1
|
Ayala-Berdon J, Medina-Bello KI. Torpor energetics are related to the interaction between body mass and climate in bats of the family Vespertilionidae. J Exp Biol 2024; 227:jeb246824. [PMID: 39206564 DOI: 10.1242/jeb.246824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Torpor is an adaptive strategy allowing heterothermic animals to cope with energy limitations. In birds and mammals, intrinsic and extrinsic factors, such as body mass and ambient temperature, are the main variables influencing torpor use. A theoretical model of the relationship between metabolic rate during torpor and ambient temperature has been proposed. Nevertheless, no empirical attempts have been made to assess the model predictions under different climates. Using open-flow respirometry, we evaluated the ambient temperature at which bats entered torpor and when torpid metabolic rate reached its minimum, the reduction in metabolic rate below basal values, and minimum torpid metabolic rate in 11 bat species of the family Vespertilionidae with different body mass from warm and cold climates. We included data on the minimum torpid metabolic rate of five species we retrieved from the literature. We tested the effects using mixed-effect phylogenetic models. All models showed a significant interaction between body mass and climate. Smaller bats went into torpor and reached minimum torpid metabolic rates at warmer temperatures, showed a higher reduction in the metabolic rate below basal values, and presented lower torpid metabolic rates than larger ones. The slopes of the models were different for bats from different climates. These results are likely explained by differences in body mass and the metabolic rate of bats, which may favor larger bats expressing torpor in colder sites and smaller bats in the warmer ones. Further studies to assess torpor use in bats from different climates are proposed.
Collapse
Affiliation(s)
- Jorge Ayala-Berdon
- CONAHCYT, Universidad Autónoma de Tlaxcala, Carretera Tlaxcala-Puebla Km. 1.5, C.P. 90062, Tlaxcala de Xicohténcatl, Tlaxcala, México
| | - Kevin I Medina-Bello
- Posgrado en Ciencias Biológicas, Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Carretera Tlaxcala-Puebla Km. 1.5, C.P. 90062, Tlaxcala de Xicohténcatl, Tlaxcala, México
| |
Collapse
|
2
|
Turbill C, Walker M, Boardman W, Martin JM, McKeown A, Meade J, Welbergen JA. Torpor use in the wild by one of the world's largest bats. Proc Biol Sci 2024; 291:20241137. [PMID: 38981525 PMCID: PMC11335021 DOI: 10.1098/rspb.2024.1137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/11/2024] Open
Abstract
Torpor is widespread among bats presumably because most species are small, and torpor greatly reduces their high mass-specific resting energy expenditure, especially in the cold. Torpor has not been recorded in any bat species larger than 50 g, yet in theory could be beneficial even in the world's largest bats (flying-foxes; Pteropus spp.) that are exposed to adverse environmental conditions causing energy bottlenecks. We used temperature telemetry to measure body temperature in wild-living adult male grey-headed flying-foxes (P. poliocephalus; 799 g) during winter in southern Australia. We found that all individuals used torpor while day-roosting, with minimum body temperature reaching 27°C. Torpor was recorded following a period of cool, wet and windy weather, and on a day with the coldest maximum air temperature, suggesting it is an adaptation to reduce energy expenditure during periods of increased thermoregulatory costs and depleted body energy stores. A capacity for torpor among flying-foxes has implications for understanding their distribution, behavioural ecology and life history. Furthermore, our discovery increases the body mass of bats known to use torpor by more than tenfold and extends the documented use of this energy-saving strategy under wild conditions to all bat superfamilies, with implications for the evolutionary maintenance of torpor among bats and other mammals.
Collapse
Affiliation(s)
- Christopher Turbill
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
- School of Science, Western Sydney University, Penrith, New South Wales, Australia
| | - Melissa Walker
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Wayne Boardman
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, South Australia, Australia
| | - John M. Martin
- Taronga Conservation Society, Mosman, New South Wales, Australia
| | - Adam McKeown
- CSIRO Land & Water, Atherton, Queensland, Australia
| | - Jessica Meade
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Justin A. Welbergen
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| |
Collapse
|
3
|
Giroud S, Habold C, Nespolo RF, Mejías C, Terrien J, Logan SM, Henning RH, Storey KB. The Torpid State: Recent Advances in Metabolic Adaptations and Protective Mechanisms †. Front Physiol 2021; 11:623665. [PMID: 33551846 PMCID: PMC7854925 DOI: 10.3389/fphys.2020.623665] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/21/2020] [Indexed: 12/18/2022] Open
Abstract
Torpor and hibernation are powerful strategies enabling animals to survive periods of low resource availability. The state of torpor results from an active and drastic reduction of an individual's metabolic rate (MR) associated with a relatively pronounced decrease in body temperature. To date, several forms of torpor have been described in all three mammalian subclasses, i.e., monotremes, marsupials, and placentals, as well as in a few avian orders. This review highlights some of the characteristics, from the whole organism down to cellular and molecular aspects, associated with the torpor phenotype. The first part of this review focuses on the specific metabolic adaptations of torpor, as it is used by many species from temperate zones. This notably includes the endocrine changes involved in fat- and food-storing hibernating species, explaining biomedical implications of MR depression. We further compare adaptive mechanisms occurring in opportunistic vs. seasonal heterotherms, such as tropical and sub-tropical species. Such comparisons bring new insights into the metabolic origins of hibernation among tropical species, including resistance mechanisms to oxidative stress. The second section of this review emphasizes the mechanisms enabling heterotherms to protect their key organs against potential threats, such as reactive oxygen species, associated with the torpid state. We notably address the mechanisms of cellular rehabilitation and protection during torpor and hibernation, with an emphasis on the brain, a central organ requiring protection during torpor and recovery. Also, a special focus is given to the role of an ubiquitous and readily-diffusing molecule, hydrogen sulfide (H2S), in protecting against ischemia-reperfusion damage in various organs over the torpor-arousal cycle and during the torpid state. We conclude that (i) the flexibility of torpor use as an adaptive strategy enables different heterothermic species to substantially suppress their energy needs during periods of severely reduced food availability, (ii) the torpor phenotype implies marked metabolic adaptations from the whole organism down to cellular and molecular levels, and (iii) the torpid state is associated with highly efficient rehabilitation and protective mechanisms ensuring the continuity of proper bodily functions. Comparison of mechanisms in monotremes and marsupials is warranted for understanding the origin and evolution of mammalian torpor.
Collapse
Affiliation(s)
- Sylvain Giroud
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Caroline Habold
- University of Strasbourg, CNRS, IPHC, UMR 7178, Strasbourg, France
| | - Roberto F. Nespolo
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, ANID – Millennium Science Initiative Program-iBio, Valdivia, Chile
- Center of Applied Ecology and Sustainability, Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos Mejías
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, ANID – Millennium Science Initiative Program-iBio, Valdivia, Chile
- Center of Applied Ecology and Sustainability, Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jérémy Terrien
- Unité Mécanismes Adaptatifs et Evolution (MECADEV), UMR 7179, CNRS, Muséum National d’Histoire Naturelle, Brunoy, France
| | | | - Robert H. Henning
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, Netherlands
| | | |
Collapse
|
4
|
Geiser F. Seasonal Expression of Avian and Mammalian Daily Torpor and Hibernation: Not a Simple Summer-Winter Affair †. Front Physiol 2020; 11:436. [PMID: 32508673 PMCID: PMC7251182 DOI: 10.3389/fphys.2020.00436] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/08/2020] [Indexed: 12/17/2022] Open
Abstract
Daily torpor and hibernation (multiday torpor) are the most efficient means for energy conservation in endothermic birds and mammals and are used by many small species to deal with a number of challenges. These include seasonal adverse environmental conditions and low food/water availability, periods of high energetic demands, but also reduced foraging options because of high predation pressure. Because such challenges differ among regions, habitats and food consumed by animals, the seasonal expression of torpor also varies, but the seasonality of torpor is often not as clear-cut as is commonly assumed and differs between hibernators and daily heterotherms expressing daily torpor exclusively. Hibernation is found in mammals from all three subclasses from the arctic to the tropics, but is known for only one bird. Several hibernators can hibernate for an entire year or express torpor throughout the year (8% of species) and more hibernate from late summer to spring (14%). The most typical hibernation season is the cold season from fall to spring (48%), whereas hibernation is rarely restricted to winter (6%). In hibernators, torpor expression changes significantly with season, with strong seasonality mainly found in the sciurid and cricetid rodents, but seasonality is less pronounced in the marsupials, bats and dormice. Daily torpor is diverse in both mammals and birds, typically is not as seasonal as hibernation and torpor expression does not change significantly with season. Torpor in spring/summer has several selective advantages including: energy and water conservation, facilitation of reproduction or growth during development with limited resources, or minimisation of foraging and thus exposure to predators. When torpor is expressed in spring/summer it is usually not as deep and long as in winter, because of higher ambient temperatures, but also due to seasonal functional plasticity. Unlike many other species, subtropical nectarivorous blossom-bats and desert spiny mice use more frequent and pronounced torpor in summer than in winter, which is related to seasonal availability of nectar or water. Thus, seasonal use of torpor is complex and differs among species and habitats.
Collapse
Affiliation(s)
- Fritz Geiser
- Centre for Behavioural and Physiological Ecology, Zoology CO2, University of New England, Armidale, NSW, Australia
| |
Collapse
|
5
|
Nowack J, Levesque DL, Reher S, Dausmann KH. Variable Climates Lead to Varying Phenotypes: “Weird” Mammalian Torpor and Lessons From Non-Holarctic Species. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00060] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
6
|
Does aridity affect spatial ecology? Scaling of home range size in small carnivorous marsupials. Naturwissenschaften 2019; 106:42. [PMID: 31263941 DOI: 10.1007/s00114-019-1636-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/13/2019] [Accepted: 06/15/2019] [Indexed: 10/26/2022]
Abstract
The aim of our study was to determine how body mass affects home range size in carnivorous marsupials (dasyurids) and whether those species living in desert environments require relatively larger areas than their mesic counterparts. The movement patterns of two sympatric species of desert dasyurids (body mass 16 and 105 g) were investigated via radio-telemetry in southwestern Queensland and compared with published records for other Australian dasyurids. Both species monitored occupied stable home ranges. For all dasyurids, home range size scaled with body mass with a coefficient of > 1.2, almost twice that for metabolic rate. Generally, males occupied larger home ranges than females, even after accounting for the size dimorphism common in dasyurids. Of the three environmental variables tested, primary productivity and habitat, a categorical variable based on the 500 mm rainfall isopleth, further improved model performance demonstrating that arid species generally occupy larger home ranges. Similar patterns were still present in the dataset after correcting for phylogeny. Consequently, the trend towards relatively larger home ranges with decreasing habitat productivity can be attributed to environmental factors and was not a result of taxonomic affiliation. We therefore conclude that alternative avenues to reduce energy requirements on an individual and population level (i.e. torpor, basking and population density) do not fully compensate for the low resource availability of deserts demanding an increase in home range size.
Collapse
|
7
|
Romano AB, Hunt A, Welbergen JA, Turbill C. Nocturnal torpor by superb fairy-wrens: a key mechanism for reducing winter daily energy expenditure. Biol Lett 2019; 15:20190211. [PMID: 31238856 DOI: 10.1098/rsbl.2019.0211] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Many passerine birds are small and require a high mass-specific rate of resting energy expenditure, especially in the cold. The energetics of thermoregulation is, therefore, an important aspect of their ecology, yet few studies have quantified thermoregulatory patterns in wild passerines. We used miniature telemetry to record the skin temperature ( Tskin) of free-living superb fairy-wrens ( Malurus cyaneus, 8.6 g; n = 6 birds over N = 7-22 days) and determine the importance of controlled reductions in body temperature during resting to their winter energy budgets. Fairy-wrens routinely exhibited large daily fluctuations in Tskin between maxima of 41.9 ± 0.6°C and minima of 30.4 ± 0.7°C, with overall individual minima of 27.4 ± 1.1°C (maximum daily range: 14.7 ± 0.9°C). These results provide strong evidence of nocturnal torpor in this small passerine, which we calculated to provide a 42% reduction in resting metabolic rate at a Ta of 5°C compared to active-phase Tskin. A capacity for energy-saving torpor has important consequences for understanding the behaviour and life-history ecology of superb fairy-wrens. Moreover, our novel field data suggest that torpor could be more widespread and important than previously thought within passerines, the most diverse order of birds.
Collapse
Affiliation(s)
- Alex B Romano
- 1 Hawkesbury Institute for the Environment, Western Sydney University , Richmond, New South Wales , Australia
| | - Anthony Hunt
- 2 Australian Bird Study Association , 16 Alderson Ave, North Rocks, New South Wales 2151 , Australia
| | - Justin A Welbergen
- 1 Hawkesbury Institute for the Environment, Western Sydney University , Richmond, New South Wales , Australia
| | - Christopher Turbill
- 1 Hawkesbury Institute for the Environment, Western Sydney University , Richmond, New South Wales , Australia
| |
Collapse
|
8
|
García-Navas V, Rodríguez-Rey M, Westerman M. Bursts of morphological and lineage diversification in modern dasyurids, a ‘classic’ adaptive radiation. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Vicente García-Navas
- Department of Integrative Ecology, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | | | - Michael Westerman
- Department of Ecology, Environment and Evolution, LaTrobe University, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Geiser F, Stawski C, Wacker CB, Nowack J. Phoenix from the Ashes: Fire, Torpor, and the Evolution of Mammalian Endothermy. Front Physiol 2017; 8:842. [PMID: 29163191 PMCID: PMC5673639 DOI: 10.3389/fphys.2017.00842] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/09/2017] [Indexed: 12/02/2022] Open
Affiliation(s)
- Fritz Geiser
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW, Australia
| | - Clare Stawski
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW, Australia
| | - Chris B Wacker
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW, Australia
| | - Julia Nowack
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW, Australia.,Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
10
|
Ayala-Berdon J, Vázquez-Fuerte R, Beamonte-Barrientos R, Schondube JE. Effect of diet quality and ambient temperature on the use of torpor by two species of neotropical nectar-feeding bats. J Exp Biol 2017; 220:920-929. [PMID: 28250178 DOI: 10.1242/jeb.142422] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 12/20/2016] [Indexed: 01/14/2023]
Abstract
Neotropical bats use torpor as a strategy to save energy when they experience a low energy intake and/or low ambient temperature (Ta). Digestive physiology limits the energy intake of several glossophaginid bats, and could play an important role in the onset of torpor in these tropical animals. We measured the effect that diet quality and Ta had on the use of torpor by the nectar-feeding bats Glossophaga soricina and Leptonycteris yerbabuenae Captive bats were fed with 5% (low) or 35% (high) sucrose solutions while exposed to two different Ta (17.7 and 23.2°C; low Ta and high Ta) in four different treatments: (1) high sucrose:high Ta, (2) high sucrose:low Ta, (3) low sucrose:high Ta and (4) low sucrose:low Ta We measured their energy intake, changes in body mass (ΔMb) and skin temperature (Tskin) as response variables. Energy intake (in 10 h) was limited when both species fed on 5% sucrose, but body mass gain was only affected in G. soricina. Energy intake and Ta had a negative effect on the minimum Tskin of both species, and ΔMb affected the time that G. soricina used torpor. Both species remained normothermic on the high sucrose:high Ta treatment, but used torpor on the other three treatments. Bats used torpor during their resting and activity periods. Leptonycteris yerbabuenae spent more time in torpor in the low sucrose:high Ta treatment, while G. soricina used this strategy for longer periods of time in the high sucrose:low Ta treatment. We found that diet quality and Ta played an important role in the use of torpor by nectar-feeding bats.
Collapse
Affiliation(s)
- Jorge Ayala-Berdon
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Apartado Postal 27-3 (Xangari), Morelia, Michoacán 58089, México .,CONACYT, Universidad Autónoma de Tlaxcala, 90062 Tlaxcala de Xicohténcatl, México
| | - Rommy Vázquez-Fuerte
- Escuela Nacional de Estudios Superiores Morelia, Universidad Nacional Autónoma de México, 58089 Morelia, Michoacán, México
| | | | - Jorge E Schondube
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Apartado Postal 27-3 (Xangari), Morelia, Michoacán 58089, México
| |
Collapse
|
11
|
Jastroch M, Giroud S, Barrett P, Geiser F, Heldmaier G, Herwig A. Seasonal Control of Mammalian Energy Balance: Recent Advances in the Understanding of Daily Torpor and Hibernation. J Neuroendocrinol 2016; 28. [PMID: 27755687 DOI: 10.1111/jne.12437] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/07/2016] [Accepted: 10/15/2016] [Indexed: 12/20/2022]
Abstract
Endothermic mammals and birds require intensive energy turnover to sustain high body temperatures and metabolic rates. To cope with the energetic bottlenecks associated with the change of seasons, and to minimise energy expenditure, complex mechanisms and strategies are used, such as daily torpor and hibernation. During torpor, metabolic depression and low body temperatures save energy. However, these bouts of torpor, lasting for hours to weeks, are interrupted by active 'euthermic' phases with high body temperatures. These dynamic transitions require precise communication between the brain and peripheral tissues to defend rheostasis in energetics, body mass and body temperature. The hypothalamus appears to be the major control centre in the brain, coordinating energy metabolism and body temperature. The sympathetic nervous system controls body temperature by adjustments of shivering and nonshivering thermogenesis, with the latter being primarily executed by brown adipose tissue. Over the last decade, comparative physiologists have put forward integrative studies on the ecophysiology, biochemistry and molecular regulation of energy balance in response to seasonal challenges, food availability and ambient temperature. Mammals coping with such environments comprise excellent model organisms for studying the dynamic regulation of energy metabolism. Beyond the understanding of how animals survive in nature, these studies also uncover general mechanisms of mammalian energy homeostasis. This research will benefit efforts of translational medicine aiming to combat emerging human metabolic disorders. The present review focuses on recent advances in the understanding of energy balance and its neuronal and endocrine control during the most extreme metabolic fluctuations in nature: daily torpor and hibernation.
Collapse
Affiliation(s)
- M Jastroch
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center & German Diabetes Center (DZD), Helmholtz Zentrum München, Neuherberg, Germany
| | - S Giroud
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - P Barrett
- Rowett Institute for Nutrition and Health, University of Aberdeen, Aberdeen, UK
| | - F Geiser
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, Australia
| | - G Heldmaier
- Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - A Herwig
- Zoological Institute, University of Hamburg, Hamburg, Germany
| |
Collapse
|
12
|
Bondarenco A, Körtner G, Geiser F. How to keep cool in a hot desert: Torpor in two species of free-ranging bats in summer. Temperature (Austin) 2016; 3:476-483. [PMID: 28349087 PMCID: PMC5079220 DOI: 10.1080/23328940.2016.1214334] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/14/2016] [Accepted: 07/14/2016] [Indexed: 11/23/2022] Open
Abstract
Small insectivorous tree-roosting bats are among the most taxonomically diverse group of mammals in Australia's desert, yet little is known about their thermal physiology, torpor patterns and roosting ecology, especially during summer. We used temperature-telemetry to quantify and compare thermal biology and roost selection by broad-nosed bats Scotorepens greyii (6.3 g; n = 11) and Scotorepens balstoni (9.9 g; n = 5) in Sturt National Park (NSW Australia) over 3 summers (2010-13). Both vespertilionids used torpor often and the total time bats spent torpid was ∼7 h per day. Bats rewarmed using entirely passive rewarming on 44.8% (S. greyii) and 29.4% (S. balstoni) of all torpor arousals. Both bat species roosted in hollow, cracked dead trees relatively close to the ground (∼3 m) in dense tree stands. Our study shows that torpor and passive rewarming are 2 common and likely crucial survival traits of S. greyii and S. balstoni.
Collapse
Affiliation(s)
- Artiom Bondarenco
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale NSW, Australia
| | - Gerhard Körtner
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale NSW, Australia
| | - Fritz Geiser
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale NSW, Australia
| |
Collapse
|
13
|
Story PG, French K, Astheimer LB, Buttemer WA. Fenitrothion, an organophosphorous insecticide, impairs locomotory function and alters body temperatures in Sminthopsis macroura (Gould 1845) without reducing metabolic rates during running endurance and thermogenic performance tests. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:152-162. [PMID: 26184692 DOI: 10.1002/etc.3168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/02/2015] [Accepted: 07/15/2015] [Indexed: 06/04/2023]
Abstract
Endemic Australian mammal species are exposed to pesticides used for locust control as they occupy the same habitat as the target insect. The authors examined the impact of an ultra-low volume formulation of the organophosphorous insecticide fenitrothion (O,O-dimethyl-O-[3-methyl-4-nitrophenol]-phosphorothioate) on a suite of physiological measures that affect the ability of animals to survive in free-living conditions: locomotory and thermogenic functions, metabolic performance, body mass, and hematocrit and hemoglobin levels. Plasma and brain cholinesterase activity in relation to time since exposure to pesticide were also determined. An orally applied dose of 90 mg kg(-1) fenitrothion reduced running endurance in the stripe-faced dunnart, Sminthopsis macroura, by 80% the day after exposure concomitantly with a reduction of approximately 50% in plasma and 45% in brain acetylcholinesterase activity. These adverse effects disappeared by 10 d postexposure. Maximal metabolic rates reached during running were unaffected by pesticide, as were body mass and hemoglobin and hematocrit levels. Maximal cold-induced metabolic rate (measured as peak 2 min metabolic rate attained during cold exposure), time taken to reach peak metabolic rate on cold exposure, cumulative total oxygen consumed during shivering thermogenesis, and body temperature before and after cold exposure were unaffected by fenitrothion. Dunnart rectal temperatures showed a reduction of up to 5 °C after exposure to fenitrothion but returned to pre-exposure levels by 10 d postdose. Such physiological compromises in otherwise asymptomatic animals demonstrate the importance of considering performance-based measures in pesticide risk assessments.
Collapse
Affiliation(s)
- Paul G Story
- Australian Plague Locust Commission, Department of Agriculture, Canberra, Australian Capital Territory, Australia
- School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Kris French
- School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Lee B Astheimer
- School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - William A Buttemer
- School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
14
|
Brigham RM, Geiser F. Do red squirrels (Tamiasciurus hudsonicus) use daily torpor during winter? ECOSCIENCE 2015. [DOI: 10.2980/19-2-3464] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Ruf T, Geiser F. Daily torpor and hibernation in birds and mammals. Biol Rev Camb Philos Soc 2015; 90:891-926. [PMID: 25123049 PMCID: PMC4351926 DOI: 10.1111/brv.12137] [Citation(s) in RCA: 501] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 07/16/2014] [Accepted: 07/16/2014] [Indexed: 12/11/2022]
Abstract
Many birds and mammals drastically reduce their energy expenditure during times of cold exposure, food shortage, or drought, by temporarily abandoning euthermia, i.e. the maintenance of high body temperatures. Traditionally, two different types of heterothermy, i.e. hypometabolic states associated with low body temperature (torpor), have been distinguished: daily torpor, which lasts less than 24 h and is accompanied by continued foraging, versus hibernation, with torpor bouts lasting consecutive days to several weeks in animals that usually do not forage but rely on energy stores, either food caches or body energy reserves. This classification of torpor types has been challenged, suggesting that these phenotypes may merely represent extremes in a continuum of traits. Here, we investigate whether variables of torpor in 214 species (43 birds and 171 mammals) form a continuum or a bimodal distribution. We use Gaussian-mixture cluster analysis as well as phylogenetically informed regressions to quantitatively assess the distinction between hibernation and daily torpor and to evaluate the impact of body mass and geographical distribution of species on torpor traits. Cluster analysis clearly confirmed the classical distinction between daily torpor and hibernation. Overall, heterothermic endotherms tend to be small; hibernators are significantly heavier than daily heterotherms and also are distributed at higher average latitudes (∼35°) than daily heterotherms (∼25°). Variables of torpor for an average 30 g heterotherm differed significantly between daily heterotherms and hibernators. Average maximum torpor bout duration was >30-fold longer, and mean torpor bout duration >25-fold longer in hibernators. Mean minimum body temperature differed by ∼13°C, and the mean minimum torpor metabolic rate was ∼35% of the basal metabolic rate (BMR) in daily heterotherms but only 6% of BMR in hibernators. Consequently, our analysis strongly supports the view that hibernators and daily heterotherms are functionally distinct groups that probably have been subject to disruptive selection. Arguably, the primary physiological difference between daily torpor and hibernation, which leads to a variety of derived further distinct characteristics, is the temporal control of entry into and arousal from torpor, which is governed by the circadian clock in daily heterotherms, but apparently not in hibernators.
Collapse
Affiliation(s)
- Thomas Ruf
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Savoyenstraße 1, A-1160 Vienna, Austria
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, New South Wales 2351, Australia
| | - Fritz Geiser
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, New South Wales 2351, Australia
| |
Collapse
|
16
|
Proteomics approaches shed new light on hibernation physiology. J Comp Physiol B 2015; 185:607-27. [PMID: 25976608 DOI: 10.1007/s00360-015-0905-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 03/11/2015] [Accepted: 04/19/2015] [Indexed: 10/23/2022]
Abstract
The broad phylogenetic distribution and rapid phenotypic transitions of mammalian hibernators imply that hibernation is accomplished by differential expression of common genes. Traditional candidate gene approaches have thus far explained little of the molecular mechanisms underlying hibernation, likely due to (1) incomplete and imprecise sampling of a complex phenotype, and (2) the forming of hypotheses about which genes might be important based on studies of model organisms incapable of such dynamic physiology. Unbiased screening approaches, such as proteomics, offer an alternative means to discover the cellular underpinnings that permit successful hibernation and may reveal previously overlooked, important pathways. Here, we review the findings that have emerged from proteomics studies of hibernation. One striking feature is the stability of the proteome, especially across the extreme physiological shifts of torpor-arousal cycles during hibernation. This has led to subsequent investigations of the role of post-translational protein modifications in altering protein activity without energetically wasteful removal and rebuilding of protein pools. Another unexpected finding is the paucity of universal proteomic adjustments across organ systems in response to the extreme metabolic fluctuations despite the universality of their physiological challenges; rather each organ appears to respond in a unique, tissue-specific manner. Additional research is needed to extend and synthesize these results before it will be possible to address the whole body physiology of hibernation.
Collapse
|
17
|
Leslie AM, Stewart M, Price E, Munn AJ. Daily changes in food availability, but not long-term unpredictability, determine daily torpor-bout occurrences and frequency in stripe-faced dunnarts (Sminthopsis macroura). AUST J ZOOL 2015. [DOI: 10.1071/zo14058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Daily torpor, a short-term reduction in body temperature and metabolism, is an energy-saving strategy that has been interpreted as an adaptation to unpredictable resource availability. However, the effect of food-supply variability on torpor, separately from consistent food restriction, remains largely unexamined. In this study, we investigated the effect of unpredictable food availability on torpor in stripe-faced dunnarts (Sminthopsis macroura). After a control period of ad libitum feeding, dunnarts were offered 65% of their average daily ad libitum intake over 31 days, either as a constant restriction (i.e. as equal amount of food offered each day) or as an unpredictable schedule of feed offered, varied daily as 0%, 30%, 60%, 100% or 130% of ad libitum. Both feeding groups had increased torpor-bout occurrences (as a proportion of all dunnarts on a given day) and torpor-bout frequency (average number of bouts each day) when on a restricted diet compared with ad libitum feeding, but torpor frequency did not differ between the consistently restricted and unpredictably restricted groups. Most importantly, torpor occurrence and daily bout frequency by the unpredictably restricted group appeared to change in direct association with the amount of food offered on each day; torpor frequency was higher on days of low food availability. Our data do not support the interpretation that torpor is a response to unpredictable food availability per se, but rather that torpor allowed a rapid adjustment of energy expenditure to manage daily fluctuations in food availability.
Collapse
|
18
|
Stannard HJ, McAllan BM, Old JM. Dietary composition and nutritional outcomes in two marsupials,Sminthopsis macrouraandS. crassicaudata. J Mammal 2014. [DOI: 10.1644/13-mamm-a-071] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
19
|
Hanna E, Cardillo M. Clarifying the relationship between torpor and anthropogenic extinction risk in mammals. J Zool (1987) 2014. [DOI: 10.1111/jzo.12136] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- E. Hanna
- Macroevolution & Macroecology Group Research School of Biology Australian National University Canberra ACT Australia
| | - M. Cardillo
- Macroevolution & Macroecology Group Research School of Biology Australian National University Canberra ACT Australia
| |
Collapse
|
20
|
Affiliation(s)
- A. Riek
- Department of Animal Sciences; University of Göttingen; Göttingen Germany
- Centre for Behavioural and Physiological Ecology, Zoology; University of New England; Armidale NSW Australia
| | - F. Geiser
- Centre for Behavioural and Physiological Ecology, Zoology; University of New England; Armidale NSW Australia
| |
Collapse
|
21
|
Some like it cold: summer torpor by freetail bats in the Australian arid zone. J Comp Physiol B 2013; 183:1113-22. [PMID: 23989287 DOI: 10.1007/s00360-013-0779-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 08/07/2013] [Accepted: 08/16/2013] [Indexed: 10/26/2022]
Abstract
Bats are among the most successful groups of Australian arid-zone mammals and, therefore, must cope with pronounced seasonal fluctuations in ambient temperature (T a), food availability and unpredictable weather patterns. As knowledge about the energy conserving strategies in desert bats is scant, we used temperature-telemetry to quantify the thermal physiology of tree-roosting inland freetail bats (Mormopterus species 3, 8.5 g, n = 8) at Sturt National Park over two summers (2010-2012), when T a was high and insects were relatively abundant. Torpor use and activity were affected by T a. Bats remained normothermic on the warmest days; they employed one "morning" torpor bout on most days and typically exhibited two torpor bouts on the coolest days. Overall, animals employed torpor on 67.9 % of bat-days and torpor bout duration ranged from 0.5 to 39.3 h. At any given T a, torpor bouts were longer in Mormopterus than in bats from temperate and subtropical habitats. Furthermore, unlike bats from other climatic regions that used only partial passive rewarming, Mormopterus aroused from torpor using either almost entirely passive (68.9 % of all arousals) or active rewarming (31.1 %). We provide the first quantitative data on torpor in a free-ranging arid-zone molossid during summer. They demonstrate that this desert bat uses torpor extensively in summer and often rewarms passively from torpor to maximise energy and water conservation.
Collapse
|
22
|
Paull DC. Refuge sites, activity and torpor in wild common dunnarts (Sminthopsis murina) in a temperate heathland. AUSTRALIAN MAMMALOGY 2013. [DOI: 10.1071/am12016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This telemetric study describes patterns of movement, activity, refuge-site use and torpor in free-living Sminthopsis murina over one autumn/winter period in a warm-temperate habitat. S. murina were found to rest during the day in burrows and hollow logs. Individuals maintained several daytime refuges and foraged over several hectares each night. They were found to prefer agamid burrows where a daily temperature of 10.3–15.8°C was maintained when ambient surface temperatures varied between 3.5 and 24.6°C. Torpor was employed in 12 of 13 complete resting periods recorded. Dunnarts were found to use both long (>6 h) and short (<4 h) torpor bouts with a minimum skin temperature of 17.2–26.7°C. Typically, torpor occurred in the morning, though bouts into the afternoon were also recorded. Arousal rates from torpor were variable and were achieved by endogenous and passive means. Normothermic rest bouts tended to be short (mostly <3 h) though longer periods were recorded, with a mean resting skin temperature of 32.3 ± 0.8°C. The variable physiological responses observed in S. murina seem to follow a facultative pattern, and, along with long activity periods and their use of refuge sites, may be linked to variable invertebrate activity during cooler months.
Collapse
|
23
|
That’s hot: golden spiny mice display torpor even at high ambient temperatures. J Comp Physiol B 2012; 183:567-81. [DOI: 10.1007/s00360-012-0721-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 11/13/2012] [Accepted: 11/13/2012] [Indexed: 10/27/2022]
|
24
|
Wacker CB, Daniella Rojas A, Geiser F. The use of small subcutaneous transponders for quantifying thermal biology and torpor in small mammals. J Therm Biol 2012. [DOI: 10.1016/j.jtherbio.2011.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
25
|
Tomlinson S, Withers PC, Maloney SK. Comparative thermoregulatory physiology of two dunnarts, Sminthopsis macroura and Sminthopsis ooldea (Marsupialia : Dasyuridae). AUST J ZOOL 2012. [DOI: 10.1071/zo12034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Metabolic rate and evaporative water loss (EWL) were measured to quantify the thermoregulatory patterns of two dasyurids, the stripe-faced dunnart (Sminthopsis macroura) and the Ooldea dunnart (S. ooldea) during acute exposure to Ta between 10 and 35°C. S. macroura maintained consistent Tb across the Ta range, whereas S. ooldea was more thermolabile. The metabolic rate of both species decreased from Ta = 10°C to BMR at Ta = 30°C. Mass-adjusted BMR at Ta = 30°C was the same for the two species, but there was no common regression of metabolic rate below the thermoneutral zone (TNZ). There was no significant difference between the species in allometrically corrected EWL at Ta = 30°C. Total EWL increased significantly at Ta = 10 and 35°C compared with the TNZ for S. macroura, but was consistent across the Ta range for S. ooldea. At any Ta below the TNZ, S. macroura required more energy per gram of body mass than S. ooldea, and had a higher EWL at the lower critical Ta. By being thermolabile S. ooldea reduced its energetic requirements and water loss at low Ta. The more constant thermoregulatory strategy of S. macroura may allow it to exploit a broad climatic envelope, albeit at the cost of higher energetic and water requirements. Since S. ooldea does not expend as much energy and water on thermoregulation this may be a response to the very low productivity, ‘hyperarid’ conditions of its central Australian distribution.
Collapse
|
26
|
Warnecke L, Körtner G, Burwell CJ, Turner JM, Geiser F. Short-term movement patterns and diet of small dasyurid marsupials in semiarid Australia. AUSTRALIAN MAMMALOGY 2012. [DOI: 10.1071/am10052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Since little information is available on the spatial ecology of small arid-zone marsupials, we used radio-tracking to investigate the small-scale activity patterns of three dasyurid species in semiarid Australia. Sminthopsis crassicaudata, Planigale gilesi and S. macroura were equipped with miniature radio-transmitters to monitor choice of resting sites and daily movements. Resting sites were located within an area of 1.27 ± 0.36 ha, 0.12 ± 0.02 ha and 3.60 ± 0.95 ha, respectively and individuals returned to previously used resting sites regularly. We also analysed scat samples of S. crassicaudata and P. gilesi, and identified Araneae, Hymenoptera and Orthoptera as the major prey taxa for both species. Our study presents the first radio-tracking-based information on movements for these species in semiarid habitat, which indicates that, over a period of several weeks, resting sites are situated within small and defined areas.
Collapse
|
27
|
Levy O, Dayan T, Kronfeld-Schor N. Interspecific Competition and Torpor in Golden Spiny Mice: Two Sides of the Energy-Acquisition Coin. Integr Comp Biol 2011; 51:441-8. [DOI: 10.1093/icb/icr071] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
28
|
Lovegrove BG. The evolution of endothermy in Cenozoic mammals: a plesiomorphic-apomorphic continuum. Biol Rev Camb Philos Soc 2011; 87:128-62. [DOI: 10.1111/j.1469-185x.2011.00188.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
29
|
Geiser F, Mzilikazi N. Does torpor of elephant shrews differ from that of other heterothermic mammals? J Mammal 2011. [DOI: 10.1644/10-mamm-a-097.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
30
|
Levy O, Dayan T, Kronfeld-Schor N. Adaptive Thermoregulation in Golden Spiny Mice: The Influence of Season and Food Availability on Body Temperature. Physiol Biochem Zool 2011; 84:175-84. [DOI: 10.1086/658171] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
31
|
Warnecke L, Schleucher E, Geiser F. Basking behaviour in relation to energy use and food availability in one of the smallest marsupials. Physiol Behav 2010; 101:389-93. [PMID: 20637789 DOI: 10.1016/j.physbeh.2010.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 05/10/2010] [Accepted: 07/09/2010] [Indexed: 11/29/2022]
Abstract
Although several mammals have been observed to bask in the sun, little is known about this behaviour or its energetic consequences. We investigated the importance of basking behaviour for one of the smallest marsupials, Planigale gilesi (9g). Metabolic rates of captive planigales (n=6) exposed to simulated natural conditions with access to a radiant heat source were measured. Basking behaviour as a function of food availability was quantified using a video camera installed within the planigales' home cages (n=7). All planigales basked during respirometry measurements, reducing resting energy expenditure by 58% at an ambient temperature of 15 degrees C, which reflects conditions in their nesting sites in the wild during winter. Basking behaviour in home cages was displayed by all but one planigale; food withdrawal either triggered basking or it caused a significant increase in basking duration. Our study demonstrates the effectiveness of basking for reducing energy expenditure in one of the smallest marsupials, supporting recent findings on the importance of behavioural thermoregulation in small mammals in general.
Collapse
Affiliation(s)
- Lisa Warnecke
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW 2351, Australia.
| | | | | |
Collapse
|
32
|
Nowack J, Mzilikazi N, Dausmann KH. Torpor on demand: heterothermy in the non-lemur primate Galago moholi. PLoS One 2010; 5:e10797. [PMID: 20520735 PMCID: PMC2875402 DOI: 10.1371/journal.pone.0010797] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 05/03/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Hibernation and daily torpor are energy- and water-saving adaptations employed to survive unfavourable periods mostly in temperate and arctic environments, but also in tropical and arid climates. Heterothermy has been found in a number of mammalian orders, but within the primates so far it seems to be restricted to one family of Malagasy lemurs. As currently there is no evidence of heterothermy of a primate outside of Madagascar, the aim of our study was to investigate whether small primates from mainland Africa are indeed always homeothermic despite pronounced seasonal changes in weather and food availability. METHODOLOGY/PRINCIPAL FINDINGS One of the nearest relatives of Malagasy lemurs, the African lesser bushbaby, Galago moholi, which inhabits a highly seasonal habitat with a hot wet-season and a cold dry-season with lower food abundance, was investigated to determine whether it is capable of heterothermy. We measured skin temperature of free-ranging individuals throughout the cool dry season using temperature-sensitive collars as well as metabolic rate in captured individuals. Torpor was employed by 15% of 20 animals. Only one of these animals displayed heterothermy in response to natural availability of food and water, whereas the other animals became torpid without access to food and water. CONCLUSIONS/SIGNIFICANCE Our results show that G. moholi are physiologically capable of employing torpor. However they do not use it as a routine behaviour, but only under adverse conditions. This reluctance is presumably a result of conflicting selective pressures for energy savings versus other ecological and evolutionary forces, such as reproduction or territory defence. Our results support the view that heterothermy in primates evolved before the division of African and Malagasy Strepsirhini, with the possible implication that more primate species than previously thought might still have the potential to call upon this possibility, if the situation necessitates it.
Collapse
Affiliation(s)
- Julia Nowack
- Department of Animal Ecology and Conservation, Biocentre Grindel, University of Hamburg, Hamburg, Germany.
| | | | | |
Collapse
|
33
|
Körtner G, Rojas AD, Geiser F. Thermal biology, torpor use and activity patterns of a small diurnal marsupial from a tropical desert: sexual differences. J Comp Physiol B 2010; 180:869-76. [PMID: 20217093 DOI: 10.1007/s00360-010-0459-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 02/13/2010] [Accepted: 02/16/2010] [Indexed: 11/29/2022]
Abstract
Many small desert dasyurids employ torpor almost daily during winter, because cold nights and low food availability impose high energetic costs. However, in Western Australia the arid zone extends into tropical, coastal regions, where winter temperature conditions are far less severe. We studied the thermal biology and activity patterns of free-ranging kaluta (approximately 27 g), a dasyurid restricted to these tropical spinifex deserts, during the Austral winter (June-July) and in addition quantified activity patterns in captivity. Unlike most dasyurids, wild and captive kalutas were almost exclusively diurnal and retreated into underground burrows during the night. Despite being active during the warmer part of the day, kalutas entered torpor daily. However, torpor patterns differed remarkably between males and females. While females spent most of the night torpid at body temperatures (T (b)) as low as 21 degrees C, close to soil temperature, males entered multiple short and shallow bouts (T (b) > 25 degrees C) during the night. Males also maintained higher T (b)s during the early morning when active, occupied larger home ranges and covered greater distances while foraging than females. Hence, males appear to expend more energy than the similar-sized females both while foraging and during the rest phase. We propose that physiological as well as behavioural preparations for the September mating season that culminate in a complete male die-off might already impose energetic costs on males during winter.
Collapse
Affiliation(s)
- Gerhard Körtner
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW, 2351, Australia.
| | | | | |
Collapse
|
34
|
|
35
|
Abstract
Aestivation, which in the context of this paper refers to avian and mammalian torpor in summer/at high ambient temperatures (T (a)), does not appear to differ functionally from other forms of torpor, and to a large extent reflects the higher body temperatures (T (b)) caused by high T (a). However, from an ecological point of view, aestivation results in different challenges and requirements than does torpor use in winter, because heat can cause reduced food and water availability in many regions, but without the access to low T (a) for a substantial reduction of T (b). Aestivation is used by a diversity of adult mammals and birds both in the field and laboratory, as well as by growing young to reduce thermoregulatory energy expenditure. Torpor occurs at high T (a) including the thermo-neutral zone and even under these conditions the reduction in energy expenditure and water requirements or water loss is substantial. Although data from the laboratory and, especially, from the field are limited, they show that torpor at high T (a) is an effective survival strategy and suggest that it is employed by many mammals and birds in a diversity of habitats.
Collapse
|
36
|
The energetics of basking behaviour and torpor in a small marsupial exposed to simulated natural conditions. J Comp Physiol B 2009; 180:437-45. [DOI: 10.1007/s00360-009-0417-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 10/08/2009] [Accepted: 10/13/2009] [Indexed: 11/27/2022]
|
37
|
Stawski C, Geiser F. Fat and fed: frequent use of summer torpor in a subtropical bat. Naturwissenschaften 2009; 97:29-35. [DOI: 10.1007/s00114-009-0606-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 08/20/2009] [Accepted: 08/23/2009] [Indexed: 10/20/2022]
|
38
|
Kobbe S, Dausmann KH. Hibernation in Malagasy mouse lemurs as a strategy to counter environmental challenge. Naturwissenschaften 2009; 96:1221-7. [PMID: 19618156 DOI: 10.1007/s00114-009-0580-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 06/15/2009] [Accepted: 06/15/2009] [Indexed: 11/26/2022]
Abstract
The spiny forest of southwestern Madagascar is the driest and most unpredictable region of the island. It is characterized by a pronounced seasonality with high fluctuations in ambient temperature, low availability of food, and a lack of water during the cool dry season and, additionally, by changes in environmental conditions between years. One of the few mammalian species that manages to inhabit this challenging habitat is the reddish-gray mouse lemur (Microcebus griseorufus). The aim of our study was to determine whether this small primate uses continuous hibernation as an energy saving strategy, and if so, to characterize its physiological properties. We measured skin temperature of 16 free-ranging individuals continuously over 3 months during the cool dry season using collar temperature data loggers. Prolonged hibernation was found in three mouse lemurs and was not sex dependent (one male, two females). Skin temperature of hibernating individuals tracked ambient temperature passively with a minimum skin temperature of 6.5 degrees C and fluctuated strongly each day (up to 20 degrees C), depending on the insulation capacity of the hibernacula. Individuals remained in continuous hibernation even at an ambient temperature of 37 degrees C. The animals hibernated continuously during the dry season, and hibernation bouts were only interrupted by short spontaneous arousals. The study emphasizes that hibernation is an important measure to counter environmental challenge for more tropical species than previously thought, including primates. It furthermore provides evidence that tropical hibernation is functionally similar among tropical species.
Collapse
Affiliation(s)
- Susanne Kobbe
- Department of Animal Ecology and Conservation, Hamburg University, Biozentrum Grindel, Martin-Luther-King Platz 3, Hamburg, Germany.
| | | |
Collapse
|
39
|
Hibernation and daily torpor minimize mammalian extinctions. Naturwissenschaften 2009; 96:1235-40. [DOI: 10.1007/s00114-009-0583-0] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 06/15/2009] [Accepted: 06/19/2009] [Indexed: 11/27/2022]
|
40
|
Schmid J, Ganzhorn JU. Optional strategies for reduced metabolism in gray mouse lemurs. Naturwissenschaften 2009; 96:737-41. [PMID: 19277596 DOI: 10.1007/s00114-009-0523-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 02/04/2009] [Accepted: 02/21/2009] [Indexed: 10/21/2022]
Abstract
Among the order of primates, torpor has been described only for the small Malagasy cheirogaleids Microcebus and Cheirogaleus. The nocturnal, gray mouse lemur, Microcebus murinus (approx. 60 g), is capable of entering into and spontaneously arousing from apparently daily torpor during the dry season in response to reduced temperatures and low food and water sources. Mark-recapture studies indicated that this primate species might also hibernate for several weeks, although physiological evidence is lacking. In the present study, we investigated patterns of body temperature in two free-ranging M. murinus during the austral winter using temperature-sensitive data loggers implanted subdermally. One lemur hibernated and remained inactive for 4 weeks. During this time, body temperature followed the ambient temperature passively with a minimum body temperature of 11.5 degrees C, interrupted by irregular arousals to normothermic levels. Under the same conditions, the second individual displayed only short bouts of torpor in the early morning hours but maintained stable normothermic body temperatures throughout its nocturnal activity. Reduction of body temperature was less pronounced in the mouse lemur that utilized short bouts of torpor with a minimum value of 27 degrees C. Despite the small sample size, our findings provide the first physiological confirmation that free-ranging individuals of M. murinus from the humid evergreen littoral rain forest have the option to utilize short torpor bouts or hibernation under the same conditions as two alternative energy-conserving physiological solutions to environmental constraints.
Collapse
Affiliation(s)
- J Schmid
- Department of Experimental Ecology, University of Ulm, Albert-Einstein-Allee 11, 89069 Ulm, Germany.
| | | |
Collapse
|
41
|
Vertebrate diet decreases winter torpor use in a desert marsupial. Naturwissenschaften 2009; 96:679-83. [DOI: 10.1007/s00114-009-0516-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 02/03/2009] [Accepted: 02/06/2009] [Indexed: 10/21/2022]
|
42
|
Torpor and energetic consequences in free-ranging grey mouse lemurs (Microcebus murinus): a comparison of dry and wet forests. Naturwissenschaften 2009; 96:609-20. [PMID: 19229507 DOI: 10.1007/s00114-009-0515-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 02/03/2009] [Accepted: 02/03/2009] [Indexed: 10/21/2022]
Abstract
Many endotherms save energy during food and water shortage or unpredictable environment using controlled reductions in body temperature and metabolism called torpor. In this study, we measured energy metabolism and water turnover in free-ranging grey mouse lemurs Microcebus murinus (approximately 60 g) using doubly labelled water during the austral winter in the rain forest of southeastern Madagascar. We then compared patterns of thermal biology between grey mouse lemurs from the rain forest and a population from the dry forest. M. murinus from the rain forest, without a distinct dry season, entered daily torpor independent of ambient temperature (T (a)). There were no differences in torpor occurrence, duration and depth between M. murinus from the rain and dry forest. Mouse lemurs using daily torpor reduced their energy expenditure by 11% in the rain forest and by 10.5% in the dry forest, respectively. There was no significant difference in the mean water flux rates of mouse lemurs remaining normothermic between populations of both sites. In contrast, mean water flux rate of individuals from the dry forest that used torpor was significantly lower than those from the rain forest. This study represents the first account of energy expenditure, water flux and skin temperature (T (sk)) in free-ranging M. murinus from the rain forest. Our comparative findings suggest that water turnover and therefore water requirement during the austral winter months plays a more restricting role on grey mouse lemurs from the dry forest than on those from the rain forest.
Collapse
|
43
|
'Mini-hibernation' essential for winter survival. Nature 2009. [DOI: 10.1038/news.2008.1344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
44
|
Warnecke L, Geiser F. Basking behaviour and torpor use in free-ranging Planigale gilesi. AUST J ZOOL 2009. [DOI: 10.1071/zo09097] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We investigated the importance of energy-conserving strategies for free-ranging Planigale gilesi in arid Australia. We monitored torpor use and basking behaviour using internal temperature-sensitive transmitters. Torpor was used every day; the maximum torpor bout duration was 18.2 h and the minimum body temperature was 10.5°C. Basking behaviour was observed during rewarming from torpor as well as during normothermia. The use of torpor and basking is likely to reduce the energy requirements of P. gilesi, thus helping it to survive in a harsh and unpredictable environment.
Collapse
|