1
|
Bell-Roberts L, Turner JFR, Werner GDA, Downing PA, Ross L, West SA. Larger colony sizes favoured the evolution of more worker castes in ants. Nat Ecol Evol 2024; 8:1959-1971. [PMID: 39187609 PMCID: PMC7616618 DOI: 10.1038/s41559-024-02512-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 07/18/2024] [Indexed: 08/28/2024]
Abstract
The size-complexity hypothesis is a leading explanation for the evolution of complex life on earth. It predicts that in lineages that have undergone a major transition in organismality, larger numbers of lower-level subunits select for increased division of labour. Current data from multicellular organisms and social insects support a positive correlation between the number of cells and number of cell types and between colony size and the number of castes. However, the implication of these results is unclear, because colony size and number of cells are correlated with other variables which may also influence selection for division of labour, and causality could be in either direction. Here, to resolve this problem, we tested multiple causal hypotheses using data from 794 ant species. We found that larger colony sizes favoured the evolution of increased division of labour, resulting in more worker castes and greater variation in worker size. By contrast, our results did not provide consistent support for alternative hypotheses regarding either queen mating frequency or number of queens per colony explaining variation in division of labour. Overall, our results provide strong support for the size-complexity hypothesis.
Collapse
Affiliation(s)
| | | | - Gijsbert D A Werner
- Department of Biology, University of Oxford, Oxford, UK
- Netherlands Scientific Council for Government Policy, The Hague, The Netherlands
| | - Philip A Downing
- Ecology & Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Laura Ross
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, UK
| | - Stuart A West
- Department of Biology, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Carmona-Aldana F, Yong LW, Reinberg D, Desplan C. Phenomenon of reproductive plasticity in ants. CURRENT OPINION IN INSECT SCIENCE 2024; 63:101197. [PMID: 38583769 PMCID: PMC11139587 DOI: 10.1016/j.cois.2024.101197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/26/2024] [Accepted: 03/31/2024] [Indexed: 04/09/2024]
Abstract
Ant colonies are organized in castes with distinct behaviors that together allow the colony to strive. Reproduction relies on one or a few queens that stay in the nest producing eggs, while females of the worker caste do not reproduce and instead engage in colony maintenance and brood caretaking. Yet, in spite of this clear separation of functions, workers can become reproductive under defined circumstances. Here, we review the context in which workers become reproductive, exhibiting asexual or sexual reproduction depending on the species. Remarkably, the activation of reproduction in these workers can be quite stable, with changes that include behavior and a dramatic extension of lifespan. We compare these changes between species that do or do not have a queen caste. We discuss how the mechanisms underlying reproductive plasticity include changes in hormonal functions and in epigenetic configurations. Further studies are warranted to elucidate not only how reproductive functions have been gradually restricted to the queen caste during evolution but also how reproductive plasticity remains possible in workers of some species.
Collapse
Affiliation(s)
| | - Luok Wen Yong
- Department of Biology, New York University, NY 10003, USA
| | - Danny Reinberg
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Coral Gables, FL 33124, USA.
| | - Claude Desplan
- Department of Biology, New York University, NY 10003, USA; Center for Genomics and Systems Biology, New York University, Abu Dhabi 51133, United Arab Emirates.
| |
Collapse
|
3
|
Opachaloemphan C, Carmona-Aldana F, Yan H. Caste Transition and Reversion in Harpegnathos saltator Ant Colonies. Bio Protoc 2023; 13:e4770. [PMID: 37638295 PMCID: PMC10450750 DOI: 10.21769/bioprotoc.4770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/11/2023] [Accepted: 06/04/2023] [Indexed: 08/29/2023] Open
Abstract
Living organisms possess the ability to respond to environmental cues and adapt their behaviors and physiologies for survival. Eusocial insects, such as ants, bees, wasps, and termites, have evolved advanced sociality: living together in colonies where individuals innately develop into reproductive and non-reproductive castes. These castes exhibit remarkably distinct behaviors and physiologies that support their specialized roles in the colony. Among ant species, Harpegnathos saltator females stand out with their highly plastic caste phenotypes that can be easily manipulated in a laboratory environment. In this protocol, we provide detailed instructions on how to generate H. saltator ant colonies, define castes based on behavioral and physiological phenotypes, and experimentally induce caste switches, including the transition from a non-reproductive worker to a reproductive gamergate and vice versa (known as reversion). The unusual features of H. saltator make it a valuable tool to investigate cellular and molecular mechanisms underlying phenotypic plasticity in eusocial organisms. Key features H. saltator is one of few ant species showing remarkable caste plasticity with striking phenotypic changes, being a useful subject for studying behavioral plasticity. Caste switches in H. saltator can be easily manipulated in a controlled laboratory environment by controlling the presence of reproductive females in a colony. The relatively large size of H. saltator females allows researchers to dissect various tissues of interest and conduct detailed phenotypic analyses.
Collapse
Affiliation(s)
- Comzit Opachaloemphan
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, NY, USA
| | - Francisco Carmona-Aldana
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, NY, USA
| | - Hua Yan
- Department of Biology, University of Florida, Gainesville, FL, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA
| |
Collapse
|
4
|
Tozetto L, Lattke JE. Revealing male genital morphology in the giant ant genus Dinoponera with geometric morphometrics. ARTHROPOD STRUCTURE & DEVELOPMENT 2020; 57:100943. [PMID: 32315936 DOI: 10.1016/j.asd.2020.100943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
Genitalia include some of the most complex and morphologically diverse structures in insects, finding extensive use in taxonomy, but ant taxonomy is female biased and knowledge of the males is little explored, potentially depriving ant taxonomy of valuable information. We examine the male genital morphology of six species of Dinoponera and the variation among species and within species is described. We performed geometric morphometric analyses for the penisvalvae and lateropenite of the volsella. The results from the descriptions and statistical analyses show the genitalia offer valuable characters for species delimitation. What is presently known as Dinoponera australis can be differentiated into discrete populations, perhaps some representing cryptic species. The similarities between D. australis and D. snellingi suggest a close relation between them as well as between D. gigantea and D. quadriceps. We conclude that several genital characters, especially those of the penisvalvae, can be used to differentiate the species and might be useful to clarify the taxonomy of Dinoponera.
Collapse
Affiliation(s)
- Leonardo Tozetto
- Departamento de Zoologia, Universidade Federal do Paraná, Avenida Francisco Heráclito Dos Santos, S/n, Centro Politécnico, Curitiba, CEP: 81531-980, Brazil.
| | - John E Lattke
- Departamento de Zoologia, Universidade Federal do Paraná, Avenida Francisco Heráclito Dos Santos, S/n, Centro Politécnico, Curitiba, CEP: 81531-980, Brazil
| |
Collapse
|
5
|
Qiu B, Larsen RS, Chang NC, Wang J, Boomsma JJ, Zhang G. Towards reconstructing the ancestral brain gene-network regulating caste differentiation in ants. Nat Ecol Evol 2018; 2:1782-1791. [PMID: 30349091 PMCID: PMC6217981 DOI: 10.1038/s41559-018-0689-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 09/06/2018] [Indexed: 12/15/2022]
Abstract
Specialized queens and life-time unmated workers evolved once in the common ancestor of all ants, but whether caste development across ants continues to be at least partly regulated by a single core set of genes remains obscure. We analysed brain transcriptomes from five ant species (three subfamilies) and reconstructed the origins of genes with caste-biased expression. Ancient genes predating the Neoptera were more likely to regulate gyne (virgin queen) phenotypes, while caste differentiation roles of younger, ant-lineage-specific genes varied. Transcriptome profiling showed that the ancestral network for caste-specific gene-regulation has been maintained, but that signatures of common ancestry are obscured by later modifications. Adjusting for such differences, we identified a core gene-set that: 1. consistently displayed similar directions and degrees of caste-differentiated expression, and 2. have mostly not been reported as being involved in caste differentiation. These core regulatory genes exist in the genomes of ant species that secondarily lost the queen caste, but expression differences for reproductive and sterile workers are minor and similar to social paper wasps that lack differentiated castes. Many caste-biased ant genes have caste-differentiated expression in honeybees, but directions of caste bias were uncorrelated, as expected when permanent castes evolved independently in both lineages.
Collapse
Affiliation(s)
- Bitao Qiu
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Stenbak Larsen
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ni-Chen Chang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - John Wang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Jacobus J Boomsma
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Guojie Zhang
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark. .,China National GeneBank, BGI-Shenzhen, Shenzhen, China. .,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
6
|
Shimoji H, Kikuchi T, Ohnishi H, Kikuta N, Tsuji K. Social enforcement depending on the stage of colony growth in an ant. Proc Biol Sci 2018; 285:20172548. [PMID: 29593107 PMCID: PMC5897631 DOI: 10.1098/rspb.2017.2548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/07/2018] [Indexed: 11/12/2022] Open
Abstract
Altruism is a paradox in Darwinian evolution. Policing is an important mechanism of the evolution and maintenance of altruism. A recently developed dynamic game model incorporating colony demography and inclusive fitness predicts that, in hymenopteran social insects, policing behaviour enforcing reproductive altruism in group members depends strongly on the colony growth stage, with strong policing as the colony develops and a relaxation of policing during the reproductive phase. Here, we report clear evidence supporting this prediction. In the ant Diacamma sp., reproduction by workers was suppressed by worker policing when the colony was small, whereas in large, mature colonies worker policing was relaxed and worker-produced males emerged. Conditional expression of traits can provide strong empirical evidence for natural selection theory if the expression pattern is precisely predicted by the theory, and our results illustrate the importance of intracolony population dynamics in the evolution of social systems.
Collapse
Affiliation(s)
- Hiroyuki Shimoji
- Department of Agro-Environmental Sciences, Faculty of Agriculture, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Tomonori Kikuchi
- Department of Agro-Environmental Sciences, Faculty of Agriculture, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
- Marine Biosystems Research Center, Chiba University, Tokawa 1, Choshi, Chiba 288-0014, Japan
| | - Hitoshi Ohnishi
- Department of Agro-Environmental Sciences, Faculty of Agriculture, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
- National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Ibaraki 305-8506, Japan
| | - Noritsugu Kikuta
- Department of Biology, Faculty of Science, Toyama University, Toyama 930-8555, Japan
| | - Kazuki Tsuji
- Department of Agro-Environmental Sciences, Faculty of Agriculture, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| |
Collapse
|
7
|
Tibbetts EA, Crocker KC. The challenge hypothesis across taxa: social modulation of hormone titres in vertebrates and insects. Anim Behav 2014. [DOI: 10.1016/j.anbehav.2014.02.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Medeiros J, Araújo A. Workers' Extra-Nest Behavioral Changes During Colony Fission in Dinoponera quadriceps (Santschi). NEOTROPICAL ENTOMOLOGY 2014; 43:115-121. [PMID: 27193517 DOI: 10.1007/s13744-013-0193-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 12/19/2013] [Indexed: 06/05/2023]
Abstract
Ant colonies can reproduce by two strategies: independent foundation, wherein the queen starts a new colony alone, and dependent foundation, in which workers assist the queen. In the queenless species Dinoponera quadriceps (Santschi), the colony reproduces obligatorily by fission, a type of dependent foundation, but this process is not well understood. This study describes a colony fission event of D. quadriceps in the field and analyzes the influence of the fission process on workers' extra-nest behavior. Based on observations of workers outside the nest, five distinct stages were identified: monodomic stage, polydomic stage, split stage, conflict stage, and post-conflict stage. The colony was initially monodomic and then occupied a second nest before it split into two independent colonies, indicating a gradual and opportunistic dependent foundation. After the fission event, the daughter colony had aggressive conflicts with the parental colony, resulting in the latter's disappearance. Colony fission affected workers' extra-nest behavior by increasing the frequency of rubbing the gaster against the substrate (which probably has a chemical marking function) and by decreasing the frequency of foraging during the split stage. After the fission event, the number of foragers was halved and foragers remained nearer to the nest during extra-nest activity. The spatial closeness of the parental and daughter colonies led to competition that caused the extinction or migration of the parental colony. Intraspecific competition was indicated by foraging directionality at the colony level, whereby areas of neighbor colonies were avoided; this directionality was stronger while both colonies coexisted.
Collapse
Affiliation(s)
- J Medeiros
- Depto de Fisiologia, PPG em Psicobiologia, Lab de Biologia Comportamental, Univ Federal do Rio Grande do Norte, Natal, RN, Brasil
| | - A Araújo
- Depto de Fisiologia, PPG em Psicobiologia, Lab de Biologia Comportamental, Univ Federal do Rio Grande do Norte, Natal, RN, Brasil.
| |
Collapse
|
9
|
Boomsma JJ. Beyond promiscuity: mate-choice commitments in social breeding. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120050. [PMID: 23339241 PMCID: PMC3576584 DOI: 10.1098/rstb.2012.0050] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Obligate eusociality with distinct caste phenotypes has evolved from strictly monogamous sub-social ancestors in ants, some bees, some wasps and some termites. This implies that no lineage reached the most advanced form of social breeding, unless helpers at the nest gained indirect fitness values via siblings that were identical to direct fitness via offspring. The complete lack of re-mating promiscuity equalizes sex-specific variances in reproductive success. Later, evolutionary developments towards multiple queen-mating retained lifetime commitment between sexual partners, but reduced male variance in reproductive success relative to female's, similar to the most advanced vertebrate cooperative breeders. Here, I (i) discuss some of the unique and highly peculiar mating system adaptations of eusocial insects; (ii) address ambiguities that remained after earlier reviews and extend the monogamy logic to the evolution of soldier castes; (iii) evaluate the evidence for indirect fitness benefits driving the dynamics of (in)vertebrate cooperative breeding, while emphasizing the fundamental differences between obligate eusociality and cooperative breeding; (iv) infer that lifetime commitment is a major driver towards higher levels of organization in bodies, colonies and mutualisms. I argue that evolutionary informative definitions of social systems that separate direct and indirect fitness benefits facilitate transparency when testing inclusive fitness theory.
Collapse
Affiliation(s)
- Jacobus J Boomsma
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark.
| |
Collapse
|
10
|
Tanner CJ, Keller L. Nest distribution varies with dispersal method and familiarity-mediated aggression for two sympatric ants. Anim Behav 2012. [DOI: 10.1016/j.anbehav.2012.08.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Cronin AL, Molet M, Doums C, Monnin T, Peeters C. Recurrent evolution of dependent colony foundation across eusocial insects. ANNUAL REVIEW OF ENTOMOLOGY 2012; 58:37-55. [PMID: 22934981 DOI: 10.1146/annurev-ento-120811-153643] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The spectacular success of eusocial insects can be attributed to their sophisticated cooperation, yet cooperation is conspicuously absent during colony foundation when queens are alone. Selection against this solitary stage has led to a dramatically different strategy in thousands of eusocial insect species in which colonies are started by groups of nestmates and the benefits of sociality are retained continuously. Dependent colony foundation (DCF) evolved recurrently multiple times across the ants, bees, and wasps, though its prevalence in termites remains unclear. We review adaptations at both the colony level (reproductive investment shifts from sexuals to workers) and the individual level (wingless queens evolve in ants), and other consequences for life history (invasiveness, parasite transmission). Although few studies have focused on DCF, the accumulated data from anecdotal reports, supported by indirect information including morphology, population genetics, and colony demographics, make it clear that this strategy is more diverse and widespread than is usually recognized.
Collapse
Affiliation(s)
- Adam L Cronin
- Laboratoire Écologie & Évolution CNRS UMR 7625, Université Pierre et Marie Curie, 75 005 Paris, France.
| | | | | | | | | |
Collapse
|
12
|
Molet M, Wheeler DE, Peeters C. Evolution of novel mosaic castes in ants: modularity, phenotypic plasticity, and colonial buffering. Am Nat 2012; 180:328-41. [PMID: 22854076 DOI: 10.1086/667368] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Many ants have independently evolved castes with novel morphology as well as function, such as soldiers and permanently wingless (ergatoid) queens. We present a conceptual model, based on modularity in morphology and development, in which evolutionary innovation is facilitated by the ancestral ant polyphenism of winged queens and wingless workers. We suggest that novel castes evolved from rare intercastes, anomalous mosaics of winged queens and workers, erratically produced by colonies through environmental or genetic perturbations. The colonial environment is highly accommodating and buffers viable intercastes from individual selection. Their cost is limited because they are diluted by the large number of nestmates, yet some can bring disproportionate benefits to their colonies in the context of defense or reproduction (e.g., wingless intercastes able to mate). Useful intercastes will increase in frequency as their morphology is stabilized through genetic accommodation. We show that both soldiers and ergatoid queens are mosaics of winged queens and workers, and they are strikingly similar to some intercastes. Modularity and developmental plasticity together with winged/wingless polyphenism thus allow for the production of highly variable mosaic intercastes, and colonies incubate the advantageous mosaics.
Collapse
Affiliation(s)
- Mathieu Molet
- Laboratoire Ecologie et Evolution, CNRS Unité Mixte de Recherche 7625, Université Pierre et Marie Curie, Paris 75005, France.
| | | | | |
Collapse
|
13
|
Smith CR, Suarez AV, Tsutsui ND, Wittman SE, Edmonds B, Freauff A, Tillberg CV. Nutritional asymmetries are related to division of labor in a queenless ant. PLoS One 2011; 6:e24011. [PMID: 21886914 PMCID: PMC3160331 DOI: 10.1371/journal.pone.0024011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 08/02/2011] [Indexed: 11/19/2022] Open
Abstract
Eusocial species exhibit pronounced division of labor, most notably between reproductive and non-reproductive castes, but also within non-reproductive castes via morphological specialization and temporal polyethism. For species with distinct worker and queen castes, age-related differences in behavior among workers (e.g. within-nest tasks versus foraging) appear to result from physiological changes such as decreased lipid content. However, we know little about how labor is divided among individuals in species that lack a distinct queen caste. In this study, we investigated how fat storage varied among individuals in a species of ant (Dinoponera australis) that lacks a distinct queen caste and in which all individuals are morphologically similar and capable of reproduction (totipotent at birth). We distinguish between two hypotheses, 1) all individuals are physiologically similar, consistent with the possibility that any non-reproductive may eventually become reproductive, and 2) non-reproductive individuals vary in stored fat, similar to highly eusocial species, where depletion is associated with foraging and non-reproductives have lower lipid stores than reproducing individuals. Our data support the latter hypothesis. Location in the nest, the probability of foraging, and foraging effort, were all associated with decreased fat storage.
Collapse
Affiliation(s)
- Chris R Smith
- Department of Biology, Earlham College, Richmond, Indiana, United States of America.
| | | | | | | | | | | | | |
Collapse
|
14
|
Gobin B, Ito F, Billen J, Peeters C. Degeneration of sperm reservoir and the loss of mating ability in worker ants. Naturwissenschaften 2008; 95:1041-8. [DOI: 10.1007/s00114-008-0420-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 06/12/2008] [Accepted: 06/19/2008] [Indexed: 11/24/2022]
|