during energetic bottlenecks through the use of torpor. However, not all heterothermic animals use torpor on a regular basis. Torpor may also be important to an individual’s probability of survival, and hence fitness, when used infrequently. We here report the observation of a single, ~ 5.5 h long hypothermic bout with a decrease in body temperature by 12 °C in the native Australian bush rat (Rattus fuscipes). Our data suggest that bush rats are able to rewarm from a body temperature of 24 °C, albeit with a rewarming rate lower than that expected on the basis of their body mass. Heterothermy, i.e. the ability to withstand and overcome periods of reduced body temperature, is assumed to be an evolutionarily ancestral (plesiomorphic) trait. We thus argue that such rare hypothermic events in species that otherwise appear to be strictly homeothermic could be heterothermic rudiments, i.e. a less derived form of torpor with limited capacity for rewarming. Importantly, observations of rare and extreme thermoregulatory responses by wild animals are more likely to be discovered with long-term data sets and may not only provide valuable insight about the physiological capability of a population, but can also help us to understand the constraints and evolutionary pathways of different phenologies.
Collapse
Affiliation(s)
- Julia Nowack
- Hawkesbury Institute for the Environment and School of Science, Western Sydney University, Richmond, NSW, Australia. .,School of Biological and Environmental Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK.
| | - Christopher Turbill
- Hawkesbury Institute for the Environment and School of Science, Western Sydney University, Richmond, NSW, Australia
| |
Collapse
|
6
|
McDonald PJ, Jobson P, Köhler F, Nano CEM, Oliver PM. The living heart: Climate gradients predict desert mountain endemism. Ecol Evol 2021; 11:4366-4378. [PMID: 33976816 PMCID: PMC8093673 DOI: 10.1002/ece3.7333] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/27/2021] [Accepted: 01/31/2021] [Indexed: 11/16/2022] Open
Abstract
Mountain regions are centers of biodiversity endemism at a global scale but the role of arid-zone mountain ranges in shaping biodiversity patterns is poorly understood. Focusing on three guilds of taxa from a desert upland refugium in Australia, we sought to determine: (a) the relative extent to which climate, terrain or geological substrate predict endemism, and (b) whether patterns of endemism are complimentary across broad taxonomic guilds. We mapped regional endemism for plants, land snails, and vertebrates using combined Species Distribution Models (SDMs) for all endemic taxa (n = 82). We then modelled predictors of endemism using Generalised Additive Models (GAMs) and geology, terrain, and climate variables. We tested for the presence of inter- and intraguild hotspots of endemism. Many individual plant and land snail taxa were tightly linked with geology, corresponding to small distributions. Conversely, most vertebrate taxa were not constrained to specific geological substrates and occurred over larger areas. However, across all three guilds climate was the strongest predictor of regional endemism, particularly for plants wherein discrete hotspots of endemism were buffered from extreme summer temperatures. Land snail and vertebrate endemism peaked in areas with highest precipitation in the driest times of the year. Hotspots of endemism within each guild poorly predicted endemism in other guilds. We found an overarching signal that climatic gradients play a dominant role in the persistence of endemic taxa in an arid-zone mountain range system. An association with higher rainfall and cooler temperatures indicates that continuing trends toward hotter and drier climates may lead to range contractions in this, and potentially other, arid-zone mountain biotas. Contrasting patterns of endemism across guilds highlight the need to couple comprehensive regional planning for the protection of climate refugia, with targeted management of more localized and habitat specialist taxa.
Collapse
Affiliation(s)
| | - Peter Jobson
- Department of Environment and Natural ResourcesNorthern Territory HerbariumAlice SpringsNTAustralia
| | | | | | - Paul M. Oliver
- Environmental Futures Research Institute and School of Environment and ScienceGriffith UniversityNathanQldAustralia
- Biodiversity and Geosciences ProgramQueensland MuseumSouth BrisbaneQldAustralia
| |
Collapse
|
7
|
Riley J, Turpin JM, Zeale MRK, Jayatilaka B, Jones G. Diurnal sheltering preferences and associated conservation management for the endangered sandhill dunnart, Sminthopsis psammophila. J Mammal 2021; 102:588-602. [PMID: 34220372 PMCID: PMC8245887 DOI: 10.1093/jmammal/gyab024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 02/12/2021] [Indexed: 01/18/2023] Open
Abstract
Dasyurids are small mammals that can conserve energy and water by using shelters that insulate against extreme conditions, prevent predation, and facilitate torpor. To quantify the diurnal sheltering requirements of a poorly known, endangered dasyurid, the sandhill dunnart, Sminthopsis psammophila, we radiotracked 40 individuals in the Western Australian Great Victoria Desert between 2015 and 2019. We assessed the effect of habitat class (broad habitat features), plot-level (the area surrounding each shelter), and shelter characteristics (e.g., daily temperature ranges), on shelter selection and sheltering habitat preferences. Two hundred and eleven diurnal shelters (mean of 5 ± 3 shelters per individual) were located on 363 shelter days (the number of days each shelter was used), within mature vegetation (mean seral age of 32 ± 12 years postfire). Burrows were used on 77% of shelter days and were typically concealed under mature spinifex, Triodia spp., with stable temperature ranges and northern aspects facing the sun. While many burrows were reused (n = 40 across 175 shelter days), spinifex hummock shelters typically were used for one shelter day and were not insulative against extreme temperatures. However, shallow scrapes within Lepidobolus deserti hummock shelters had thermal advantages and log shelters retained heat and were selected on cooler days. Sminthopsis psammophila requires long-unburned sheltering habitat with mature vegetation. Summer fires in the Great Victoria Desert can be extensive and destroy large areas of land, rendering them a key threat to the species. We conclude that the survey and conservation of S. psammophila requires attention to long-unburned, dense lower stratum swale, sand plain, and dune slope habitats, and the tendency of S. psammophila to burrow allows the species to survive within the extreme conditions of its desert environment.
Collapse
Affiliation(s)
- Joanna Riley
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Jeff M Turpin
- School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| | - Matt R K Zeale
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | | | - Gareth Jones
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
8
|
Craig MC, Silva LO, Swoap SJ. Behavioral thermoregulation in the fasted C57BL/6 mouse. J Therm Biol 2021; 96:102821. [PMID: 33627261 DOI: 10.1016/j.jtherbio.2020.102821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/20/2020] [Accepted: 12/18/2020] [Indexed: 11/15/2022]
Abstract
Under relatively cool ambient temperatures and a caloric deficit, mice will undergo daily torpor - a short-term regulated reduction in metabolic rate with a concomitant drop in body temperature. Mice can alternatively achieve metabolic savings by utilizing behavioral changes, such as seeking a warmer environment. However, there is a lack of knowledge about the behavioral interaction between torpor utilization and thermotaxis. That is, if a fasted mouse is faced with a choice between a warm environment not conducive for torpor, and a cool environment that will induce torpor, which scenario will the fasting mouse choose? Here, the temperature preferences of fasted mice were studied using a temperature gradient device that allows a mouse to freely move along a gradient of temperatures. C57BL/6 mice were implanted with temperature telemeters that recorded location, core temperature (Tb), and activity concurrently over a 23-h period in the thermal gradient. When the gradient was on, mice preferred the warm end of the gradient when fed (71 ± 4% of the time) and even more so when fasted (84 ± 2%). When the gradient was on, the fasted minimum Tb was significantly higher (34.4 ± 0.3 °C) than when the gradient was off (27.7 ± 1.6 °C). Further, fasted mice lost significantly more weight when the gradient was off despite maintenance of a metabolically favorable lower minimum Tb in this condition. These results indicate that fasted mice not only prefer warm ambient temperatures when given the choice, but that it is also the pathway with more favorable metabolic outcomes in a period of reduced caloric intake.
Collapse
|
9
|
Dausmann KH, Levesque DL, Wein J, Nowack J. Ambient Temperature Cycles Affect Daily Torpor and Hibernation Patterns in Malagasy Tenrecs. Front Physiol 2020; 11:522. [PMID: 32547412 PMCID: PMC7270353 DOI: 10.3389/fphys.2020.00522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/28/2020] [Indexed: 11/30/2022] Open
Abstract
Hibernation and daily torpor (heterothermy) allow endotherms to cope with demanding environmental conditions. The depth and duration of torpor bouts vary considerably between tropical and temperate climates, and tropical hibernators manage to cope with a wider spectrum of ambient temperature (Ta) regimes during heterothermy. As cycles in Ta can have profound effects on activity and torpor patterns as well as energy expenditure, we examined how these characteristics are affected by daily fluctuating versus constant Ta in a tropical hibernator, the lesser hedgehog tenrec (Echinops telfairi). Throughout the study, regardless of season, the tenrecs became torpid every day. In summer, E. telfairi used daily fluctuations in Ta to passively rewarm from daily torpor, which led to synchrony in the activity phases and torpor bouts between individuals and generally decreased energy expenditure. In contrast, animals housed at constant Ta showed considerable variation in timing and they had to invest more energy through endogenous heat production. During the hibernation season (winter) E. telfairi hibernated for several months in constant, as well as in fluctuating Ta and, as in summer, under fluctuating Ta arousals were much more uniform and showed less variation in timing compared to constant temperature regimes. The timing of torpor is not only important for its effective use, but synchronization of activity patterns could also be essential for social interactions, and successful foraging bouts. Our results highlight that Ta cycles can be an effective zeitgeber for activity and thermoregulatory rhythms throughout the year and that consideration should be given to the choice of temperature regime when studying heterothermy under laboratory conditions.
Collapse
Affiliation(s)
- Kathrin H Dausmann
- Functional Ecology, Institute of Zoology, University of Hamburg, Hamburg, Germany
| | - Danielle L Levesque
- School of Biology and Ecology, University of Maine, Orono, ME, United States
| | - Jens Wein
- Functional Ecology, Institute of Zoology, University of Hamburg, Hamburg, Germany
| | - Julia Nowack
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
10
|
Geiser F. Seasonal Expression of Avian and Mammalian Daily Torpor and Hibernation: Not a Simple Summer-Winter Affair †. Front Physiol 2020; 11:436. [PMID: 32508673 PMCID: PMC7251182 DOI: 10.3389/fphys.2020.00436] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/08/2020] [Indexed: 12/17/2022] Open
Abstract
Daily torpor and hibernation (multiday torpor) are the most efficient means for energy conservation in endothermic birds and mammals and are used by many small species to deal with a number of challenges. These include seasonal adverse environmental conditions and low food/water availability, periods of high energetic demands, but also reduced foraging options because of high predation pressure. Because such challenges differ among regions, habitats and food consumed by animals, the seasonal expression of torpor also varies, but the seasonality of torpor is often not as clear-cut as is commonly assumed and differs between hibernators and daily heterotherms expressing daily torpor exclusively. Hibernation is found in mammals from all three subclasses from the arctic to the tropics, but is known for only one bird. Several hibernators can hibernate for an entire year or express torpor throughout the year (8% of species) and more hibernate from late summer to spring (14%). The most typical hibernation season is the cold season from fall to spring (48%), whereas hibernation is rarely restricted to winter (6%). In hibernators, torpor expression changes significantly with season, with strong seasonality mainly found in the sciurid and cricetid rodents, but seasonality is less pronounced in the marsupials, bats and dormice. Daily torpor is diverse in both mammals and birds, typically is not as seasonal as hibernation and torpor expression does not change significantly with season. Torpor in spring/summer has several selective advantages including: energy and water conservation, facilitation of reproduction or growth during development with limited resources, or minimisation of foraging and thus exposure to predators. When torpor is expressed in spring/summer it is usually not as deep and long as in winter, because of higher ambient temperatures, but also due to seasonal functional plasticity. Unlike many other species, subtropical nectarivorous blossom-bats and desert spiny mice use more frequent and pronounced torpor in summer than in winter, which is related to seasonal availability of nectar or water. Thus, seasonal use of torpor is complex and differs among species and habitats.
Collapse
Affiliation(s)
- Fritz Geiser
- Centre for Behavioural and Physiological Ecology, Zoology CO2, University of New England, Armidale, NSW, Australia
| |
Collapse
|
11
|
Nowack J, Levesque DL, Reher S, Dausmann KH. Variable Climates Lead to Varying Phenotypes: “Weird” Mammalian Torpor and Lessons From Non-Holarctic Species. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00060] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
12
|
Fuller NW, McGuire LP, Pannkuk EL, Blute T, Haase CG, Mayberry HW, Risch TS, Willis CKR. Disease recovery in bats affected by white-nose syndrome. J Exp Biol 2020; 223:jeb211912. [PMID: 32054681 DOI: 10.1242/jeb.211912] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 02/10/2020] [Indexed: 12/28/2022]
Abstract
Processes associated with recovery of survivors are understudied components of wildlife infectious diseases. White-nose syndrome (WNS) in bats provides an opportunity to study recovery of disease survivors, understand implications of recovery for individual energetics, and assess the role of survivors in pathogen transmission. We documented temporal patterns of recovery from WNS in little brown bats (Myotis lucifugus) following hibernation to test the hypotheses that: (1) recovery of wing structure from WNS matches a rapid time scale (i.e. approximately 30 days) suggested by data from free-ranging bats; (2) torpor expression plays a role in recovery; (3) wing physiological function returns to normal alongside structural recovery; and (4) pathogen loads decline quickly during recovery. We collected naturally infected bats at the end of hibernation, brought them into captivity, and quantified recovery over 40 days by monitoring body mass, wing damage, thermoregulation, histopathology of wing biopsies, skin surface lipids and fungal load. Most metrics returned to normal within 30 days, although wing damage was still detectable at the end of the study. Torpor expression declined overall throughout the study, but bats expressed relatively shallow torpor bouts - with a plateau in minimum skin temperature - during intensive healing between approximately days 8 and 15. Pathogen loads were nearly undetectable after the first week of the study, but some bats were still detectably infected at day 40. Our results suggest that healing bats face a severe energetic imbalance during early recovery from direct costs of healing and reduced foraging efficiency. Management of WNS should not rely solely on actions during winter, but should also aim to support energy balance of recovering bats during spring and summer.
Collapse
Affiliation(s)
- Nathan W Fuller
- Department of Biological Sciences, Texas Tech University, 2901 Main Street, Lubbock, TX 79409, USA
| | - Liam P McGuire
- Department of Biological Sciences, Texas Tech University, 2901 Main Street, Lubbock, TX 79409, USA
| | - Evan L Pannkuk
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3970 Reservoir Road NW, Washington, DC 20057, USA
| | - Todd Blute
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Catherine G Haase
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Heather W Mayberry
- Department of Ecology and Evolutionary Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, Canada L5L 1C6
| | - Thomas S Risch
- Arkansas Biosciences Institute, Arkansas State University, P.O. Box 847, Jonesboro, AR 72467, USA
| | - Craig K R Willis
- Department of Biology and Centre for Forest Inter-Disciplinary Research (C-FIR), University of Winnipeg, 515 Portage Avenue, Winnipeg, MB, Canada R3B 2E9
| |
Collapse
|
13
|
Turner JM. The interrelationship between torpor expression and nest site use of western and eastern pygmy-possums (Cercartetus spp.). AUSTRALIAN MAMMALOGY 2020. [DOI: 10.1071/am19005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Physiology and behaviour are closely linked, making knowledge of the interaction between species’ energetics and activities important when attempting to understand how animals function in the wild. I examined torpor use by western pygmy-possums (Cercartetus concinnus) and eastern pygmy-possums (C. nanus) in relation to nest site characteristics and movement patterns. In coastal mallee heath in winter, C. concinnus nested beneath leaf litter at the base of dead Banksia ornata, where they employed torpor on 69% of observed days. In warm temperate sclerophyll forest, C. nanus nested in tree hollows of Eucalyptus spp. and used torpor on 64% of days in winter and 10% in summer. Torpor was used in nest sites that were buffered from outside temperature extremes. Both species frequently reused nest sites and while C. nanus was more likely to employ torpor in a previously used site, site familiarity did not influence torpor use for C. concinnus. Additionally, C. nanus was more likely to use torpor in hollows with a higher relative thickness in both seasons. No relationship was found between range size and the number of tracking days or capture body mass, though sample sizes were small. I suggest that the thermal attributes of nest sites influence torpor use for both species and this is likely vital for maintaining a positive energy balance, stressing the importance of preserving habitat with ample potential nest sites for conservation management.
Collapse
|
14
|
Parker CA, Geiser F, Stawski C. Thermal physiology and activity in relation to reproductive status and sex in a free-ranging semelparous marsupial. CONSERVATION PHYSIOLOGY 2019; 7:coz073. [PMID: 31737272 PMCID: PMC6846706 DOI: 10.1093/conphys/coz073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 06/26/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
In a changing climate, southern hemisphere mammals are predicted to face rising temperatures and aridity, resulting in food and water shortages, which may further challenge already constrained energetic demands. Especially semelparous mammals may be threatened because survival of the entire population depends on the success of a single breeding event. One of these species, the yellow-footed antechinus, Antechinus flavipes, a small, heterothermic marsupial mammal, commences reproduction during winter, when insect prey is limited and energetic constraints are high. We examined the inter-relations between thermal and foraging biology of free-ranging A. flavipes and examined whether they use torpor for energy conservation, despite the fact that reproduction and torpor are considered to be incompatible for many mammals. Females used torpor during the reproductive season, but patterns changed with reproductive status. Prior to breeding, females used frequent (86% of days), deep and long torpor that was more pronounced than any other reproductive group, including pre-mating males (64% of days). Pregnant females continued to use torpor, albeit torpor was less frequent (28% of days) and significantly shorter and shallower than before breeding. Parturient and lactating females did not express torpor. During the mating period, males reduced torpor use (24% of days). Pre-reproductive females and pre-mating males were the least active and may use torpor to minimize predator exposure and enhance fat deposition in anticipation of the energetic demands associated with impending mating, gestation and lactation. Reproductive females were most active and likely foraged and fed to promote growth and development of young. Our data show that A. flavipes are balancing energetic demands during the reproductive season by modifying torpor and activity patterns. As the timing of reproduction is fixed for this genus, it is probable that climate change will render these behavioural and physiological adaptations as inadequate and threaten this and other semelparous species.
Collapse
Affiliation(s)
- Cassandra A Parker
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW 2351, Australia
| | - Fritz Geiser
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW 2351, Australia
| | - Clare Stawski
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW 2351, Australia
- Department of Biology, Norwegian University of Science and Technology, Trondheim 7491, Norway
| |
Collapse
|
15
|
Turbill C, McAllan BM, Prior S. Thermal energetics and behaviour of a small, insectivorous marsupial in response to the interacting risks of starvation and predation. Oecologia 2019; 191:803-815. [DOI: 10.1007/s00442-019-04542-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 10/22/2019] [Indexed: 11/27/2022]
|
16
|
Jannetti MG, Buck CL, Valentinuzzi VS, Oda GA. Day and night in the subterranean: measuring daily activity patterns of subterranean rodents ( Ctenomys aff. knighti) using bio-logging. CONSERVATION PHYSIOLOGY 2019; 7:coz044. [PMID: 31341624 PMCID: PMC6640163 DOI: 10.1093/conphys/coz044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 06/11/2019] [Accepted: 06/17/2019] [Indexed: 06/10/2023]
Abstract
While most studies of the impacts of climate change have investigated shifts in the spatial distribution of organisms, temporal shifts in the time of activity is another important adjustment made by animals in a changing world. Due to the importance of light and temperature cycles in shaping activity patterns, studies of activity patterns of organisms that inhabit extreme environments with respect to the 24-hour cyclicity of Earth have the potential to provide important insights into the interrelationships among abiotic variables, behaviour and physiology. Our previous laboratory studies with Argentinean tuco-tucos from the Monte desert (Ctenomys aff. knighti) show that these subterranean rodents display circadian activity/rest rhythms that can be synchronized by artificial light/dark cycles. Direct observations indicate that tuco-tucos emerge mainly for foraging and for removal of soil from their burrows. Here we used bio-logging devices for individual, long-term recording of daily activity/rest (accelerometry) and time on surface (light-loggers) of six tuco-tucos maintained in outdoor semi-natural enclosures. Environmental variables were measured simultaneously. Activity bouts were detected both during day and night but 77% of the highest values happened during the daytime and 47% of them coincided with time on surface. Statistical analyses indicate time of day and temperature as the main environmental factors modulating time on surface. In this context, the total duration that these subterranean animals spent on surface was high during the winter, averaging 3 h per day and time on surface occurred when underground temperature was lowest. Finally, transport of these animals to the indoor laboratory and subsequent assessment of their activity rhythms under constant darkness revealed a switch in the timing of activity. Plasticity of activity timing is not uncommon among desert rodents and may be adaptive in changing environments, such as the desert where this species lives.
Collapse
Affiliation(s)
- Milene G Jannetti
- Laboratorio Binacional Argentina-Brasil de Cronobiologia, Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - C Loren Buck
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Veronica S Valentinuzzi
- Laboratorio Binacional Argentina-Brasil de Cronobiologia, Centro Regional de Investigaciones Cientificas y Transferencia Tecnológica (CRILAR), Entre Ríos y Mendoza, s/n, Anillaco, La Rioja, Argentina
| | - Gisele A Oda
- Laboratorio Binacional Argentina-Brasil de Cronobiologia, Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
17
|
Does aridity affect spatial ecology? Scaling of home range size in small carnivorous marsupials. Naturwissenschaften 2019; 106:42. [PMID: 31263941 DOI: 10.1007/s00114-019-1636-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/13/2019] [Accepted: 06/15/2019] [Indexed: 10/26/2022]
Abstract
The aim of our study was to determine how body mass affects home range size in carnivorous marsupials (dasyurids) and whether those species living in desert environments require relatively larger areas than their mesic counterparts. The movement patterns of two sympatric species of desert dasyurids (body mass 16 and 105 g) were investigated via radio-telemetry in southwestern Queensland and compared with published records for other Australian dasyurids. Both species monitored occupied stable home ranges. For all dasyurids, home range size scaled with body mass with a coefficient of > 1.2, almost twice that for metabolic rate. Generally, males occupied larger home ranges than females, even after accounting for the size dimorphism common in dasyurids. Of the three environmental variables tested, primary productivity and habitat, a categorical variable based on the 500 mm rainfall isopleth, further improved model performance demonstrating that arid species generally occupy larger home ranges. Similar patterns were still present in the dataset after correcting for phylogeny. Consequently, the trend towards relatively larger home ranges with decreasing habitat productivity can be attributed to environmental factors and was not a result of taxonomic affiliation. We therefore conclude that alternative avenues to reduce energy requirements on an individual and population level (i.e. torpor, basking and population density) do not fully compensate for the low resource availability of deserts demanding an increase in home range size.
Collapse
|
18
|
Zduniak M, Pillay N, Schradin C. Basking African striped mice choose warmer locations to heat up: evidence from a field study. J Zool (1987) 2019. [DOI: 10.1111/jzo.12687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- M. Zduniak
- Department of Systematic Zoology Adam Mickiewicz University Poznań Poland
- School of Animal, Plant and Environmental Sciences University of the Witwatersrand Johannesburg South Africa
| | - N. Pillay
- School of Animal, Plant and Environmental Sciences University of the Witwatersrand Johannesburg South Africa
| | - C. Schradin
- School of Animal, Plant and Environmental Sciences University of the Witwatersrand Johannesburg South Africa
- IPHC, UNISTRA, CNRS Strasbourg France
| |
Collapse
|
19
|
Geiser F, Bondarenco A, Currie SE, Doty AC, Körtner G, Law BS, Pavey CR, Riek A, Stawski C, Turbill C, Willis CKR, Brigham RM. Hibernation and daily torpor in Australian and New Zealand bats: does the climate zone matter? AUST J ZOOL 2019. [DOI: 10.1071/zo20025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We aim to summarise what is known about torpor use and patterns in Australian and New Zealand (ANZ) bats from temperate, tropical/subtropical and arid/semiarid regions and to identify whether and how they differ. ANZ bats comprise ~90 species from 10 families. Members of at least nine of these are known to use torpor, but detailed knowledge is currently restricted to the pteropodids, molossids, mystacinids, and vespertilionids. In temperate areas, several species can hibernate (use a sequence of multiday torpor bouts) in trees or caves mostly during winter and continue to use short bouts of torpor for the rest of the year, including while reproducing. Subtropical vespertilionids also use multiday torpor in winter and brief bouts of torpor in summer, which permit a reduction in foraging, probably in part to avoid predators. Like temperate-zone vespertilionids they show little or no seasonal change in thermal energetics during torpor, and observed changes in torpor patterns in the wild appear largely due to temperature effects. In contrast, subtropical blossom-bats (pteropodids) exhibit more pronounced daily torpor in summer than winter related to nectar availability, and this involves a seasonal change in physiology. Even in tropical areas, vespertilionids express short bouts of torpor lasting ~5 h in winter; summer data are not available. In the arid zone, molossids and vespertilionids use torpor throughout the year, including during desert heat waves. Given the same thermal conditions, torpor bouts in desert bats are longer in summer than in winter, probably to minimise water loss. Thus, torpor in ANZ bats is used by members of all or most families over the entire region, its regional and seasonal expression is often not pronounced or as expected, and it plays a key role in energy and water balance and other crucial biological functions that enhance long-term survival by individuals.
Collapse
|
20
|
Körtner G, Claridge A, Ballard G. Denning behaviour of female spotted-tailed quolls during the breeding season. AUST J ZOOL 2019. [DOI: 10.1071/zo20012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We monitored some aspects of maternal care in Australia’s second largest extant marsupial predator, the spotted-tailed quoll. We radio-collared six females carrying young at an early pouch stage in the Byadbo Wilderness in southern New South Wales in August–September 2016. When these young were deposited at a maternity den at a still altricial state we monitored den activity of the female and her young with motion-triggered camera traps. Lactating females remained in the same den for up to 39 days before moving to a new den, usually only a few hundred metres away. Females furnished dens with nesting material, but were never observed to carry prey nor were the young seen consuming solid food. They were also surprisingly tolerant towards visits and den use by wombats, rabbits, possums and male quolls. Females showed predominantly nocturnal activity, but usually returned at least once per night. Short daytime activity was also common. In contrast, juveniles were initially exclusively diurnal, probably to facilitate behavioural thermoregulation, and only later extended their playing and exploring towards dawn and dusk. Hence interactions between mother and young were rarely observed. Apparently, the young received little training from their mother and simply ventured further and for longer periods away from the den until independence.
Collapse
|
21
|
The avian "hibernation" enigma: thermoregulatory patterns and roost choice of the common poorwill. Oecologia 2018; 189:47-53. [PMID: 30460539 DOI: 10.1007/s00442-018-4306-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 11/13/2018] [Indexed: 02/06/2023]
Abstract
Compared to mammals, there are relatively few studies examining heterothermy in birds. In 13 bird families known to contain heterothermic species, the common poorwill (Phalaenoptilus nuttallii) is the only species that ostensibly hibernates. We used temperature-sensitive radio-transmitters to collect roost and skin temperature (Tskin) data, and winter roost preferences for free-ranging poorwills in southern Arizona. Further, to determine the effect of passive rewarming on torpor bout duration and active rewarming (i.e., the use of metabolic heat to increase Tskin), we experimentally shaded seven birds during winter to prevent them from passively rewarming via solar radiation. Poorwills selected winter roosts that were open to the south or southwest, facilitating passive solar warming in the late afternoon. Shaded birds actively rewarmed following at least 3 days of continuous torpor. Average torpor bout duration by shaded birds was 122 h and ranged from 91 to 164 h. Active rewarming by shaded birds occurred on significantly warmer days than those when poorwills remained torpid. One shaded bird remained inactive for 45 days, during which it spontaneously rewarmed actively on eight occasions. Our findings show that during winter poorwills exhibit physiological patterns and active rewarming similar to hibernating mammals.
Collapse
|
22
|
Levy O, Dayan T, Porter WP, Kronfeld-Schor N. Time and ecological resilience: can diurnal animals compensate for climate change by shifting to nocturnal activity? ECOL MONOGR 2018. [DOI: 10.1002/ecm.1334] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Ofir Levy
- School of Zoology; Tel Aviv University; Tel Aviv 69978 Israel
| | - Tamar Dayan
- School of Zoology; Tel Aviv University; Tel Aviv 69978 Israel
- The Steinhardt Museum of Natural History; Tel Aviv University; Tel Aviv 69978 Israel
| | - Warren P. Porter
- Department of Integrative Biology; University of Wisconsin; Madison Wisconsin 53706 USA
| | | |
Collapse
|
23
|
Geiser F, Stawski C, Doty AC, Cooper CE, Nowack J. A burning question: what are the risks and benefits of mammalian torpor during and after fires? CONSERVATION PHYSIOLOGY 2018; 6:coy057. [PMID: 30323932 PMCID: PMC6181253 DOI: 10.1093/conphys/coy057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/11/2018] [Accepted: 10/08/2018] [Indexed: 06/08/2023]
Abstract
Although wildfires are increasing globally, available information on how mammals respond behaviourally and physiologically to fires is scant. Despite a large number of ecological studies, often examining animal diversity and abundance before and after fires, the reasons as to why some species perform better than others remain obscure. We examine how especially small mammals, which generally have high rates of energy expenditure and food requirements, deal with fires and post-fire conditions. We evaluate whether mammalian torpor, characterised by substantial reductions in body temperature, metabolic rate and water loss, plays a functional role in survival of mammals impacted by fires. Importantly, torpor permits small mammals to reduce their activity and foraging, and to survive on limited food. Torpid small mammals (marsupials and bats) can respond to smoke and arouse from torpor, which provides them with the possibility to evade direct exposure to fire, although their response is often slowed when ambient temperature is low. Post-fire conditions increase expression of torpor with a concomitant decrease in activity for free-ranging echidnas and small forest-dwelling marsupials, in response to reduced cover and reduced availability of terrestrial insects. Presence of charcoal and ash increases torpor use by captive small marsupials beyond food restriction alone, likely in anticipation of detrimental post-fire conditions. Interestingly, although volant bats use torpor on every day after fires, they respond by decreasing torpor duration, and increasing activity, perhaps because of the decrease in clutter and increase in foraging opportunities due to an increase in aerial insects. Our summary shows that torpor is an important tool for post-fire survival and, although the physiological and behavioural responses of small mammals to fire are complex, they seem to reflect energetic requirements and mode of foraging. We make recommendations on the conditions during management burns that are least likely to impact heterothermic mammals.
Collapse
Affiliation(s)
- Fritz Geiser
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, Australia
| | - Clare Stawski
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, Australia
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anna C Doty
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, Australia
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, USA
| | - Christine E Cooper
- School of Molecular and Life Sciences, Curtin University, Perth, Western Australia
| | - Julia Nowack
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, Australia
- School of Natural Sciences and Psychology, Liverpool John Moores University, Byrom Street, Liverpool, UK
| |
Collapse
|
24
|
Nowack J, Stawski C, Körtner G, Geiser F. Physiological and behavioral responses of an arboreal mammal to smoke and charcoal-ash substrate. Physiol Behav 2018; 184:116-121. [DOI: 10.1016/j.physbeh.2017.11.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/08/2017] [Accepted: 11/16/2017] [Indexed: 10/18/2022]
|
25
|
Waudby HP, Petit S. Thermoregulatory value of cracking-clay soil shelters for small vertebrates during extreme desert conditions. Integr Zool 2017; 12:237-249. [PMID: 27580346 DOI: 10.1111/1749-4877.12225] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Deserts exhibit extreme climatic conditions. Small desert-dwelling vertebrates have physiological and behavioral adaptations to cope with these conditions, including the ability to seek shelter. We investigated the temperature (T) and relative humidity (RH) regulating properties of the soil cracks that characterize the extensive cracking-clay landscapes of arid Australia, and the extent of their use by 2 small marsupial species: fat-tailed and stripe-faced dunnarts (Sminthopsis crassicaudata and Sminthopsis macroura). We measured hourly (over 24-h periods) the T and RH of randomly-selected soil cracks compared to outside conditions, during 2 summers and 2 winters. We tracked 17 dunnarts (8 Sminthopsis crassicaudata and 9 Sminthopsis macroura) to quantify their use of cracks. Cracks consistently moderated microclimate, providing more stable conditions than available from non-crack points, which often displayed comparatively dramatic fluctuations in T and RH. Both dunnart species used crack shelters extensively. Cracks constitute important shelter for small animals during extreme conditions by providing a stable microclimate, which is typically cooler than outside conditions in summer and warmer in winter. Cracks likely play a fundamental sheltering role by sustaining the physiological needs of small mammal populations. Globally, cracking-clay areas are dominated by agricultural land uses, including livestock grazing. Management of these systems should focus not only on vegetation condition, but also on soil integrity, to maintain shelter resources for ground-dwelling fauna.
Collapse
Affiliation(s)
- Helen P Waudby
- Sustainable Environments Research Group, School of Natural and Built Environments, University of South Australia, Mawson Lakes, South Australia, Australia
| | - Sophie Petit
- Sustainable Environments Research Group, School of Natural and Built Environments, University of South Australia, Mawson Lakes, South Australia, Australia
| |
Collapse
|
26
|
Geiser F, Stawski C, Wacker CB, Nowack J. Phoenix from the Ashes: Fire, Torpor, and the Evolution of Mammalian Endothermy. Front Physiol 2017; 8:842. [PMID: 29163191 PMCID: PMC5673639 DOI: 10.3389/fphys.2017.00842] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/09/2017] [Indexed: 12/02/2022] Open
Affiliation(s)
- Fritz Geiser
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW, Australia
| | - Clare Stawski
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW, Australia
| | - Chris B Wacker
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW, Australia
| | - Julia Nowack
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW, Australia.,Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
27
|
Mayberry HW, McGuire LP, Willis CKR. Body temperatures of hibernating little brown bats reveal pronounced behavioural activity during deep torpor and suggest a fever response during white-nose syndrome. J Comp Physiol B 2017; 188:333-343. [PMID: 28766065 DOI: 10.1007/s00360-017-1119-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 07/18/2017] [Accepted: 07/25/2017] [Indexed: 01/06/2023]
Abstract
Hibernating animals use torpor [reduced body temperature (T b) and metabolic rate] to reduce energy expenditure during winter. Periodic arousals to normal T b are energetically expensive, so hibernators trade off arousal benefits against energetic costs. This is especially important for bats with white-nose syndrome (WNS), a fungal disease causing increased arousal frequency. Little brown bats (Myotis lucifugus) with WNS show upregulation of endogenous pyrogens and sickness behaviour. Therefore, we hypothesized that WNS should cause a fever response characterized by elevated T b. Hibernators could also accrue some benefits of arousals with minimal T b increase, thus avoiding full arousal costs. We compared skin temperature (T sk) of captive Myotis lucifugus inoculated with the WNS-causing fungus to T sk of sham-inoculated controls. Infected bats re-warmed to higher T sk during arousals which is consistent with a fever response. Torpid T sk did not differ. During what we term "cold arousals", bats exhibited movement following T sk increases of only 2.2 ± 0.3 °C, compared to >20 °C increases during normal arousals. Cold arousals occurred in both infected and control bats, suggesting they are not a pathophysiological consequence of WNS. Fever responses are energetically costly and could exacerbate energy limitation and premature fat depletion for bats with WNS. Cold arousals could represent an energy-saving mechanism for both healthy and WNS-affected bats when complete arousals are unnecessary or too costly. A few cold arousals were observed mid-hibernation, typically in response to disturbances. Cold arousals may, therefore, represent a voluntary restriction of arousal temperature instead of loss of thermoregulatory control.
Collapse
Affiliation(s)
- Heather W Mayberry
- Department of Biology, University of Winnipeg, 515 Portage Ave, Winnipeg, MB, R3B 2E9, Canada. .,Department of Ecology and Evolutionary Biology, University of Toronto Mississauga, 3359 Mississauga Rd, Mississauga, ON, L5L 1C6, Canada.
| | - Liam P McGuire
- Department of Biology, University of Winnipeg, 515 Portage Ave, Winnipeg, MB, R3B 2E9, Canada.,Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Craig K R Willis
- Department of Biology, University of Winnipeg, 515 Portage Ave, Winnipeg, MB, R3B 2E9, Canada
| |
Collapse
|
28
|
More functions of torpor and their roles in a changing world. J Comp Physiol B 2017; 187:889-897. [PMID: 28432393 PMCID: PMC5486538 DOI: 10.1007/s00360-017-1100-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/26/2016] [Accepted: 02/26/2017] [Indexed: 02/06/2023]
Abstract
Increased winter survival by reducing energy expenditure in adult animals is often viewed as the primary function of torpor. However, torpor has many other functions that ultimately increase the survival of heterothermic mammals and birds. In this review, we summarize new findings revealing that animals use torpor to cope with the conditions during and after natural disasters, including fires, storms, and heat waves. Furthermore, we suggest that torpor, which also prolongs longevity and was likely crucial for survival of mammals during the time of the dinosaur extinctions, will be advantageous in a changing world. Climate change is assumed to lead to an increase in the occurrence and intensity of climatic disasters, such as those listed above and also abnormal floods, droughts, and extreme temperatures. The opportunistic use of torpor, found in many heterothermic species, will likely enhance survival of these challenges, because these species can reduce energy and foraging requirements. However, many strictly seasonal hibernators will likely face the negative consequences of the predicted increase in temperature, such as range contraction. Overall, available data suggest that opportunistic heterotherms with their flexible energy requirements have an adaptive advantage over homeotherms in response to unpredictable conditions.
Collapse
|
29
|
Wacker CB, McAllan BM, Körtner G, Geiser F. The role of basking in the development of endothermy and torpor in a marsupial. J Comp Physiol B 2017; 187:1029-1038. [PMID: 28283794 DOI: 10.1007/s00360-017-1060-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 01/02/2017] [Accepted: 01/18/2017] [Indexed: 10/20/2022]
Abstract
Marsupials have a slow rate of development and this allows a detailed examination of thermoregulatory developmental changes and stages. We quantified the cooling rates of marsupial dunnarts (Sminthopsis crassicaudata) at 40-56 days (d) old, and torpor and basking behaviour in animals given the option to bask in four age groups from 60 to 150 d. The development of thermoregulation was a continuum, but was characterised by three major thermoregulatory stages: (1) at 40 d, animals were unable to maintain a constant high body temperature during short-term cold exposure; (2) at 60 d, animals could maintain a high T b for the first part of the night at an ambient temperature of 15.0 ± 0.7 °C; later in the night, they entered an apparent torpor bout but could only rewarm passively when basking under a heat lamp; (3) from ~90 d, they expressed prolonged torpor bouts and were able to rewarm endogenously. Young newly weaned 60 d animals were able to avoid hypothermia by basking. In this case, basking was not an optional behavioural method of reducing the cost of rewarming from torpor, but was essential for thermoregulation independent of the nest temperature. Results from our study suggest that basking is a crucial behavioural trait that permits young marsupials and perhaps other juvenile altricial mammals to overcome the developmental stage between poikilothermy early in development and full endothermy later in life.
Collapse
Affiliation(s)
- Chris B Wacker
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW, 2351, Australia.
| | - Bronwyn M McAllan
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW, 2351, Australia.,Physiology, School of Medical Sciences, Bosch Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Gerhard Körtner
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW, 2351, Australia
| | - Fritz Geiser
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW, 2351, Australia
| |
Collapse
|
30
|
Ayala-Berdon J, Vázquez-Fuerte R, Beamonte-Barrientos R, Schondube JE. Effect of diet quality and ambient temperature on the use of torpor by two species of neotropical nectar-feeding bats. J Exp Biol 2017; 220:920-929. [PMID: 28250178 DOI: 10.1242/jeb.142422] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 12/20/2016] [Indexed: 01/14/2023]
Abstract
Neotropical bats use torpor as a strategy to save energy when they experience a low energy intake and/or low ambient temperature (Ta). Digestive physiology limits the energy intake of several glossophaginid bats, and could play an important role in the onset of torpor in these tropical animals. We measured the effect that diet quality and Ta had on the use of torpor by the nectar-feeding bats Glossophaga soricina and Leptonycteris yerbabuenae Captive bats were fed with 5% (low) or 35% (high) sucrose solutions while exposed to two different Ta (17.7 and 23.2°C; low Ta and high Ta) in four different treatments: (1) high sucrose:high Ta, (2) high sucrose:low Ta, (3) low sucrose:high Ta and (4) low sucrose:low Ta We measured their energy intake, changes in body mass (ΔMb) and skin temperature (Tskin) as response variables. Energy intake (in 10 h) was limited when both species fed on 5% sucrose, but body mass gain was only affected in G. soricina. Energy intake and Ta had a negative effect on the minimum Tskin of both species, and ΔMb affected the time that G. soricina used torpor. Both species remained normothermic on the high sucrose:high Ta treatment, but used torpor on the other three treatments. Bats used torpor during their resting and activity periods. Leptonycteris yerbabuenae spent more time in torpor in the low sucrose:high Ta treatment, while G. soricina used this strategy for longer periods of time in the high sucrose:low Ta treatment. We found that diet quality and Ta played an important role in the use of torpor by nectar-feeding bats.
Collapse
Affiliation(s)
- Jorge Ayala-Berdon
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Apartado Postal 27-3 (Xangari), Morelia, Michoacán 58089, México .,CONACYT, Universidad Autónoma de Tlaxcala, 90062 Tlaxcala de Xicohténcatl, México
| | - Rommy Vázquez-Fuerte
- Escuela Nacional de Estudios Superiores Morelia, Universidad Nacional Autónoma de México, 58089 Morelia, Michoacán, México
| | | | - Jorge E Schondube
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Apartado Postal 27-3 (Xangari), Morelia, Michoacán 58089, México
| |
Collapse
|
31
|
Stawski C, Nowack J, Körtner G, Geiser F. A new cue for torpor induction: charcoal, ash and smoke. J Exp Biol 2017; 220:220-226. [DOI: 10.1242/jeb.146548] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/20/2016] [Indexed: 12/13/2022]
Abstract
ABSTRACT
Recent work has shown that the use of torpor for energy conservation increases after forest fires in heterothermic mammals, probably in response to the reduction of food. However, the specific environmental cues for this increased torpor expression remain unknown. It is possible that smoke and the novel substrate of charcoal and ash act as signals for an impending period of starvation requiring torpor. We therefore tested the hypothesis that the combined cues of smoke, a charcoal/ash substrate and food shortage will enhance torpor expression in a small forest-dwelling marsupial, the yellow-footed antechinus (Antechinus flavipes), because like other animals that live in fire-prone habitats they must effectively respond to fires to ensure survival. Activity and body temperature patterns of individuals in outdoor aviaries were measured under natural environmental conditions. All individuals were strictly nocturnal, but diurnal activity was observed shortly after smoke exposure. Overall, torpor in females was longer and deeper than that in males. Interestingly, while both males and females increased daily torpor duration during food restriction by >2-fold as anticipated, a combination of food restriction and smoke exposure on a charcoal/ash substrate further increased daily torpor duration by ∼2-fold in both sexes. These data show that this combination of cues for torpor induction is stronger than food shortage on its own. Our study provides significant new information on how a small forest-dwelling mammal responds to fire cues during and immediately after a fire and identifies a new, not previously recognised, regulatory mechanism for thermal biology in mammals.
Collapse
Affiliation(s)
- Clare Stawski
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW 2351, Australia
| | - Julia Nowack
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW 2351, Australia
- Research Institute of Wildlife Ecology, Department of Integrative Biology and Evolution, University of Veterinary Medicine Vienna, Savoyenstrasse 1, Vienna 1160, Austria
| | - Gerhard Körtner
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW 2351, Australia
| | - Fritz Geiser
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
32
|
Bartonička T, Bandouchova H, Berková H, Blažek J, Lučan R, Horáček I, Martínková N, Pikula J, Řehák Z, Zukal J. Deeply torpid bats can change position without elevation of body temperature. J Therm Biol 2016; 63:119-123. [PMID: 28010809 DOI: 10.1016/j.jtherbio.2016.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 12/01/2016] [Accepted: 12/01/2016] [Indexed: 10/20/2022]
Abstract
Because body temperature is tightly coupled to physiological function, hibernating animals entering deep torpor are typically immobile. We analysed thermal behaviour and locomotory activity of hibernating greater mouse-eared bats Myotis myotis and found two types of movement behaviour related to body temperature, i.e. movement at high fur temperature and at low fur temperatures (Tflow; <5°C). First Tflow movements appeared at the beginning of March and often occurred during long torpor bouts. In most cases, Tflow events represented slow displacements between clusters of bats. In several cases, however, departure or arrivals from and into clusters was also recorded without any elevation in body temperature. Distance travelled, flight duration and speed of locomotion during Tflow events was lower than in high fur temperature events. Such behaviour could allow bats to save energy long-term and prolong torpor bouts. Tflow movement in torpid bats significantly changes our understanding of basic hibernation principles and we strongly recommend further studies on the subject.
Collapse
Affiliation(s)
- Tomáš Bartonička
- Department of Botany and Zoology, Masaryk University, Brno, Czechia.
| | - Hana Bandouchova
- Department of Ecology and Diseases of Game, Fish and Bees; University of Veterinary and Pharmaceutical Sciences, Brno, Czechia
| | - Hana Berková
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Brno, Czechia
| | - Ján Blažek
- Department of Botany and Zoology, Masaryk University, Brno, Czechia
| | - Radek Lučan
- Faculty of Science, Charles University in Prague, Prague, Czechia
| | - Ivan Horáček
- Faculty of Science, Charles University in Prague, Prague, Czechia
| | - Natália Martínková
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Brno, Czechia; Institute of Biostatistics and Analyses, Masaryk University, Brno, Czech Republic
| | - Jiri Pikula
- Department of Ecology and Diseases of Game, Fish and Bees; University of Veterinary and Pharmaceutical Sciences, Brno, Czechia
| | - Zdeněk Řehák
- Department of Botany and Zoology, Masaryk University, Brno, Czechia; Faculty of Education, Masaryk University, Brno, Czech Republic
| | - Jan Zukal
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Brno, Czechia
| |
Collapse
|
33
|
Jastroch M, Giroud S, Barrett P, Geiser F, Heldmaier G, Herwig A. Seasonal Control of Mammalian Energy Balance: Recent Advances in the Understanding of Daily Torpor and Hibernation. J Neuroendocrinol 2016; 28. [PMID: 27755687 DOI: 10.1111/jne.12437] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/07/2016] [Accepted: 10/15/2016] [Indexed: 12/20/2022]
Abstract
Endothermic mammals and birds require intensive energy turnover to sustain high body temperatures and metabolic rates. To cope with the energetic bottlenecks associated with the change of seasons, and to minimise energy expenditure, complex mechanisms and strategies are used, such as daily torpor and hibernation. During torpor, metabolic depression and low body temperatures save energy. However, these bouts of torpor, lasting for hours to weeks, are interrupted by active 'euthermic' phases with high body temperatures. These dynamic transitions require precise communication between the brain and peripheral tissues to defend rheostasis in energetics, body mass and body temperature. The hypothalamus appears to be the major control centre in the brain, coordinating energy metabolism and body temperature. The sympathetic nervous system controls body temperature by adjustments of shivering and nonshivering thermogenesis, with the latter being primarily executed by brown adipose tissue. Over the last decade, comparative physiologists have put forward integrative studies on the ecophysiology, biochemistry and molecular regulation of energy balance in response to seasonal challenges, food availability and ambient temperature. Mammals coping with such environments comprise excellent model organisms for studying the dynamic regulation of energy metabolism. Beyond the understanding of how animals survive in nature, these studies also uncover general mechanisms of mammalian energy homeostasis. This research will benefit efforts of translational medicine aiming to combat emerging human metabolic disorders. The present review focuses on recent advances in the understanding of energy balance and its neuronal and endocrine control during the most extreme metabolic fluctuations in nature: daily torpor and hibernation.
Collapse
Affiliation(s)
- M Jastroch
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center & German Diabetes Center (DZD), Helmholtz Zentrum München, Neuherberg, Germany
| | - S Giroud
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - P Barrett
- Rowett Institute for Nutrition and Health, University of Aberdeen, Aberdeen, UK
| | - F Geiser
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, Australia
| | - G Heldmaier
- Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - A Herwig
- Zoological Institute, University of Hamburg, Hamburg, Germany
| |
Collapse
|
34
|
Dausmann KH, Warnecke L. Primate Torpor Expression: Ghost of the Climatic Past. Physiology (Bethesda) 2016; 31:398-408. [DOI: 10.1152/physiol.00050.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Torpor, the controlled depression of virtually all bodily function during scarce periods, was verified in primates under free-ranging conditions less than two decades ago. The large variety of different torpor patterns found both within and among closely related species is particularly remarkable. To help unravel the cause of these variable patterns, our review investigates primate torpor use within an evolutionary framework. First, we provide an overview of heterothermic primate species, focusing on the Malagasy lemurs, and discuss their use of daily torpor or hibernation in relation to habitat type and climatic conditions. Second, we investigate environmental characteristics that may have been involved in shaping the high variability of torpor expression found in lemurs today. Third, we examine potential triggers for torpor use in lemurs. We propose the “torpor refugia hypothesis” to illustrate how disparate primate torpor patterns possibly evolved in response to environmental cues during glacial periods, when animals were restricted to different refuge habitats along riverine corridors. For example, individuals enduring harsher conditions at higher altitudes likely developed seasonal hibernation, whereas those inhabiting lower elevation river catchments might have coped with unfavorable conditions by employing daily torpor. The ultimate stimuli triggering torpor use today likely differ between the different habitats of Madagascar. The broad diversity of torpor patterns in lemurs among closely related species, both within the same and in distinctly different habitat types, provides an ideal base for research into the stimuli for torpor use in endotherms in general. Our hypothesis highlights the importance of considering the environmental conditions under which ecosystems and species evolved when trying to explain physiological adaptations seen today.
Collapse
Affiliation(s)
- Kathrin H. Dausmann
- Zoological Institute, Functional Ecology, University Hamburg, Hamburg, Germany
| | - Lisa Warnecke
- Zoological Institute, Functional Ecology, University Hamburg, Hamburg, Germany
| |
Collapse
|
35
|
Matthews JK, Stawski C, Körtner G, Parker CA, Geiser F. Torpor and basking after a severe wildfire: mammalian survival strategies in a scorched landscape. J Comp Physiol B 2016; 187:385-393. [DOI: 10.1007/s00360-016-1039-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 09/14/2016] [Accepted: 09/30/2016] [Indexed: 11/24/2022]
|
36
|
Levesque DL, Nowack J, Stawski C. Modelling mammalian energetics: the heterothermy problem. ACTA ACUST UNITED AC 2016. [DOI: 10.1186/s40665-016-0022-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
37
|
Menzies AK, Webber QM, Baloun DE, McGuire LP, Muise KA, Coté D, Tinkler S, Willis CK. Metabolic rate, latitude and thermal stability of roosts, but not phylogeny, affect rewarming rates of bats. Physiol Behav 2016; 164:361-8. [DOI: 10.1016/j.physbeh.2016.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 12/21/2022]
|
38
|
Nowack J, Delesalle M, Stawski C, Geiser F. Can hibernators sense and evade fires? Olfactory acuity and locomotor performance during deep torpor. Naturwissenschaften 2016; 103:73. [DOI: 10.1007/s00114-016-1396-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/27/2016] [Accepted: 07/29/2016] [Indexed: 10/21/2022]
|
39
|
van der Vinne V, Gorter JA, Riede SJ, Hut RA. Diurnality as an energy-saving strategy: energetic consequences of temporal niche switching in small mammals. ACTA ACUST UNITED AC 2016; 218:2585-93. [PMID: 26290592 DOI: 10.1242/jeb.119354] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Endogenous daily (circadian) rhythms allow organisms to anticipate daily changes in the environment. Most mammals are specialized to be active during the night (nocturnal) or day (diurnal). However, typically nocturnal mammals become diurnal when energetically challenged by cold or hunger. The circadian thermo-energetics (CTE) hypothesis predicts that diurnal activity patterns reduce daily energy expenditure (DEE) compared with nocturnal activity patterns. Here, we tested the CTE hypothesis by quantifying the energetic consequences of relevant environmental factors in mice. Under natural conditions, diurnality reduces DEE by 6-10% in energetically challenged mice. Combined with night-time torpor, as observed in mice under prolonged food scarcity, DEE can be reduced by ∼20%. The dominant factor determining the energetic benefit of diurnality is thermal buffering provided by a sheltered resting location. Compared with nocturnal animals, diurnal animals encounter higher ambient temperatures during both day and night, leading to reduced thermogenesis costs in temperate climates. Analysis of weather station data shows that diurnality is energetically beneficial on almost all days of the year in a temperate climate region. Furthermore, diurnality provides energetic benefits at all investigated geographical locations on European longitudinal and latitudinal transects. The reduction of DEE by diurnality provides an ultimate explanation for temporal niche switching observed in typically nocturnal small mammals under energetically challenging conditions. Diurnality allows mammals to compensate for reductions in food availability and temperature as it reduces energetic needs. The optimal circadian organization of an animal ultimately depends on the balance between energetic consequences and other fitness consequences of the selected temporal niche.
Collapse
Affiliation(s)
- Vincent van der Vinne
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Jenke A Gorter
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Sjaak J Riede
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Roelof A Hut
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9747 AG, The Netherlands
| |
Collapse
|
40
|
Bondarenco A, Körtner G, Geiser F. How to keep cool in a hot desert: Torpor in two species of free-ranging bats in summer. Temperature (Austin) 2016; 3:476-483. [PMID: 28349087 PMCID: PMC5079220 DOI: 10.1080/23328940.2016.1214334] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/14/2016] [Accepted: 07/14/2016] [Indexed: 11/23/2022] Open
Abstract
Small insectivorous tree-roosting bats are among the most taxonomically diverse group of mammals in Australia's desert, yet little is known about their thermal physiology, torpor patterns and roosting ecology, especially during summer. We used temperature-telemetry to quantify and compare thermal biology and roost selection by broad-nosed bats Scotorepens greyii (6.3 g; n = 11) and Scotorepens balstoni (9.9 g; n = 5) in Sturt National Park (NSW Australia) over 3 summers (2010-13). Both vespertilionids used torpor often and the total time bats spent torpid was ∼7 h per day. Bats rewarmed using entirely passive rewarming on 44.8% (S. greyii) and 29.4% (S. balstoni) of all torpor arousals. Both bat species roosted in hollow, cracked dead trees relatively close to the ground (∼3 m) in dense tree stands. Our study shows that torpor and passive rewarming are 2 common and likely crucial survival traits of S. greyii and S. balstoni.
Collapse
Affiliation(s)
- Artiom Bondarenco
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale NSW, Australia
| | - Gerhard Körtner
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale NSW, Australia
| | - Fritz Geiser
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale NSW, Australia
| |
Collapse
|
41
|
Wacker CB, McAllan BM, Körtner G, Geiser F. The functional requirements of mammalian hair: a compromise between crypsis and thermoregulation? Naturwissenschaften 2016; 103:53. [PMID: 27287044 DOI: 10.1007/s00114-016-1376-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 05/20/2016] [Accepted: 05/23/2016] [Indexed: 11/28/2022]
Abstract
Mammalian fur often shows agouti banding with a proximal dark band near the skin and a lighter distal band. We examined the function of both bands in relation to camouflage, thermal properties of pelts, and thermal energetics of dunnarts (Sminthopsis crassicaudata), which are known to use torpor and basking. Although the distal band of dunnart fur darkened with increasing latitude, which is important for camouflage, it did not affect the thermal properties and the length of the dark band and total hair length were not correlated. In contrast, the length of the proximal dark band of preserved pelts exposed to sunlight was positively correlated (r (2) = 0.59) with the temperature underneath the pelt (T pelt). All dunnarts offered radiant heat basked by exposing the dark band of the hair during both rest and torpor. Basking dunnarts with longer dark bands had lower resting metabolism (r (2) = 0.69), warmed faster from torpor (r (2) = 0.77), required less energy to do so (r (2) = 0.32), and reached a higher subcutaneous temperature (T sub) at the end of rewarming (r (2) = 0.75). We provide the first experimental evidence on the possible dual function of the color banding of mammalian fur. The distal colored band appears to be important for camouflage, whereas the length of the dark proximal hair band facilitates heat gain for energy conservation and allows animals to rewarm quickly and economically from torpor.
Collapse
Affiliation(s)
- Chris B Wacker
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, New South Wales, 2351, Australia.
| | - Bronwyn M McAllan
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, New South Wales, 2351, Australia.,Physiology, School of Medical Sciences, Bosch Institute, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Gerhard Körtner
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, New South Wales, 2351, Australia
| | - Fritz Geiser
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, New South Wales, 2351, Australia
| |
Collapse
|
42
|
Geiser F, Gasch K, Bieber C, Stalder GL, Gerritsmann H, Ruf T. Basking hamsters reduce resting metabolism, body temperature and energy costs during rewarming from torpor. ACTA ACUST UNITED AC 2016; 219:2166-72. [PMID: 27207637 DOI: 10.1242/jeb.137828] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/02/2016] [Indexed: 01/22/2023]
Abstract
Basking can substantially reduce thermoregulatory energy expenditure of mammals. We tested the hypothesis that the largely white winter fur of hamsters (Phodopus sungorus), originating from Asian steppes, may be related to camouflage to permit sun basking on or near snow. Winter-acclimated hamsters in our study were largely white and had a high proclivity to bask when resting and torpid. Resting hamsters reduced metabolic rate (MR) significantly (>30%) when basking at ambient temperatures (Ta) of ∼15 and 0°C. Interestingly, body temperature (Tb) also was significantly reduced from 34.7±0.6°C (Ta 15°C, not basking) to 30.4±2.0°C (Ta 0°C, basking), which resulted in an extremely low (<50% of predicted) apparent thermal conductance. Induced torpor (food withheld) during respirometry at Ta 15°C occurred on 83.3±36.0% of days and the minimum torpor MR was 36% of basal MR at an average Tb of 22.0±2.6°C; movement to the basking lamp occurred at Tb<20.0°C. Energy expenditure for rewarming was significantly reduced (by >50%) during radiant heat-assisted rewarming; however, radiant heat per se without an endogenous contribution by animals did not strongly affect metabolism and Tb during torpor. Our data show that basking substantially modifies thermal energetics in hamsters, with a drop of resting Tb and MR not previously observed and a reduction of rewarming costs. The energy savings afforded by basking in hamsters suggest that this behaviour is of energetic significance not only for mammals living in deserts, where basking is common, but also for P. sungorus and probably other cold-climate mammals.
Collapse
Affiliation(s)
- Fritz Geiser
- Research Institute of Wildlife Ecology, Department of Integrative Biology and Evolution, University of Veterinary Medicine Vienna, Savoyenstrasse 1, Vienna 1160, Austria
| | - Kristina Gasch
- Research Institute of Wildlife Ecology, Department of Integrative Biology and Evolution, University of Veterinary Medicine Vienna, Savoyenstrasse 1, Vienna 1160, Austria
| | - Claudia Bieber
- Research Institute of Wildlife Ecology, Department of Integrative Biology and Evolution, University of Veterinary Medicine Vienna, Savoyenstrasse 1, Vienna 1160, Austria
| | - Gabrielle L Stalder
- Research Institute of Wildlife Ecology, Department of Integrative Biology and Evolution, University of Veterinary Medicine Vienna, Savoyenstrasse 1, Vienna 1160, Austria
| | - Hanno Gerritsmann
- Research Institute of Wildlife Ecology, Department of Integrative Biology and Evolution, University of Veterinary Medicine Vienna, Savoyenstrasse 1, Vienna 1160, Austria
| | - Thomas Ruf
- Research Institute of Wildlife Ecology, Department of Integrative Biology and Evolution, University of Veterinary Medicine Vienna, Savoyenstrasse 1, Vienna 1160, Austria
| |
Collapse
|
43
|
Oliveira FG, Tapisso JT, Monarca RI, Cerveira AM, Mathias ML. Phenotypic flexibility in the energetic strategy of the greater white-toothed shrew, Crocidura russula. J Therm Biol 2016; 56:10-7. [PMID: 26857972 DOI: 10.1016/j.jtherbio.2015.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/11/2015] [Accepted: 12/11/2015] [Indexed: 10/22/2022]
Abstract
The balance between energetic acquisition and expenditure depends on the amount of energy allocated to biological functions such as thermoregulation, growth, reproduction and behavior. Ambient temperature has a profound effect on this balance, with species inhabiting colder climates often needing to invest more energy in thermoregulation to maintain body temperature. This leads to local behavioral and physiological adaptations that increase energetic efficiency. In this study, we investigated the role of activity, behavior and thermogenic capacity in the ability of the greater white-toothed shrew, Crocidura russula, to cope with seasonal changes. Individuals were captured in the Sintra-Cascais Natural Park, a Mediterranean region, and separated into three experimental groups: a control group, acclimated to a 12L:12D photoperiod and temperature of 18-20°C; a winter group, acclimatized to natural winter fluctuations of light and temperature; and a summer group, acclimatized to natural summer fluctuations of light and temperature. No differences were found in resting metabolic rate and nonshivering thermogenesis between the three groups. However, winter shrews significantly reduced their activity, particularly at night, compared to the control and summer groups. Differences in torpor use were also found between groups, with winter shrews entering torpor more frequently and during shorter periods of time than summer and control shrews. Our results indicate C. russula from Sintra relies on the flexibility of energy saving mechanisms, namely daily activity level and torpor use, to cope with seasonal changes in a Mediterranean climate, rather than mechanisms involving body heat production.
Collapse
Affiliation(s)
- Flávio G Oliveira
- CESAM - Centre for Environmental and Marine Studies, Department of Animal Biology, Faculty of Sciences, University of Lisbon, C2 building, 3rd floor, Campo Grande, 1749-016 Lisbon, Portugal.
| | - Joaquim T Tapisso
- CESAM - Centre for Environmental and Marine Studies, Department of Animal Biology, Faculty of Sciences, University of Lisbon, C2 building, 3rd floor, Campo Grande, 1749-016 Lisbon, Portugal.
| | - Rita I Monarca
- CESAM - Centre for Environmental and Marine Studies, Department of Animal Biology, Faculty of Sciences, University of Lisbon, C2 building, 3rd floor, Campo Grande, 1749-016 Lisbon, Portugal
| | - Ana M Cerveira
- CESAM - Centre for Environmental and Marine Studies, Department of Animal Biology, Faculty of Sciences, University of Lisbon, C2 building, 3rd floor, Campo Grande, 1749-016 Lisbon, Portugal
| | - Maria L Mathias
- CESAM - Centre for Environmental and Marine Studies, Department of Animal Biology, Faculty of Sciences, University of Lisbon, C2 building, 3rd floor, Campo Grande, 1749-016 Lisbon, Portugal
| |
Collapse
|
44
|
Hibernation in the pygmy slow loris (Nycticebus pygmaeus): multiday torpor in primates is not restricted to Madagascar. Sci Rep 2015; 5:17392. [PMID: 26633602 PMCID: PMC4668838 DOI: 10.1038/srep17392] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/29/2015] [Indexed: 01/20/2023] Open
Abstract
Hibernation and short daily torpor are states of energy conservation with reduced metabolism and body temperature. Both hibernation, also called multiday torpor, and daily torpor are common among mammals and occur in at least 11 orders. Within the primates, there is a peculiar situation, because to date torpor has been almost exclusively reported for Malagasy lemurs. The single exception is the African lesser bushbaby, which is capable of daily torpor, but uses it only under extremely adverse conditions. For true hibernation, the geographical restriction was absolute. No primate outside of Madagascar was previously known to hibernate. Since hibernation is commonly viewed as an ancient, plesiomorphic trait, theoretically this could mean that hibernation as an overwintering strategy was lost in all other primates in mainland Africa, Asia, and the Americas. However, we hypothesized that a good candidate species for the use of hibernation, outside of Madagascar should be the pygmy slow loris (Nycticebus pygmaeus), a small primate inhabiting tropical forests. Here, we show that pygmy slow lorises exposed to natural climatic conditions in northern Vietnam during winter indeed undergo torpor lasting up to 63 h, that is, hibernation. Thus, hibernation has been retained in at least one primate outside of Madagascar.
Collapse
|
45
|
Physiological and behavioural responses of a small heterothermic mammal to fire stimuli. Physiol Behav 2015; 151:617-22. [DOI: 10.1016/j.physbeh.2015.09.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 07/16/2015] [Accepted: 09/01/2015] [Indexed: 01/06/2023]
|
46
|
Ruf T, Geiser F. Daily torpor and hibernation in birds and mammals. Biol Rev Camb Philos Soc 2015; 90:891-926. [PMID: 25123049 PMCID: PMC4351926 DOI: 10.1111/brv.12137] [Citation(s) in RCA: 501] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 07/16/2014] [Accepted: 07/16/2014] [Indexed: 12/11/2022]
Abstract
Many birds and mammals drastically reduce their energy expenditure during times of cold exposure, food shortage, or drought, by temporarily abandoning euthermia, i.e. the maintenance of high body temperatures. Traditionally, two different types of heterothermy, i.e. hypometabolic states associated with low body temperature (torpor), have been distinguished: daily torpor, which lasts less than 24 h and is accompanied by continued foraging, versus hibernation, with torpor bouts lasting consecutive days to several weeks in animals that usually do not forage but rely on energy stores, either food caches or body energy reserves. This classification of torpor types has been challenged, suggesting that these phenotypes may merely represent extremes in a continuum of traits. Here, we investigate whether variables of torpor in 214 species (43 birds and 171 mammals) form a continuum or a bimodal distribution. We use Gaussian-mixture cluster analysis as well as phylogenetically informed regressions to quantitatively assess the distinction between hibernation and daily torpor and to evaluate the impact of body mass and geographical distribution of species on torpor traits. Cluster analysis clearly confirmed the classical distinction between daily torpor and hibernation. Overall, heterothermic endotherms tend to be small; hibernators are significantly heavier than daily heterotherms and also are distributed at higher average latitudes (∼35°) than daily heterotherms (∼25°). Variables of torpor for an average 30 g heterotherm differed significantly between daily heterotherms and hibernators. Average maximum torpor bout duration was >30-fold longer, and mean torpor bout duration >25-fold longer in hibernators. Mean minimum body temperature differed by ∼13°C, and the mean minimum torpor metabolic rate was ∼35% of the basal metabolic rate (BMR) in daily heterotherms but only 6% of BMR in hibernators. Consequently, our analysis strongly supports the view that hibernators and daily heterotherms are functionally distinct groups that probably have been subject to disruptive selection. Arguably, the primary physiological difference between daily torpor and hibernation, which leads to a variety of derived further distinct characteristics, is the temporal control of entry into and arousal from torpor, which is governed by the circadian clock in daily heterotherms, but apparently not in hibernators.
Collapse
Affiliation(s)
- Thomas Ruf
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Savoyenstraße 1, A-1160 Vienna, Austria
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, New South Wales 2351, Australia
| | - Fritz Geiser
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, New South Wales 2351, Australia
| |
Collapse
|
47
|
Oelkrug R, Polymeropoulos ET, Jastroch M. Brown adipose tissue: physiological function and evolutionary significance. J Comp Physiol B 2015; 185:587-606. [PMID: 25966796 DOI: 10.1007/s00360-015-0907-7] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 04/21/2015] [Accepted: 04/26/2015] [Indexed: 01/11/2023]
Abstract
In modern eutherian (placental) mammals, brown adipose tissue (BAT) evolved as a specialized thermogenic organ that is responsible for adaptive non-shivering thermogenesis (NST). For NST, energy metabolism of BAT mitochondria is increased by activation of uncoupling protein 1 (UCP1), which dissipates the proton motive force as heat. Despite the presence of UCP1 orthologues prior to the divergence of teleost fish and mammalian lineages, UCP1's significance for thermogenic adipose tissue emerged at later evolutionary stages. Recent studies on the presence of BAT in metatherians (marsupials) and eutherians of the afrotherian clade provide novel insights into the evolution of adaptive NST in mammals. In particular studies on the 'protoendothermic' lesser hedgehog tenrec (Afrotheria) suggest an evolutionary scenario linking BAT to the onset of eutherian endothermy. Here, we review the physiological function and distribution of BAT in an evolutionary context by focusing on the latest research on phylogenetically distinct species.
Collapse
Affiliation(s)
- R Oelkrug
- Department of Animal Physiology, Faculty of Biology, Philipps-Universität Marburg, Karl-von-Frisch Straße 8, 35043, Marburg, Germany,
| | | | | |
Collapse
|
48
|
Solar radiation during rewarming from torpor in elephant shrews: supplementation or substitution of endogenous heat production? PLoS One 2015; 10:e0120442. [PMID: 25853244 PMCID: PMC4390352 DOI: 10.1371/journal.pone.0120442] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 01/22/2015] [Indexed: 01/02/2023] Open
Abstract
Many small mammals bask in the sun during rewarming from heterothermy, but the implications of this behaviour for their energy balance remain little understood. Specifically, it remains unclear whether solar radiation supplements endogenous metabolic thermogenesis (i.e., rewarming occurs through the additive effects of internally-produced and external heat), or whether solar radiation reduces the energy required to rewarm by substituting (i.e, replacing) metabolic heat production. To address this question, we examined patterns of torpor and rewarming rates in eastern rock elephant shrews (Elephantulus myurus) housed in outdoor cages with access to either natural levels of solar radiation or levels that were experimentally reduced by means of shade cloth. We also tested whether acclimation to solar radiation availability was manifested via phenotypic flexibility in basal metabolic rate (BMR), non-shivering thermogenesis (NST) capacity and/or summit metabolism (Msum). Rewarming rates varied significantly among treatments, with elephant shrews experiencing natural solar radiation levels rewarming faster than conspecifics experiencing solar radiation levels equivalent to approximately 20% or 40% of natural levels. BMR differed significantly between individuals experiencing natural levels of solar radiation and conspecifics experiencing approximately 20% of natural levels, but no between-treatment difference was evident for NST capacity or Msum. The positive relationship between solar radiation availability and rewarming rate, together with the absence of acclimation in maximum non-shivering and total heat production capacities, suggests that under the conditions of this study solar radiation supplemented rather than substituted metabolic thermogenesis as a source of heat during rewarming from heterothermy.
Collapse
|
49
|
Leslie AM, Stewart M, Price E, Munn AJ. Daily changes in food availability, but not long-term unpredictability, determine daily torpor-bout occurrences and frequency in stripe-faced dunnarts (Sminthopsis macroura). AUST J ZOOL 2015. [DOI: 10.1071/zo14058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Daily torpor, a short-term reduction in body temperature and metabolism, is an energy-saving strategy that has been interpreted as an adaptation to unpredictable resource availability. However, the effect of food-supply variability on torpor, separately from consistent food restriction, remains largely unexamined. In this study, we investigated the effect of unpredictable food availability on torpor in stripe-faced dunnarts (Sminthopsis macroura). After a control period of ad libitum feeding, dunnarts were offered 65% of their average daily ad libitum intake over 31 days, either as a constant restriction (i.e. as equal amount of food offered each day) or as an unpredictable schedule of feed offered, varied daily as 0%, 30%, 60%, 100% or 130% of ad libitum. Both feeding groups had increased torpor-bout occurrences (as a proportion of all dunnarts on a given day) and torpor-bout frequency (average number of bouts each day) when on a restricted diet compared with ad libitum feeding, but torpor frequency did not differ between the consistently restricted and unpredictably restricted groups. Most importantly, torpor occurrence and daily bout frequency by the unpredictably restricted group appeared to change in direct association with the amount of food offered on each day; torpor frequency was higher on days of low food availability. Our data do not support the interpretation that torpor is a response to unpredictable food availability per se, but rather that torpor allowed a rapid adjustment of energy expenditure to manage daily fluctuations in food availability.
Collapse
|
50
|
Geiser F, Currie SE, O'Shea KA, Hiebert SM. Torpor and hypothermia: reversed hysteresis of metabolic rate and body temperature. Am J Physiol Regul Integr Comp Physiol 2014; 307:R1324-9. [PMID: 25253085 DOI: 10.1152/ajpregu.00214.2014] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Regulated torpor and unregulated hypothermia are both characterized by substantially reduced body temperature (Tb) and metabolic rate (MR), but they differ physiologically. Although the remarkable, medically interesting adaptations accompanying torpor (e.g., tolerance for cold and ischemia, absence of reperfusion injury, and disuse atrophy) often do not apply to hypothermia in homeothermic species such as humans, the terms "torpor" and "hypothermia" are often used interchangeably in the literature. To determine how these states differ functionally and to provide a reliable diagnostic tool for differentiating between these two physiologically distinct states, we examined the interrelations between Tb and MR in a mammal (Sminthopsis macroura) undergoing a bout of torpor with those of the hypothermic response of a similar-sized juvenile rat (Rattus norvegicus). Our data show that under similar thermal conditions, 1) cooling rates differ substantially (approximately fivefold) between the two states; 2) minimum MR is approximately sevenfold higher during hypothermia than during torpor despite a similar Tb; 3) rapid, endogenously fuelled rewarming occurs in torpor but not hypothermia; and 4) the hysteresis between Tb and MR during warming and cooling proceeds in opposite directions in torpor and hypothermia. We thus demonstrate clear diagnostic physiological differences between these two states that can be used experimentally to confirm whether torpor or hypothermia has occurred. Furthermore, the data can clarify the results of studies investigating the ability of physiological or pharmacological agents to induce torpor. Consequently, we recommend using the terms "torpor" and "hypothermia" in ways that are consistent with the underlying regulatory differences between these two physiological states.
Collapse
Affiliation(s)
- Fritz Geiser
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, Australia
| | - Shannon E Currie
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, Australia
| | - Kelly A O'Shea
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, Australia
| | - Sara M Hiebert
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, Australia
| |
Collapse
|