1
|
Xu X, Wang X, Zhang L, Jin Y, Li L, Jin M, Li L, Ni H. Nicotinamide adenine dinucleotide treatment confers resistance to neonatal ischemia and hypoxia: effects on neurobehavioral phenotypes. Neural Regen Res 2024; 19:2760-2772. [PMID: 38595293 PMCID: PMC11168517 DOI: 10.4103/nrr.nrr-d-23-01490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 04/11/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202412000-00031/figure1/v/2024-04-08T165401Z/r/image-tiff Neonatal hypoxic-ischemic brain injury is the main cause of hypoxic-ischemic encephalopathy and cerebral palsy. Currently, there are few effective clinical treatments for neonatal hypoxic-ischemic brain injury. Here, we investigated the neuroprotective and molecular mechanisms of exogenous nicotinamide adenine dinucleotide, which can protect against hypoxic injury in adulthood, in a mouse model of neonatal hypoxic-ischemic brain injury. In this study, nicotinamide adenine dinucleotide (5 mg/kg) was intraperitoneally administered 30 minutes before surgery and every 24 hours thereafter. The results showed that nicotinamide adenine dinucleotide treatment improved body weight, brain structure, adenosine triphosphate levels, oxidative damage, neurobehavioral test outcomes, and seizure threshold in experimental mice. Tandem mass tag proteomics revealed that numerous proteins were altered after nicotinamide adenine dinucleotide treatment in hypoxic-ischemic brain injury mice. Parallel reaction monitoring and western blotting confirmed changes in the expression levels of proteins including serine (or cysteine) peptidase inhibitor, clade A, member 3N, fibronectin 1, 5'-nucleotidase, cytosolic IA, microtubule associated protein 2, and complexin 2. Proteomics analyses showed that nicotinamide adenine dinucleotide ameliorated hypoxic-ischemic injury through inflammation-related signaling pathways (e.g., nuclear factor-kappa B, mitogen-activated protein kinase, and phosphatidylinositol 3 kinase/protein kinase B). These findings suggest that nicotinamide adenine dinucleotide treatment can improve neurobehavioral phenotypes in hypoxic-ischemic brain injury mice through inflammation-related pathways.
Collapse
Affiliation(s)
- Xiaowen Xu
- Division of Brain Science, Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xinxin Wang
- Division of Brain Science, Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Li Zhang
- Division of Brain Science, Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Yiming Jin
- Division of Brain Science, Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Lili Li
- Division of Brain Science, Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Meifang Jin
- Division of Brain Science, Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Lianyong Li
- Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Hong Ni
- Division of Brain Science, Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
2
|
Jalili C, Ranjbar Shamsi R, Amiri B, Kakebaraie S, Jalili F, Nasta TZ. Genotoxic and cytotoxic effects of aflatoxin on the reproductive system: Focus on cell cycle dynamics and apoptosis in testicular tissue. Toxicology 2024; 504:153773. [PMID: 38484789 DOI: 10.1016/j.tox.2024.153773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/24/2024]
Abstract
Aflatoxins (AFs) are inevitable environmental contaminants that are detrimental to human and animal health. AFs interfere with metabolic processes, metabolizing into different hydroxylated derivatives in the liver, as well as mechanistically induce ROS accumulation, S-phase arrest, DNA damage, and cell apoptosis. Chronic consumption of aflatoxin-contaminated foods can adversely affect the male reproductive system, cause testicular damage, prevent testosterone synthesis, decline sperm quality, and cause infertility. Oxidative stress is the fundamental pathogenesis of aflatoxin-induced reproductive toxicity. The overproduction of reactive oxygen substances can cause testicular failure and disturb the process of spermatogenesis. Mitochondria are susceptible to being impaired by oxidative stress, and its damage is associated with infertility. AFs also disturb the process of spermatogenesis by disrupting the regulation of genes related to the progression of the cell cycle such as cyclins and inducing genes related to apoptosis, thereby weakening fertility and negatively affecting the testicular endocrine potential by suppressing androgen synthesis. Additionally, AFs downregulate ERα expression, potentially negatively impacting spermatogenesis by enhancing the apoptotic mechanism. In this review, we provide new insights into the genotoxic and cytotoxic effects of AFB1 on the male reproductive system with a focus on the cell cycle and apoptosis destruction of testicular tissue.
Collapse
Affiliation(s)
- Cyrus Jalili
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Islamic Republic of Iran
| | - Rahele Ranjbar Shamsi
- Department of Clinical Biochemistry, Faculty of Veterinary Medicine, Tabriz, Islamic Republic of Iran
| | - Bita Amiri
- Department of Chemistry and Biochemistry, University of Texas at Arlington, TX, USA
| | - Seyran Kakebaraie
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Islamic Republic of Iran
| | - Faramarz Jalili
- School of Health Administration, Faculty of Health, Dalhousie University, Halifax, NS, Canada
| | - Touraj Zamir Nasta
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Islamic Republic of Iran.
| |
Collapse
|
3
|
Ali S, Battaglini Franco B, Theodoro Rezende V, Gabriel Dionisio Freire L, Lima de Paiva E, Clara Fogacio Haikal M, Leme Guerra E, Eliana Rosim R, Gustavo Tonin F, Savioli Ferraz I, Antonio Del Ciampo L, Augusto Fernandes de Oliveira C. Exposure assessment of children to dietary mycotoxins: A pilot study conducted in Ribeirão Preto, São Paulo, Brazil. Food Res Int 2024; 180:114087. [PMID: 38395556 DOI: 10.1016/j.foodres.2024.114087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 01/12/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024]
Abstract
Exposure to mycotoxins through food is a major health concern, especially for youngsters. This study performed a preliminary investigation on children's exposure to dietary mycotoxins in Ribeirão Preto, Brazil. Sampling procedures were conducted between August and December 2022, to collect foods (N = 213) available for consumption in the households of children (N = 67), including preschoolers (aged 3-6 years, n = 21), schoolers (aged 7-10 years, n = 15), and adolescents (aged 11-17 years, n = 31) cared in the Vila Lobato Community Social Medical Center of Ribeirão Preto. Ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) was used to determine concentrations of the mycotoxins in foods. Mycotoxins measured in all foods comprised aflatoxins (AFs), fumonisins (FBs), zearalenone (ZEN), T-2 toxin, deoxynivalenol (DON) and ochratoxin A (OTA). Higher incidence and levels were found for FBs, ZEN, and DON in several commonly consumed foods. Furthermore, 32.86 % foods had two to four quantifiable mycotoxins in various combinations. The mean estimated daily intake (EDI) values were lower than the tolerable daily intake (TDI) for AFs, FBs, and ZEN, but higher than the TDI (1.0 µg/kg bw/day) for DON, hence indicating a health risk for all children age groups. Preschoolers and adolescents were exposed to DON through wheat products (EDIs: 2.696 ± 7.372 and 1.484 ± 2.395 µg/kg body weight (bw)/day, respectively), while schoolers were exposed through wheat products (EDI: 1.595 ± 1.748 µg/kg bw/day) and rice (EDI: 1.391 ± 1.876 µg/kg bw/day). The results indicate that wheat-based foods and rice may be risky to children, implying the need for stringent measures to avoid DON contamination in these products.
Collapse
Affiliation(s)
- Sher Ali
- Department of Food Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP)-Fernando Costa Campus, Pirassununga 13635-900, SP, Brazil.
| | - Bruna Battaglini Franco
- Department of Food Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP)-Fernando Costa Campus, Pirassununga 13635-900, SP, Brazil
| | - Vanessa Theodoro Rezende
- Faculty of Veterinary Medicine and Animal Science, University of São Paulo (USP) -Fernando Costa Campus, Pirassununga 13635-900, SP, Brazil
| | - Lucas Gabriel Dionisio Freire
- Department of Food Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP)-Fernando Costa Campus, Pirassununga 13635-900, SP, Brazil
| | - Esther Lima de Paiva
- Department of Food Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP)-Fernando Costa Campus, Pirassununga 13635-900, SP, Brazil
| | - Maria Clara Fogacio Haikal
- Department of Food Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP)-Fernando Costa Campus, Pirassununga 13635-900, SP, Brazil
| | - Eloiza Leme Guerra
- Department of Food Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP)-Fernando Costa Campus, Pirassununga 13635-900, SP, Brazil
| | - Roice Eliana Rosim
- Department of Food Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP)-Fernando Costa Campus, Pirassununga 13635-900, SP, Brazil
| | - Fernando Gustavo Tonin
- Department of Biosystems Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP)-Fernando Costa Campus, Pirassununga 13635-900, SP, Brazil
| | - Ivan Savioli Ferraz
- Department of Puericulture and Pediatrics, Medical School at Ribeirão Preto, University of São Paulo (USP)-Ribeirão Preto, 14051-200, SP, Brazil
| | - Luiz Antonio Del Ciampo
- Department of Puericulture and Pediatrics, Medical School at Ribeirão Preto, University of São Paulo (USP)-Ribeirão Preto, 14051-200, SP, Brazil
| | - Carlos Augusto Fernandes de Oliveira
- Department of Food Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP)-Fernando Costa Campus, Pirassununga 13635-900, SP, Brazil.
| |
Collapse
|
4
|
Okoro N, Alilonu DO, Eze MC, Ebokaiwe AP. Aflatoxin B1-induced redox imbalance in the hippocampus and cerebral cortex of male Wistar rats is accompanied by altered cholinergic, indoleaminergic, and purinergic pathways: Abatement by dietary rutin. Toxicon 2024; 239:107595. [PMID: 38211804 DOI: 10.1016/j.toxicon.2024.107595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024]
Abstract
The neurotoxic impact of dietary exposure to aflatoxin B1 (AFB1) is well documented in experimental studies. Rutin is a phytochemical with prominent anti-inflammatory and antioxidant activities. There is an information gap on the influence of rutin on AFB1-induced neurotoxicity. This study investigated the influence of rutin on neurobehavioral and biochemical abnormalities in male Wistar rats (six weeks old) orally treated with AFB1 (0.75, and 1.5 mg/kg body weight) or co-administered with rutin (50 mg/kg) for 30 uninterrupted days. Results indicate that AFB1-induced depression-like behavior by Tail Suspension Test (TST) and cognitive impairment by Y-maze was abated following rutin co-administration. Abatement of AFB1-induced decreases in acetylcholinesterase (AChE) activity, and increased antioxidant status, by rutin was accompanied by a marked reduction in oxidative stress markers and increased hydrolysis of the purinergic molecules in the cerebral cortex and hippocampus of rats. Additionally, rutin co-treatment abrogated AFB1-mediated elevation of interleukin-6 (IL-6), nitric oxide (NO) levels, and activity of myeloperoxidase (MPO). Correspondingly, rutin co-treatment lowered the activity and immunocontent of immunosuppressive indoleamine 2, 3-dioxygenase (IDO). Further, rutin co-treatment prevented histological injuries in the cerebral cortex and hippocampus. In conclusion, abatement of AFB1-induced neurobehavioral abnormalities by rutin involves the mechanisms of anti-inflammatory, antioxidant, and regulation of cholinergic, purinergic, and indoleaminergic pathways in rats.
Collapse
Affiliation(s)
- Nworie Okoro
- Department of Microbiology, Alex Ekwueme Federal University Ndufu Alike, Nigeria
| | - Doris Olachi Alilonu
- Toxicology and Immunotherapy Research Unit, Department of Biochemistry, Alex Ekwueme Federal University Ndufu Alike, Nigeria
| | - Martina Chinazom Eze
- Department of Food Science and Technology, University of Nigeria Nsukka, Nigeria
| | - Azubuike Peter Ebokaiwe
- Toxicology and Immunotherapy Research Unit, Department of Biochemistry, Alex Ekwueme Federal University Ndufu Alike, Nigeria.
| |
Collapse
|
5
|
Francis S, Kortei NK, Sackey M, Richard SA. Aflatoxin B 1 induces infertility, fetal deformities, and potential therapies. Open Med (Wars) 2024; 19:20240907. [PMID: 38283584 PMCID: PMC10818061 DOI: 10.1515/med-2024-0907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/15/2023] [Accepted: 01/06/2024] [Indexed: 01/30/2024] Open
Abstract
Aflatoxin B1 (AFB1) is a subsidiary poisonous metabolite, archetypally spawned by Aspergillus flavus and A. parasiticus, which are often isolated in warm or tropical countries across the world. AFB1 is capable of disrupting the functioning of several reproductive endocrine glands by interrupting the enzymes and their substrates that are liable for the synthesis of various hormones in both males and females. In men, AFB1 is capable of hindering testicular development, testicular degeneration, and reduces reproductive capabilities. In women, a direct antagonistic interaction of AFB1 with steroid hormone receptors influencing gonadal hormone production of estrogen and progesterone was responsible for AFB1-associated infertility. AFB1 is potentially teratogenic and is responsible for the development of malformation in humans and animals. Soft-tissue anomalies such as internal hydrocephalus, microphthalmia, cardiac defects, augmented liver lobes, reproductive changes, immune modifications, behavioral changes and predisposition of animals and humans to neoplasm development are AFB1-associated anomalies. Substances such as esculin, selenium, gynandra extract, vitamins C and E, oltipraz, and CDDO-Im are potential therapies for AFB1. Thus, this review elucidates the pivotal pathogenic roles of AFB1 in infertility, fetal deformities, and potential therapies because AFB1 toxicity is a key problem globally.
Collapse
Affiliation(s)
- Sullibie Francis
- Department of Obstetrics and Gynecology, Ho Teaching Hospital, P.O. Box MA-374, Ho, Ghana
| | - Nii Korley Kortei
- Department of Nutrition and Dietetics, School of Allied Health Sciences, University of Health and Allied Sciences, Ho, Ghana
| | - Marian Sackey
- Department of Pharmacy, Ho Teaching Hospital, P.O. Box MA-374, Ho, Ghana
| | - Seidu A. Richard
- Department of Medicine, Princefield University, P. O. Box MA128, Ho, Ghana
| |
Collapse
|
6
|
Fasihi-Ramandi M, Bayat G, Kachuei R, Golmohammadi R. Effects of aflatoxin B1 exposure on sperm in rodents: a systematic review and meta-analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:1629-1639. [PMID: 36001895 DOI: 10.1080/09603123.2022.2113766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Exposure to aflatoxin B1 can be associated with reproductive toxicity, accompanied by decreased sperm concentration in animal models. The aim of this meta-analysis was to determine the correlation between aflatoxin B1 exposure and sperm concentrations of male rodents (both mice and rats). According to inclusion and exclusion criteria, 8 articles were selected to assess in the current meta-analysis. The random effects and pooled analysis indicated that sperm concentration was decreased in mice [MD sperm = -20.79×106/sperm/g testis (95%CI =-1.3 to -50.5)] and in rats [-24.34×106/sperm/g testis (95%CI: -7.60 to -44.35)] after exposure to aflatoxin B1 compared with control groups. A significant heterogeneity was found among studies (for mice I2=99.7%, %, P<0.000 and rats =I2=98.8, P<0.000). The findings of present meta-analysis showed the association between aflatoxin B1 exposure and a decrease in sperm concentration in rodents.
Collapse
Affiliation(s)
- Mahdi Fasihi-Ramandi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ghazal Bayat
- Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Reza Kachuei
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Golmohammadi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Owumi SE, Akinwunmi AO, Nwozo SO, Arunsi UO, Oyelere AK. Aflatoxin B1-induced dysfunction in male rats' reproductive indices were abated by Sorghum bicolor (L.Moench) hydrophobic fraction. Reprod Toxicol 2023; 120:108425. [PMID: 37355213 DOI: 10.1016/j.reprotox.2023.108425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023]
Abstract
The burden of infertility distresses millions of families worldwide. The harmful effects of aflatoxin B1 (AFB1) on the reproductive system involve oxidative stress, culminating in inflammation and cellular apoptosis. The phytochemical in Sorghum bicolor is rich in antioxidants and anti-inflammatory activities. The effect of Sorghum bicolor (L.) Moench (SBE-HP) extract -hydrophobic fraction- enriched in Apigenin (API) was investigated in rats chronically dosed with AFB1 and the likely mechanism (s) of SBE-HP to protect against AFB1-induced reproductive toxicity. Adult Wistar male rats (twenty-four) were selected randomly and allocated into four groups. Cohort 1 was administered 0.05 % carboxymethyl cellulose (CMC); cohort 2 received AFB1 (50 µg/kg) alone; while cohorts 3 and 4 received 5 & 10 mg/kg of (SBE-HP) respectively, along with 50 µg/kg of AFB1. After 28 days, AFB1 induced remarkable reproductive toxicity as evidenced by increased sperm abnormalities, lowered sperm quality and motility, altered serum hormonal levels and testicular enzyme activities, decreased anti-oxidants, increased pro-oxidants, apoptotic and inflammatory biomarkers, as well as altered histoarchitectural structure of the testis, epididymis, and hypothalamus of rats. API-enriched extract of S. bicolor reduced AFB1-induced oxidative, inflammatory, apoptotic, and histological derangement by improving sperm function parameters, testicular enzymes, and reproductive hormones. Anti-oxidant levels and anti-inflammatory mediators were increased while decreases in the activities and levels of pro-oxidants, pro-inflammatory molecules and caspase-9 occurred in the rats' testes, epididymis, and hypothalamus. API-enriched S. bicolor protected the testes, epididymis, and hypothalamus of male rats exposed to AFB1 by modulating oxidative stress, inflammation, and apoptosis.
Collapse
Affiliation(s)
- Solomon E Owumi
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria.
| | | | - Sarah O Nwozo
- Nutrition and Industrial Biochemistry Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Uche O Arunsi
- School of Chemistry & Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332-0400, GA, United States
| | - Adegboyega K Oyelere
- School of Chemistry & Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332-0400, GA, United States
| |
Collapse
|
8
|
Tebbi CK. Mycoviruses in Fungi: Carcinogenesis of Fungal Agents May Not Always Be Mycotoxin Related. J Fungi (Basel) 2023; 9:jof9030368. [PMID: 36983536 PMCID: PMC10052198 DOI: 10.3390/jof9030368] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 03/30/2023] Open
Abstract
Certain viruses have been found to induce diverse biological pathways to carcinogenesis, evidenced by the presence of viral gene products in some tumors. Despite the fact that many fungal agents contain mycoviruses, until recently, their possible direct effects on human health, including carcinogenesis and leukemogenesis, had not been explored. In this regard, most studies of fungal agents have rightly concentrated on their mycotoxin formation and effects. Recently, the direct role of yeasts and fungi in the etiology of cancers, including leukemia, have been investigated. While greater attention has been placed on the carcinogenic effects of Candida, the role of filamentous fungi in carcinogenesis has also been explored. Recent findings from studies using the enzyme-linked immunosorbent assay (ELISA) technique indicate that the plasma of patients with acute lymphoblastic leukemia (ALL) uniformly contains antibodies for a certain mycovirus-containing Aspergillus flavus, while controls are negative. The exposure of mononuclear leukocytes from patients with ALL in full remission, and long-term survivors, to the product of this organism was reported to result in the re-development of typical genetics and cell surface phenotypes characteristic of active ALL. Mycoviruses are known to be able to significantly alter the biological characteristics and functions of their host. The possible carcinogenic and leukemogenic role of mycoviruses, with and without their host, needs to be further investigated.
Collapse
Affiliation(s)
- Cameron K Tebbi
- Children's Cancer Research Group Laboratory, 13719 North Nebraska Avenue, Suite #108, Tampa, FL 33613-3305, USA
| |
Collapse
|
9
|
Rotimi OA, De Campos OC, Adelani IB, Olawole TD, Rotimi SO. Early-life AFB1 exposure: DNA methylation and hormone alterations. VITAMINS AND HORMONES 2023; 122:237-252. [PMID: 36863796 DOI: 10.1016/bs.vh.2022.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Aflatoxins are secondary metabolites of mold that contaminate food and feedstuff. They are found in various food including grains, nuts, milk and eggs. Aflatoxin B1 (AFB1) is the most poisonous and commonly found of the various types of aflatoxins. Exposures to AFB1 start early in life viz. in utero, during breastfeeding, and during weaning through the waning foods which are mainly grain based. Several studies have shown that early-life exposures to various contaminants may have various biological effects. In this chapter, we reviewed the effects of early-life AFB1 exposures on changes in hormone and DNA methylation. In utero AFB1 exposure results in alterations in steroid and growth hormones. Specifically, the exposure results in a reduction in testosterone levels later in life. The exposure also affects the methylation of various genes that are significant in growth, immune, inflammation, and signaling pathways.
Collapse
|
10
|
Braga ACM, Souto NS, Cabral FL, Dassi M, Rosa ÉVF, Guarda NDS, Royes LFF, Fighera MR, Moresco RN, Oliveira MS, Sari MHM, Furian AF. Intermittent Exposure to Aflatoxin B1 Did Not Affect Neurobehavioral Parameters and Biochemical Markers of Oxidative Stress. Brain Sci 2023; 13:brainsci13030386. [PMID: 36979196 PMCID: PMC10046455 DOI: 10.3390/brainsci13030386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Aflatoxin B1 (AFB1) is the most common toxic mycotoxin that contaminates food. The treatment of its intoxication and the management of contaminations are a constant subject of health agendas worldwide. However, such efforts are not always enough to avoid population intoxication. Our objective was to investigate whether intermittent exposure to AFB1 would cause any impairment in biochemical and behavioral parameters, intending to simulate an irregular consumption. Male Wistar rats received four AFB1 administrations (250 μg/kg) by intragastric route separated by a 96-h interval. Toxicity was evaluated using behavioral tests (open field, object recognition, nest construction, marble burying, and splash test), biochemical markers of oxidative stress (cerebral cortex, hippocampus, liver, and kidneys), and plasma parameters of hepatic and renal functions. The intermittent exposure caused no modification in body weight gain as well as in organ weight. Both control and AFB1 groups presented similar profiles of behavior to all tests performed. Furthermore, AFB1 administrations alter neither antioxidant defenses nor markers of oxidation in all assayed tissues and in the plasma markers of hepatic and renal functions. Therefore, AFB1 intermittent administration did not cause its common damage from exposure to this toxicant, which must be avoided, and additional studies are required.
Collapse
Affiliation(s)
- Ana Claudia Monteiro Braga
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
| | - Naieli Schiefelbein Souto
- Programa de Pós-Graduação em Ciência e Tecnologia dos Alimentos, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
| | - Fernanda Licker Cabral
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
| | - Micheli Dassi
- Programa de Pós-Graduação em Ciência e Tecnologia dos Alimentos, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
| | - Érica Vanessa Furlan Rosa
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
| | - Naiara dos Santos Guarda
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
| | - Luiz Fernando Freire Royes
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
| | - Michele Rechia Fighera
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
| | - Rafael Noal Moresco
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
| | - Mauro Schneider Oliveira
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
| | - Marcel Henrique Marcondes Sari
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
| | - Ana Flávia Furian
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
- Programa de Pós-Graduação em Ciência e Tecnologia dos Alimentos, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
- Correspondence: ; Tel.: +55-55-3220-8254
| |
Collapse
|
11
|
Penagos-Tabares F, Sulyok M, Artavia JI, Flores-Quiroz SI, Garzón-Pérez C, Castillo-Lopez E, Zavala L, Orozco JD, Faas J, Krska R, Zebeli Q. Mixtures of Mycotoxins, Phytoestrogens, and Other Secondary Metabolites in Whole-Plant Corn Silages and Total Mixed Rations of Dairy Farms in Central and Northern Mexico. Toxins (Basel) 2023; 15:153. [PMID: 36828467 PMCID: PMC9965745 DOI: 10.3390/toxins15020153] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Mycotoxins and endocrine disruptors such as phytoestrogens can affect cattle health, reproduction, and productivity. Most studies of mycotoxins in dairy feeds in Mexico and worldwide have been focused on a few (regulated) mycotoxins. In contrast, less known fungal toxins, phytoestrogens, and other metabolites have been neglected and underestimated. This study analyzed a broad spectrum (>800) of mycotoxins, phytoestrogens, and fungal, plant, and unspecific secondary metabolites in whole-plant corn silages (WPCSs) and total mixed rations (TMRs) collected from 19 Mexican dairy farms. A validated multi-metabolite liquid chromatography/electrospray ionization-tandem mass spectrometric (LC/ESI-MS/MS) method was used. Our results revealed 125 of >800 tested (potentially toxic) secondary metabolites. WPCSs/TMRs in Mexico presented ubiquitous contamination with mycotoxins, phytoestrogens, and other metabolites. The average number of mycotoxins per TMR was 24, ranging from 9 to 31. Fusarium-derived secondary metabolites showed the highest frequencies, concentrations, and diversity among the detected fungal compounds. The most frequently detected mycotoxins in TMRs were zearalenone (ZEN) (100%), fumonisin B1 (FB1) (84%), and deoxynivalenol (84%). Aflatoxin B1 (AFB1) and ochratoxin A (OTA), previously reported in Mexico, were not detected. All TMR samples tested positive for phytoestrogens. Among the investigated dietary ingredients, corn stover, sorghum silage, and concentrate proportions were the most correlated with levels of total mycotoxins, fumonisins (Fs), and ergot alkaloids, respectively.
Collapse
Affiliation(s)
- Felipe Penagos-Tabares
- Unit of Nutritional Physiology, Institute of Physiology, Pathophysiology, and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
- Christian-Doppler-Laboratory for Innovative Gut Health Concepts in Livestock (CDL-LiveGUT), Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
- FFoQSI GmbH—Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1C, 3430 Tulln, Austria
| | - Michael Sulyok
- Department of Agrobiotechnology, IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 20, 3430 Tulln, Austria
| | | | - Samanta-Irais Flores-Quiroz
- Facultad de Estudios Superiores Cuautitlán, Cuautitlán, Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli 54714, Mexico
| | - César Garzón-Pérez
- Facultad de Estudios Superiores Cuautitlán, Cuautitlán, Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli 54714, Mexico
| | - Ezequías Castillo-Lopez
- Christian-Doppler-Laboratory for Innovative Gut Health Concepts in Livestock (CDL-LiveGUT), Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
- Institute of Animal Nutrition and Functional Plant Compounds, Department of Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Luis Zavala
- DSM-BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria
| | | | - Johannes Faas
- DSM-BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria
| | - Rudolf Krska
- Department of Agrobiotechnology, IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 20, 3430 Tulln, Austria
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Qendrim Zebeli
- Christian-Doppler-Laboratory for Innovative Gut Health Concepts in Livestock (CDL-LiveGUT), Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
- Institute of Animal Nutrition and Functional Plant Compounds, Department of Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| |
Collapse
|
12
|
Quercetin: Its Antioxidant Mechanism, Antibacterial Properties and Potential Application in Prevention and Control of Toxipathy. Molecules 2022; 27:molecules27196545. [PMID: 36235082 PMCID: PMC9571766 DOI: 10.3390/molecules27196545] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 11/30/2022] Open
Abstract
Quercetin, as a flavonol compound found in plants, has a variety of biological activities. It is widely present in nature and the human diet, with powerful oxidative properties and biological activities. In this review, the antioxidant mechanism and broad-spectrum antibacterial properties of quercetin are revealed; the intervention effects of quercetin on pesticide poisoning and the pathway of action are investigated; the toxic effects of main mycotoxins on the collection and the detoxification process of quercetin are summarized; whether it is able to reduce the toxicity of mycotoxins is proved; and the harmful effects of heavy metal poisoning on the collection, the prevention, and control of quercetin are evaluated. This review is expected to enrich the understanding of the properties of quercetin and promote its better application in clinical practice.
Collapse
|
13
|
Owumi SE, Otunla MT, Arunsi UO, Oyelere AK. Apigeninidin-enriched Sorghum bicolor (L. Moench) extracts alleviate Aflatoxin B 1-induced dysregulation of male rat hypothalamic-reproductive axis. Exp Biol Med (Maywood) 2022; 247:1301-1316. [PMID: 35658587 PMCID: PMC9442456 DOI: 10.1177/15353702221098060] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We examined the protective effect of the apigeninidin (API)-enriched fraction from Sorghum bicolor sheaths extracts (SBE-05, SBE-06, and SBE-07) against aflatoxin B1 (AFB1)-induced dysregulation of male rat's reproductive system that may trigger infertility. Male rats (160 ± 12 g) were treated with AFB1 (50 µg/kg) along with 5 or 10 mg/kg of SBE-05, SBE-06, and SBE-07 for 28 days. Subsequently, we assessed the reproductive hormone-prolactin, FSH, LH, testosterone levels, and testicular function enzymes. Moreover, we examined rats' testes, epididymis, and hypothalamus for oxidative and inflammatory stress biomarkers, caspase-9 activity and tissues pathology. We observed that comparative to AFB1 alone treated rats, API co-treatment significantly (p < 0.05) abated the AFB1-mediated decrease in prolactin and antioxidant defenses and lessened lipid peroxidation (LPO) and reactive oxygen and nitrogen species levels in the examined organs-testes, epididymis, and hypothalamus. API abated AFB1-induced hormone decreases-testosterone, FSH, and LH; and caused improvement in sperm quantity and quality. API lessened AFB1-mediated increase in pro-inflammatory cytokine, increased interleukin-10 level, an anti-inflammatory cytokine and reduced caspase-9 activities. In addition, API reduced alterations in the examined tissue histology. Our findings suggest that S. bicolor API-enrich extracts have active antioxidative, antiapoptotic, and anti-inflammatory activities, which can protect against AFB1-induced dysfunction of the hypothalamic-pituitary-gonadal axis.
Collapse
Affiliation(s)
- Solomon E Owumi
- Cancer Research and Molecular Biology
Laboratories, NB 302, Department of Biochemistry, Faculty of Basic Medical Sciences,
University of Ibadan, Ibadan 200005, Nigeria,Solomon E Owumi.
| | - Moses T Otunla
- Cancer Research and Molecular Biology
Laboratories, NB 302, Department of Biochemistry, Faculty of Basic Medical Sciences,
University of Ibadan, Ibadan 200005, Nigeria
| | - Uche O Arunsi
- Department of Cancer Immunology and
Biotechnology, School of Medicine, University of Nottingham, Nottingham NG7 2RD,
UK
| | - Adegboyega K Oyelere
- School of Chemistry & Biochemistry,
Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of
Technology, Atlanta, GA 30332-0400, USA
| |
Collapse
|
14
|
Aytekin Sahin G, Karabulut D, Unal G, Sayan M, Sahin H. Effects of probiotic supplementation on very low dose AFB1-induced neurotoxicity in adult male rats. Life Sci 2022; 306:120798. [PMID: 35843344 DOI: 10.1016/j.lfs.2022.120798] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 12/24/2022]
Abstract
AIMS Aflatoxin B1 (AFB1) is the most toxic and common form of AF found in food and feed. Although AFB1 exposure has toxic effects on many organs, studies on the brain are limited. Moreover, to the best of our knowledge, there is no study on the effect of probiotics on AFB1-induced neurotoxicity. Therefore, we aimed to evaluate the possible effects of probiotics on AFB1-induced neurotoxicity in the brain. MAIN METHODS Thirty-two adult male Wistar rats were divided into four groups: Vehicle (VEH), Probiotic (PRO) (2.5 × 1010 CFU/day VSL#3, orally), Aflatoxin B1 (AFB1) (25 μg/kg/week AFB1, orally), and Aflatoxin B1 + Probiotic (AFB1 + PRO) (2.5 × 1010 CFU/day VSL#3 + 25 μg/kg/week AFB1, orally). At the end of eight weeks, rats were behaviorally evaluated by the open field test, novel object recognition test, and forced swim test. Then, oxidative stress and inflammatory markers in brain tissues were analyzed. Next, brain sections were processed for Hematoxylin&Eosin staining and NeuN and GFAP immunostaining. KEY FINDINGS Probiotic supplementation tended to decrease oxidative stress and inflammatory markers compared to the AFB1 group. Besides, brain tissues had more normal histological structures in VEH, PRO, and AFB1 + PRO groups than in the AFB1 group. Moreover, in probiotic groups, GFAP immunoreactivity intensity was decreased, while NeuN-positive cell number increased in brain tissues compared to the AFB1 group. SIGNIFICANCE Probiotics seem to be effective at reducing the neurotoxic effects of AFB1. Thus, our study suggested that especially Bifidobacterium and Lactobacillus species can improve AFB1-induced neurotoxicity with their antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Gizem Aytekin Sahin
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Nuh Naci Yazgan University, Kayseri, Turkey.
| | - Derya Karabulut
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Gokhan Unal
- Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Meryem Sayan
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Habibe Sahin
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Erciyes University, Kayseri, Turkey
| |
Collapse
|
15
|
Wang D, Liu Y, Zhao D, Jin M, Li L, Ni H. Plppr5 gene inactivation causes a more severe neurological phenotype and abnormal mitochondrial homeostasis in a mouse model of juvenile seizure. Epilepsy Res 2022; 183:106944. [DOI: 10.1016/j.eplepsyres.2022.106944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 04/29/2022] [Accepted: 05/16/2022] [Indexed: 11/03/2022]
|
16
|
Furian AF, Fighera MR, Royes LFF, Oliveira MS. RECENT ADVANCES IN ASSESSING THE EFFECTS OF MYCOTOXINS USING ANIMAL MODELS. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
SILVA JVBD, OLIVEIRA CAFD, RAMALHO LNZ. An overview of mycotoxins, their pathogenic effects, foods where they are found and their diagnostic biomarkers. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.48520] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
18
|
Effects of Prenatal Exposure to Aflatoxin B1: A Review. Molecules 2021; 26:molecules26237312. [PMID: 34885894 PMCID: PMC8659025 DOI: 10.3390/molecules26237312] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 11/17/2022] Open
Abstract
Aflatoxins are mycotoxins produced as secondary fungal metabolites. Among them, aflatoxin B1 (AFB1) stands out due to its genotoxic and mutagenic potential, being a potent initiator of carcinogenesis. In this review, the outcomes from the published literature in the past 10 years on the effects of AFB1 pathophysiological mechanisms on embryological and fetal development are discussed. In several animal species, including humans, AFB1 has a teratogenic effect, resulting in bone malformations, visceral anomalies, lesions in several organs, and behavioral and reproductive changes, in addition to low birth weight. The mutagenic capacity of AFB1 in prenatal life is greater than in adults, indicating that when exposure occurs in the womb, the risk of the development of neoplasms is higher. Studies conducted in humans indicate that the exposure to this mycotoxin during pregnancy is associated with low birth weight, decreased head circumference, and DNA hypermethylation. However, as the actual impacts on humans are still unclear, the importance of this issue cannot be overemphasized and studies on the matter are essential.
Collapse
|
19
|
Cheng YC, Wu TS, Huang YT, Chang Y, Yang JJ, Yu FY, Liu BH. Aflatoxin B1 interferes with embryonic liver development: Involvement of p53 signaling and apoptosis in zebrafish. Toxicology 2021; 458:152844. [PMID: 34214637 DOI: 10.1016/j.tox.2021.152844] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 06/01/2021] [Accepted: 06/25/2021] [Indexed: 12/17/2022]
Abstract
Aflatoxin B1 (AFB1), a naturally occurring mycotoxin, is present in human placenta and cord blood. AFB1 at concentrations found in contaminated food commodities (0.25 and 0.5 μM) did not alter the spontaneous movement, heart rate, hatchability, or morphology of embryonic zebrafish. However, around 86 % of 0.25 μM AFB1-treated embryos had livers of reduced size, and AFB1 disrupted the hepatocyte structures, according to histological analysis. Additionally, AFB1 treatment that begins at any stage before 72 h post-fertilization (hpf) effectively reduced the size of embryonic livers. In hepatic areas, AFB1 suppressed the expression of Hhex and Prox1, which are two critical transcriptional factors for initiating hepatoblast specification. KEGG analysis based on transcriptome profiling indicated that p53 signaling and apoptosis are the only observed pathways in AFB1-treated embryos. AFB1 at 0.5 μM significantly activated the expression of tp53, mdm2, puma, noxa, pidd1, and gadd45aa genes that are related to the p53 pathway and also that of baxa, casp 8 and casp 3a in the apoptotic process. TUNEL staining demonstrated that AFB1 triggered the apoptosis of embryonic hepatocytes in a dose-dependent manner. These results indicate that the deficiency of both hhex and prox1 as well as hepatocyte apoptosis via the p53-Puma/Noxa-Bax axis may contribute to the embryonic liver shrinkage that is caused by AFB1.
Collapse
Affiliation(s)
- Ya-Chih Cheng
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ting-Shuan Wu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ying-Tzu Huang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yung Chang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jiann-Jou Yang
- Department of Biomedical Sciences, Chung Shan Medical University, Taiwan
| | - Feng-Yih Yu
- Department of Biomedical Sciences, Chung Shan Medical University, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
| | - Biing-Hui Liu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
20
|
Early Life Exposure to Aflatoxin B1 in Rats: Alterations in Lipids, Hormones, and DNA Methylation among the Offspring. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18020589. [PMID: 33445757 PMCID: PMC7828191 DOI: 10.3390/ijerph18020589] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 01/30/2023]
Abstract
Aflatoxins are toxic compounds produced by molds of the Aspergillus species that contaminate food primarily in tropical countries. The most toxic aflatoxin, aflatoxin B1 (AFB1), is a major cause of hepatocellular carcinoma (HCC) in these countries. In sub-Saharan Africa, aflatoxin contamination is common, and perinatal AFB1 exposure has been linked to the early onset of HCC. Epigenetic programming, including changes to DNA methylation, is one mechanism by which early life exposures can lead to adult disease. This study aims to elucidate whether perinatal AFB1 exposure alters markers of offspring health including weight, lipid, and hormone profiles as well as epigenetic regulation that may later influence cancer risk. Pregnant rats were exposed to two doses of AFB1 (low 0.5 and high 5 mg/kg) before conception, throughout pregnancy, and while weaning and compared to an unexposed group. Offspring from each group were followed to 3 weeks or 3 months of age, and their blood and liver samples were collected. Body weights and lipids were assessed at 3 weeks and 3 months while reproductive, gonadotropic, and thyroid hormones were assessed at 3 months. Prenatal AFB1 (high dose) exposure resulted in significant 16.3%, 31.6%, and 7.5% decreases in weight of the offspring at birth, 3 weeks, and 3 months, respectively. Both doses of exposure altered lipid and hormone profiles. Pyrosequencing was used to quantify percent DNA methylation at tumor suppressor gene Tp53 and growth-regulator H19 in DNA from liver and blood. Results were compared between the control and AFB1 exposure groups in 3-week liver samples and 3-week and 3-month blood samples. Relative to controls, Tp53 DNA methylation in both low- and high-dose exposed rats was significantly decreased in liver samples and increased in the blood (p < 0.05 in linear mixed models). H19 methylation was higher in the liver from low- and high-exposed rats and decreased in 3-month blood samples from the high exposure group (p < 0.05). Further research is warranted to determine whether such hormone, lipid, and epigenetic alterations from AFB1 exposure early in life play a role in the development of early-onset HCC.
Collapse
|
21
|
Sun Y, Ma L, Jin M, Zheng Y, Wang D, Ni H. Effects of Melatonin on Neurobehavior and Cognition in a Cerebral Palsy Model of plppr5-/- Mice. Front Endocrinol (Lausanne) 2021; 12:598788. [PMID: 33692754 PMCID: PMC7937640 DOI: 10.3389/fendo.2021.598788] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/07/2021] [Indexed: 12/14/2022] Open
Abstract
Cerebral palsy (CP), a group of clinical syndromes caused by non-progressive brain damage in the developing fetus or infant, is one of the most common causes of lifelong physical disability in children in most countries. At present, many researchers believe that perinatal cerebral hypoxic ischemic injury or inflammatory injury are the main causes of cerebral palsy. Previous studies including our works confirmed that melatonin has a protective effect against convulsive brain damage during development and that it affects the expression of various molecules involved in processes such as metabolism, plasticity and signaling in the brain. Integral membrane protein plppr5 is a new member of the plasticity-related protein family, which is specifically expressed in brain and spinal cord, and induces filopodia formation as well as neurite growth. It is highly expressed in the brain, especially in areas of high plasticity, such as the hippocampus. The signals are slightly lower in the cortex, the cerebellum, and in striatum. Noteworthy, during development plppr5 mRNA is expressed in the spinal cord, i.e., in neuron rich regions such as in medial motor nuclei, suggesting that plppr5 plays an important role in the regulation of neurons. However, the existing literature only states that plppr5 is involved in the occurrence and stability of dendritic spines, and research on its possible involvement in neonatal ischemic hypoxic encephalopathy has not been previously reported. We used plppr5 knockout (plppr5-/-) mice and their wild-type littermates to establish a model of hypoxicischemic brain injury (HI) to further explore the effects of melatonin on brain injury and the role of plppr5 in this treatment in an HI model, which mainly focuses on cognition, exercise, learning, and memory. All the tests were performed at 3-4 weeks after HI. As for melatonin treatment, which was performed 5 min after HI injury and followed by every 24h. In these experiments, we found that there was a significant interaction between genotype and treatment in novel object recognition tests, surface righting reflex tests and forelimb suspension reflex tests, which represent learning and memory, motor function and coordination, and the forelimb grip of the mice, respectively. However, a significant main effect of genotype and treatment on performance in all behavioral tests were observed. Specifically, wild-type mice with HI injury performed better than plppr5-/- mice, regardless of treatment with melatonin or vehicle. Moreover, treatment with melatonin could improve behavior in the tests for wild-type mice with HI injury, but not for plppr5-/- mice. This study showed that plppr5 knockout aggravated HI damage and partially weakened the neuroprotection of melatonin in some aspects (such as novel object recognition test and partial nerve reflexes), which deserves further study.
Collapse
|
22
|
The effects of sacubitril/valsartan and ramipril on the male fertility in hypertensive rats. North Clin Istanb 2020; 7:425-432. [PMID: 33163876 PMCID: PMC7603857 DOI: 10.14744/nci.2020.30906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 05/29/2020] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE: Renin angiotensinogen system (RAS) inhibitors, ramipril and sacubitril/valsartan are frequently used in the treatment of cardiovascular diseases. Although they are known as contraindicated during pregnancy in hypertensive women, there is not any outcome of their safety in male fertility after exposure to ramipril or sacubitril/valsartan. In this study, we aimed to evaluate the effects of ramipril and sacubitril/valsartan to highlight their safety in the male fertility in normotensive and hypertensive rats. METHODS: Adult male normotensive and dexamethasone-induced hypertensive rats were treated with sacubitril/valsartan, ramipril and saline for 18 days. Arterial blood pressures were verified using carotid artery cannulation. Male fertility parameters, including the testis weights, histopathologic scoring of the testis, sperm count, sperm motility, morphology, and serum testosterone levels, were analyzed in treated and nontreated normotensive/hypertensive rats. RESULTS: Sacubitril/valsartan or ramipril treatments did not reveal a significant difference in sperm production, testicular morphology, and radioimmunoassay of serum testosterone levels compared to the control group. However, sperm motility was significantly reduced in rats under RAS inhibition. CONCLUSION: This finding was likely mediated by the identification of Ang receptors in the tails of rat sperm given that Ang receptors may play a role in the modulation of sperm motility. Identification of RAS-related proteins involved in sperm motility may help to explain their roles in motility. Our data provide general safety evidence for the male fertilization ability after paternal sacubitril/valsartan and ramipril exposure.
Collapse
|
23
|
Abstract
Pregnancy is not a disease condition; it is a physiological process. However, the risks prevail until this process ends. While many pregnancies and births culminate without any problems, a considerable number of them end up with undesirable pregnancy outcomes such as intrauterine growth retardation, preterm labor, and low birth weight infants. Although the causes of these negative pregnancy outcomes are not fully understood, they occur in a multifactorial ways. One of the important issues here is the foods consumed by women with pregnancy. Pregnant women should avoid consuming fast food products, alcohol, or tobacco, which are already known to be harmful to human health, as well as harmful natural products containing mycotoxins. Mycotoxins are natural toxins with a wide range of chemical structures. While people can get these toxins directly from agricultural products, they can also be exposed indirectly through products of animals fed with contaminated feed. Mycotoxins have negative impacts on human health with their carcinogenic, teratogenic, and mutagenic effects. There are some evidences that mycotoxins can lead to negative pregnancy outcomes. These possible negative effects have been determined to be lower birth weight, neonatal jaundice, fetal loss, fetal defects, preterm birth, maternal anemia, and preeclampsia. However, more evidence is needed on this topic. This review aims to investigate the adverse effects of mycotoxins during pregnancy.
Collapse
Affiliation(s)
| | | | - Serkan Yilmaz
- Faculty of Nursing, Department of Midwifery, University of Ankara, Ankara, Turkey.,Faculty of Health Sciences, University of Ankara, Ankara, Turkey
| |
Collapse
|
24
|
Owumi SE, Adedara IA, Akomolafe AP, Farombi EO, Oyelere AK. Gallic acid enhances reproductive function by modulating oxido-inflammatory and apoptosis mediators in rats exposed to aflatoxin-B1. Exp Biol Med (Maywood) 2020; 245:1016-1028. [PMID: 32558593 DOI: 10.1177/1535370220936206] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
IMPACT STATEMENT Infertility resulting from reproductive deficiency can be stressful. Exposure to aflatoxin B1, a dietary mycotoxin prevalent in improperly stored grains, is reported to elicit reproductive insufficiencies and infertility. We, therefore, examined the likely beneficial effect of gallic acid (GA) a phytochemical, recognized to exhibit in vitro and in vivo pharmacological bioactivities against oxidative stress and related inflammatory damages in rats, since AFB1 toxicities are predicated on oxidative epoxide formation, in a bid to proffer new evidence to advance the field of nutriceutical application from plant-derived chemopreventive agents. Our findings will advance the field of chemoprevention by presenting data absent in the literature on GA. Our results demonstrate further evidence for GA conferred protection against AFB1-mediated histological lesions in testes, epididymis, and hypothalamus of treated rats; suppresses oxidative damages, relieved inflammatory and apoptotic responses, restored sperm functional characteristics, and hormonal levels relevant for reproductive integrity and function.
Collapse
Affiliation(s)
- Solomon E Owumi
- Cancer Research and Molecular Biology Laboratory, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan 200004, Nigeria
| | - Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan 200004, Nigeria
| | - Ayomide P Akomolafe
- Cancer Research and Molecular Biology Laboratory, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan 200004, Nigeria
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan 200004, Nigeria
| | - Adegboyega K Oyelere
- School of Chemistry & Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| |
Collapse
|
25
|
Evaluation of Neuroprotective Effects of Quercetin against Aflatoxin B1-Intoxicated Mice. Animals (Basel) 2020; 10:ani10050898. [PMID: 32455780 PMCID: PMC7278413 DOI: 10.3390/ani10050898] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/07/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Aflatoxin B1 (AFB1) is a mycotoxin commonly present in feed, characterized by several toxic effects. AFB1 has been described as being responsible for naturally occurring animal kidney disorders. In addition, AFB1 seems to have a neurotoxical effect that leads to memory impairment behavior. AFB1 toxicity involves the induction of the oxidative stress pathway, rising lipid peroxidation, and it decreases antioxidant enzyme levels. Hence, in our research, we wanted to evaluate the potential protective effects of quercetin in AFB1-mediated toxicity in the brain and the ameliorative effect on behavioral alterations. This antioxidant effect of quercetin in the brains of AFB1-intoxicated mice is reflected in better cognitive and spatial memory capacity, as well as a better profile of anxiety and lethargy disorders. In conclusion, our study suggests that quercetin exerts a preventive role against oxidative stress by promoting antioxidative defense systems and limiting lipid peroxidation. Abstract Aflatoxin B1 (AFB1) is a mycotoxin commonly present in feed, characterized by several toxic effects. AFB1 seems to have a neurotoxical effect that leads to memory impairment behavior. AFB1 toxicity involves the induction of the oxidative stress pathway, rising lipid peroxidation, and it decreases antioxidant enzyme levels. Hence, in our research, we wanted to evaluate the potential protective effects of quercetin 30 mg/kg in AFB1-mediated toxicity in the brain and the ameliorative effect on behavioral alterations. Oral supplementation with quercetin increased glutathione peroxidase (GSH) levels, superoxidedismutase (SOD) activity and catalase (CAT) in the brain, and it reduced lipid peroxidation in AFB1-treated mice. This antioxidant effect of quercetin in the brains of AFB1-intoxicated mice is reflected in better cognitive and spatial memory capacity, as well as a better profile of anxiety and lethargy disorders. In conclusion, our study suggests that quercetin exerts a preventive role against oxidative stress by promoting antioxidative defense systems and limiting lipid peroxidation.
Collapse
|
26
|
Samatha K, Girish BP, Reddy PS. Embryonic cadmium exposure of male rats alters reproductive functions at adulthood, but without overt alterations in developmental and behavioral outcomes and metabolism. TOXICOLOGY RESEARCH AND APPLICATION 2020. [DOI: 10.1177/2397847319898707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The effects of exposure of pregnant rats to cadmium (Cd) on the developmental and behavioral outcomes, reproductive functions, and metabolism of their male progeny were evaluated. Rats (Wistar) were injected intraperitoneally with either 0.5 or 5.0 µg Cd/kg body weight from day 12 to day 19 of pregnancy. The male offspring were evaluated for their developmental outcomes and behavioral changes. All developmental and behavioral parameters assessed were comparable among the different groups. All male pups were allowed to develop until 100 days of age and evaluated for reproductive end points. The results revealed that although the body weights and relative weights of liver, brain, kidney, testis, and epididymis were not altered, reproductive parameters, including daily sperm production, epididymal sperm numbers, and concentrations of motile, viable, and hypo-osmotic tail-swelled sperm declined significantly in rats exposed to 0.5 and 5.0 µg Cd during embryonic development. In addition, plasma testosterone levels and activity levels of testicular steroidogenic enzymes also decreased in these rats. In the fertility study, although each male in the 0.5, 5.0 µg, and control groups produced a copulatory plug and impregnated a female, the mean number of implantations and live fetuses was reduced significantly in females mated with rats exposed to 0.5 and 5.0 µg Cd during the prenatal period. The general metabolism of the animals exposed to Cd during embryonic development was comparable with the controls as evidenced by no significant changes in the activity levels of succinate dehydrogenase, lactate dehydrogenase, glucose-6-phosphate dehydrogenase, glutamate dehydrogenase, aspartate aminotransaminase, and alanine aminotransaminases in the liver, kidney, and testis. The results thus suggest that maternal Cd exposure during embryonic development markedly affected the spermatogenesis, steroidogenesis, and fertility potential, but without alterations in the development, behavior, and metabolism.
Collapse
Affiliation(s)
- K Samatha
- Department of Zoology, S.V. University, Tirupati, India
| | - BP Girish
- Department of Biotechnology, S.V. University, Tirupati, India
| | | |
Collapse
|
27
|
Souto N, Dassi M, Braga A, Rosa E, Fighera M, Royes L, Oliveira M, Furian A. Behavioural and biochemical effects of one-week exposure to aflatoxin B1 and aspartame in male Wistar rats. WORLD MYCOTOXIN J 2019. [DOI: 10.3920/wmj2018.2424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Food products are susceptible to contamination by mycotoxins, and aflatoxin B1 (AFB1) stands as the most toxic among them. AFB1 intoxication results in distinct signs, including widespread systemic toxicity. Aspartame (ASP) is an artificial sweetener used as a sugar substitute in many products, and compelling evidence indicates ASP can be toxic. Interestingly, mechanisms underlying ASP and AFB1 toxicity involve oxidative stress. In this context, concomitant use of ASP and AFB1 in a meal may predispose to currently unidentified behavioural and biochemical changes. Therefore, we evaluated the effect of AFB1 (250 μg/kg, intragastrically (i.g.)) and/or ASP (75 mg/kg, i.g.) exposure for 7 days on behavioural and biochemical markers of oxidative stress in male Wistar rats. AFB1 and/or ASP increased hepatic glutathione S-transferase (GST) activity when compared to controls. In the kidneys, increased GST activity was detected in AFB1 and AFB1+ASP groups. In addition, AFB1 and or ASP elicited behavioural changes in the open field, marble burying and splash tests, however no additive effects were detected. Altogether, present data suggest AFB1 and ASP predispose to anxiety- and obsessive-compulsive-like symptoms, as well as to enzymatic defence system imbalance in liver and kidney of Wistar rats.
Collapse
Affiliation(s)
- N.S. Souto
- Programa de Pós Graduação em Ciência e Tecnologia dos Alimentos, Universidade Federal de Santa Maria, Prédio 43, Sala 4217, 97105-900 Santa Maria, RS, Brazil
| | - M. Dassi
- Programa de Pós Graduação em Ciência e Tecnologia dos Alimentos, Universidade Federal de Santa Maria, Prédio 43, Sala 4217, 97105-900 Santa Maria, RS, Brazil
| | - A.C.M. Braga
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - E.V.F. Rosa
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - M.R. Fighera
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - L.F.F. Royes
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - M.S. Oliveira
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - A.F. Furian
- Programa de Pós Graduação em Ciência e Tecnologia dos Alimentos, Universidade Federal de Santa Maria, Prédio 43, Sala 4217, 97105-900 Santa Maria, RS, Brazil
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| |
Collapse
|
28
|
Sai Siva Ram AK, Pratap Reddy K, Girish BP, Supriya C, Sreenivasula Reddy P. Arsenic aggravated reproductive toxicity in male rats exposed to lead during the perinatal period. Toxicol Res (Camb) 2018; 7:1191-1204. [PMID: 30510688 PMCID: PMC6220733 DOI: 10.1039/c8tx00146d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/08/2018] [Indexed: 12/30/2022] Open
Abstract
The aim of this study was to assess the reproductive toxic effects of arsenic on adult Wistar rats exposed to lead during the perinatal period. The pregnant rats were allowed ad libitum access to tap water containing 819 mg of lead (Pb) per L or without Pb from conception until weaning. Litter size, survival rate and developmental milestones of the pups delivered by Pb exposed dams were comparable to those of the control rats. Conversely, the pups exposed to Pb during the perinatal period exhibited significant delay in cliff avoidance, negative geotaxis, surface righting reflex, ascending wire mesh and testis descent. The control and perinatal Pb-exposed male rats were maintained on tap water containing 2.3 mg of arsenite (As) per L or without arsenite from the pubertal period (post-natal day 55) to adulthood (post-natal day 115) and assessed for reproductive end points. The results revealed that the (1) relative weights of the testis, epididymis, seminiferous tubules and ventral prostate; (2) daily sperm production; (3) epididymal sperm density and (4) numbers of motile, viable, and HOS tail swelled sperm declined significantly in the rats exposed to either Pb or As. The activity levels of testicular 3β- and 17β-hydroxysteroid dehydrogenases were also significantly decreased in the experimental rats. Significant elevation in the levels of reactive oxygen species and lipid peroxidation in association with reduced activities of antioxidant enzymes in the testis and different epididymal regions was recorded in the experimental rats. In the fertility study, although each male in the control and experimental groups produced a copulatory plug and impregnated a female, the mean conception time significantly increased in the experimental groups. The mean number of implantations decreased significantly in the females mated with the experimental males. Moreover, the results of the present study also indicate that reproductive alterations were more deteriorated in the Pb-exposed rats treated with arsenic when compared to individual exposures. In conclusion, the data clearly suggest that reproductive toxicity in male rats exposed to Pb during the perinatal period is exacerbated by As treatment during the pubertal period.
Collapse
Affiliation(s)
- A K Sai Siva Ram
- Department of Zoology , Sri Venkateswara University , Tirupati - 517502 , India . ; ; Tel: +91-9247593000
| | - K Pratap Reddy
- Department of Zoology , Sri Venkateswara University , Tirupati - 517502 , India . ; ; Tel: +91-9247593000
- Department of Biotechnology , Sri Venkateswara University , Tirupati - 517502 , India
| | - B P Girish
- Department of Zoology , Sri Venkateswara University , Tirupati - 517502 , India . ; ; Tel: +91-9247593000
- Department of Biotechnology , Sri Venkateswara University , Tirupati - 517502 , India
| | - Ch Supriya
- Department of Zoology , Sri Venkateswara University , Tirupati - 517502 , India . ; ; Tel: +91-9247593000
- Department of Biotechnology , Sri Venkateswara University , Tirupati - 517502 , India
| | - P Sreenivasula Reddy
- Department of Zoology , Sri Venkateswara University , Tirupati - 517502 , India . ; ; Tel: +91-9247593000
| |
Collapse
|
29
|
Linardaki ZI, Lamari FN, Margarity M. Saffron (Crocus sativus L.) Tea Intake Prevents Learning/Memory Defects and Neurobiochemical Alterations Induced by Aflatoxin B1 Exposure in Adult Mice. Neurochem Res 2017; 42:2743-2754. [DOI: 10.1007/s11064-017-2283-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/29/2017] [Accepted: 04/22/2017] [Indexed: 01/03/2023]
|
30
|
Obesity alters the ovarian glucidic homeostasis disrupting the reproductive outcome of female rats. J Nutr Biochem 2017; 42:194-202. [DOI: 10.1016/j.jnutbio.2017.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 12/16/2016] [Accepted: 01/14/2017] [Indexed: 12/27/2022]
|
31
|
Souto NS, Claudia Monteiro Braga A, Lutchemeyer de Freitas M, Rechia Fighera M, Royes LFF, Schneider Oliveira M, Furian AF. Aflatoxin B1 reduces non-enzymatic antioxidant defenses and increases protein kinase C activation in the cerebral cortex of young rats. Nutr Neurosci 2017; 21:268-275. [DOI: 10.1080/1028415x.2017.1278837] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Naiéli Schiefelbein Souto
- Programa de Pós-Graduação em Ciência e Tecnologia dos Alimentos, Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brasil
| | - Ana Claudia Monteiro Braga
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brasil
| | | | - Michele Rechia Fighera
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brasil
- Programa de Pós-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Campus UFSM, Santa Maria, RS 97105-900, Brasil
| | - Luiz Fernando Freire Royes
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brasil
- Programa de Pós-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Campus UFSM, Santa Maria, RS 97105-900, Brasil
| | - Mauro Schneider Oliveira
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brasil
| | - Ana Flávia Furian
- Programa de Pós-Graduação em Ciência e Tecnologia dos Alimentos, Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brasil
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brasil
| |
Collapse
|
32
|
Supriya C, Akhila B, Pratap Reddy K, Girish BP, Sreenivasula Reddy P. Effects of maternal exposure to aflatoxin B1 during pregnancy on fertility output of dams and developmental, behavioral and reproductive consequences in female offspring using a rat model. Toxicol Mech Methods 2016; 26:202-10. [DOI: 10.3109/15376516.2016.1151967] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|