1
|
Zhang H, Zhao D, Tang Z, Zhang Y, Zhang K, Dong J, Wang F. Exogenous brassinosteroids promotes root growth, enhances stress tolerance, and increases yield in maize. PLANT SIGNALING & BEHAVIOR 2022; 17:2095139. [PMID: 35775499 PMCID: PMC9255028 DOI: 10.1080/15592324.2022.2095139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 05/21/2023]
Abstract
Brassinosteroids (BRs) regulate of maize (Zea mays L.) growth, but the underlying molecular mechanism remains unclear. In this study, we used a multi-disciplinary approach to determine how BRs regulate maize morphology and physiology during development. Treatment with the BRs promoted primary root the elongation and growth during germination, and the early development of lateral roots. BRs treatment during the middle growth stage increased the levels of various stress resistance factors, and enhanced resistance to lodging, likely by protecting the plant against stem rot and sheath rot. BRs had no significant effect on plant height during late growth, but it increased leaf angle and photosynthetic efficiency, as well as yield and quality traits. Our findings increase our understanding of the regulatory effects of BR on maize root growth and development and the mechanism by which BR improves disease resistance, which could further the potential for using BR to improve maize yield.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
| | - Dan Zhao
- College of Life Sciences, Hengshui University, Hengshui, Hebei, China
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Ziyan Tang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, China
| | - Ying Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
- Pear Engineering and Technology Research Center of Hebei, College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Ke Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
| | - Jingao Dong
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, China
| | - Fengru Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
- CONTACT Fengru Wang State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, Hebei071001, China
| |
Collapse
|
2
|
Wang S, Li H, Dong Z, Wang C, Wei X, Long Y, Wan X. Genetic structure and molecular mechanism underlying the stalk lodging traits in maize ( Zea mays L.). Comput Struct Biotechnol J 2022; 21:485-494. [PMID: 36618981 PMCID: PMC9803694 DOI: 10.1016/j.csbj.2022.12.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/03/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Stalk lodging seriously affects yield and quality of crops, and it can be caused by several factors, such as environments, developmental stages, and internal chemical components of plant stalks. Breeding of stalk lodging-resistant varieties is thus an important task for maize breeders. To better understand the genetic basis underlying stalk lodging resistance, several methods such as quantitative trait locus (QTL) mapping and genome-wide association study (GWAS) have been used to mine potential gene resources. Based on different types of genetic populations and mapping methods, many significant loci associated with stalk lodging resistance have been identified so far. However, few work has been performed to compare and integrate these reported genetic loci. In this study, we first collected hundreds of QTLs and quantitative trait nucleotides (QTNs) related to stalk lodging traits in maize. Then we mapped and integrated the QTLs and QTNs in maize genome to identify overlapped hotspot regions. Based on the genomic confidence intervals harboring these overlapped hotspot regions, we predicted candidate genes related to stalk lodging traits. Meanwhile, we mapped reported genes to these hotspot regions. Finally, we constructed molecular regulatory networks underlying stalk lodging resistance in maize. Collectively, this study provides not only useful genetic loci for deeply exploring molecular mechanisms of stalk lodging resistance traits, but also potential candidate genes and targeted strategies for improving stalk lodging resistance to increase crop yields in future.
Collapse
Affiliation(s)
- Shuai Wang
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Innovation School, Research Center of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Huangai Li
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Innovation School, Research Center of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Zhenying Dong
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Innovation School, Research Center of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Cheng Wang
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Innovation School, Research Center of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xun Wei
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Innovation School, Research Center of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Yan Long
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Innovation School, Research Center of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Xiangyuan Wan
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Innovation School, Research Center of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| |
Collapse
|
3
|
Virlouvet L, El Hage F, Griveau Y, Jacquemot MP, Gineau E, Baldy A, Legay S, Horlow C, Combes V, Bauland C, Palafre C, Falque M, Moreau L, Coursol S, Méchin V, Reymond M. Water Deficit-Responsive QTLs for Cell Wall Degradability and Composition in Maize at Silage Stage. FRONTIERS IN PLANT SCIENCE 2019; 10:488. [PMID: 31105719 PMCID: PMC6494970 DOI: 10.3389/fpls.2019.00488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/29/2019] [Indexed: 06/09/2023]
Abstract
The use of lignocellulosic biomass for animal feed or biorefinery requires the optimization of its degradability. Moreover, biomass crops need to be better adapted to the changing climate and in particular to periods of drought. Although the negative impact of water deficit on biomass yield has often been mentioned, its impact on biomass quality has only been recently reported in a few species. In the present study, we combined the mapping power of a maize recombinant inbred line population with robust near infrared spectroscopy predictive equations to track the response to water deficit of traits associated with biomass quality. The population was cultivated under two contrasted water regimes over 3 consecutive years in the south of France and harvested at silage stage. We showed that cell wall degradability and β-O-4-linked H lignin subunits were increased in response to water deficit, while lignin and p-coumaric acid contents were reduced. A mixed linear model was fitted to map quantitative trait loci (QTLs) for agronomical and cell wall-related traits. These QTLs were categorized as "constitutive" (QTL with an effect whatever the irrigation condition) or "responsive" (QTL involved in the response to water deficit) QTLs. Fifteen clusters of QTLs encompassed more than two third of the 213 constitutive QTLs and 13 clusters encompassed more than 60% of the 149 responsive QTLs. Interestingly, we showed that only half of the responsive QTLs co-localized with constitutive and yield QTLs, suggesting that specific genetic factors support biomass quality response to water deficit. Overall, our results demonstrate that water deficit favors cell wall degradability and that breeding of varieties that reconcile improved drought-tolerance and biomass degradability is possible.
Collapse
Affiliation(s)
- Laëtitia Virlouvet
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Fadi El Hage
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
- Univ. Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Yves Griveau
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Marie-Pierre Jacquemot
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Emilie Gineau
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Aurélie Baldy
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Sylvain Legay
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Christine Horlow
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Valérie Combes
- Génétique Quantitative et Evolution - Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Cyril Bauland
- Génétique Quantitative et Evolution - Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Carine Palafre
- Unité Expérimentale du Maïs, INRA, Saint-Martin-de-Hinx, France
| | - Matthieu Falque
- Génétique Quantitative et Evolution - Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Laurence Moreau
- Génétique Quantitative et Evolution - Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Sylvie Coursol
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Valérie Méchin
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Matthieu Reymond
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| |
Collapse
|
4
|
Badji A, Otim M, Machida L, Odong T, Kwemoi DB, Okii D, Agbahoungba S, Mwila N, Kumi F, Ibanda A, Mugo S, Kyamanywa S, Rubaihayo P. Maize Combined Insect Resistance Genomic Regions and Their Co-localization With Cell Wall Constituents Revealed by Tissue-Specific QTL Meta-Analyses. FRONTIERS IN PLANT SCIENCE 2018; 9:895. [PMID: 30026746 PMCID: PMC6041972 DOI: 10.3389/fpls.2018.00895] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 06/07/2018] [Indexed: 05/09/2023]
Abstract
Combinatorial insect attacks on maize leaves, stems, and kernels cause significant yield losses and mycotoxin contaminations. Several small effect quantitative trait loci (QTL) control maize resistance to stem borers and storage pests and are correlated with secondary metabolites. However, efficient use of QTL in molecular breeding requires a synthesis of the available resistance information. In this study, separate meta-analyses of QTL of maize response to stem borers and storage pests feeding on leaves, stems, and kernels along with maize cell wall constituents discovered in these tissues generated 24 leaf (LIR), 42 stem (SIR), and 20 kernel (KIR) insect resistance meta-QTL (MQTL) of a diverse genetic and geographical background. Most of these MQTL involved resistance to several insect species, therefore, generating a significant interest for multiple-insect resistance breeding. Some of the LIR MQTL such as LIR4, 17, and 22 involve resistance to European corn borer, sugarcane borer, and southwestern corn borer. Eleven out of the 42 SIR MQTL related to resistance to European corn borer and Mediterranean corn borer. There KIR MQTL, KIR3, 15, and 16 combined resistance to kernel damage by the maize weevil and the Mediterranean corn borer and could be used in breeding to reduce insect-related post-harvest grain yield loss and field to storage mycotoxin contamination. This meta-analysis corroborates the significant role played by cell wall constituents in maize resistance to insect since the majority of the MQTL contain QTL for members of the hydroxycinnamates group such as p-coumaric acid, ferulic acid, and other diferulates and derivates, and fiber components such as acid detergent fiber, neutral detergent fiber, and lignin. Stem insect resistance MQTL display several co-localization between fiber and hydroxycinnamate components corroborating the hypothesis of cross-linking between these components that provide mechanical resistance to insect attacks. Our results highlight the existence of combined-insect resistance genomic regions in maize and set the basis of multiple-pests resistance breeding.
Collapse
Affiliation(s)
- Arfang Badji
- Department of Agricultural Production, Makerere University, Kampala, Uganda
- *Correspondence: Arfang Badji
| | - Michael Otim
- Cereals Program, National Crop Resource Research Institute, Kampala, Uganda
| | - Lewis Machida
- International Maize and Wheat Improvement Center, Nairobi, Kenya
| | - Thomas Odong
- Department of Agricultural Production, Makerere University, Kampala, Uganda
| | | | - Dennis Okii
- Department of Agricultural Production, Makerere University, Kampala, Uganda
| | | | - Natasha Mwila
- Department of Agricultural Production, Makerere University, Kampala, Uganda
| | - Frank Kumi
- Department of Agricultural Production, Makerere University, Kampala, Uganda
| | - Angele Ibanda
- Department of Agricultural Production, Makerere University, Kampala, Uganda
| | - Stephen Mugo
- International Maize and Wheat Improvement Center, Nairobi, Kenya
| | - Samuel Kyamanywa
- Department of Agricultural Production, Makerere University, Kampala, Uganda
| | - Patrick Rubaihayo
- Department of Agricultural Production, Makerere University, Kampala, Uganda
| |
Collapse
|
5
|
Zhang C, Zhou Z, Yong H, Zhang X, Hao Z, Zhang F, Li M, Zhang D, Li X, Wang Z, Weng J. Analysis of the genetic architecture of maize ear and grain morphological traits by combined linkage and association mapping. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:1011-1029. [PMID: 28215025 DOI: 10.1007/s00122-017-2867-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/24/2017] [Indexed: 05/05/2023]
Abstract
Using combined linkage and association mapping, 26 stable QTL and six stable SNPs were detected across multiple environments for eight ear and grain morphological traits in maize. One QTL, PKS2, might play an important role in maize yield improvement. In the present study, one bi-parental population and an association panel were used to identify quantitative trait loci (QTL) for eight ear and grain morphological traits. A total of 108 QTL related to these traits were detected across four environments using an ultra-high density bin map constructed using recombinant inbred lines (RILs) derived from a cross between Ye478 and Qi319, and 26 QTL were identified in more than two environments. Furthermore, 64 single nucleotide polymorphisms (SNPs) were found to be significantly associated with the eight ear and grain morphological traits (-log10(P) > 4) in an association panel of 240 maize inbred lines. Combining the two mapping populations, a total of 17 pleiotropic QTL/SNPs (pQTL/SNPs) were associated with various traits across multiple environments. PKS2, a stable locus influencing kernel shape identified on chromosome 2 in a genome-wide association study (GWAS), was within the QTL confidence interval defined by the RILs. The candidate region harbored a short 13-Kb LD block encompassing four SNPs (SYN11386, PHM14783.16, SYN11392, and SYN11378). In the association panel, 13 lines derived from the hybrid PI78599 possessed the same allele as Qi319 at the PHM14783.16 (GG) locus, with an average value of 0.21 for KS, significantly lower than that of the 34 lines derived from Ye478 that carried a different allele (0.25, P < 0.05). Therefore, further fine mapping of PKS2 will provide valuable information for understanding the genetic components of grain yield and improving molecular marker-assisted selection (MAS) in maize.
Collapse
Affiliation(s)
- Chaoshu Zhang
- College of Agronomy, Northeast Agricultural University, Mucai Street, XiangFang District, Harbin, 150030, Heilongjiang, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Zhiqiang Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Hongjun Yong
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Xiaochong Zhang
- College of Agronomy, Northeast Agricultural University, Mucai Street, XiangFang District, Harbin, 150030, Heilongjiang, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Zhuanfang Hao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Fangjun Zhang
- College of Agronomy, Northeast Agricultural University, Mucai Street, XiangFang District, Harbin, 150030, Heilongjiang, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Mingshun Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Degui Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Xinhai Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Zhenhua Wang
- College of Agronomy, Northeast Agricultural University, Mucai Street, XiangFang District, Harbin, 150030, Heilongjiang, China.
| | - Jianfeng Weng
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Zhongguancun South Street, Haidian District, Beijing, 100081, China.
| |
Collapse
|
6
|
Meng Y, Li J, Liu J, Hu H, Li W, Liu W, Chen S. Ploidy effect and genetic architecture exploration of stalk traits using DH and its corresponding haploid populations in maize. BMC PLANT BIOLOGY 2016; 16:50. [PMID: 26911156 PMCID: PMC4766647 DOI: 10.1186/s12870-016-0742-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/18/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Doubled haploid (DH) lines produced via in vivo haploid induction have become indispensable in maize research and practical breeding, so it is important to understand traits characteristics in DH and its corresponding haploids which derived from each DH lines. In this study, a DH population derived from Zheng58 × Chang7-2 and a haploid population, were developed, genotyped and evaluated to investigate genetic architecture of eight stalk traits, especially rind penetrometer resistance (RPR) and in vitro dry matter digestion (IVDMD), which affecting maize stalk lodging-resistance and feeding values, respectively. RESULTS Phenotypic correlation coefficients ranged from 0.38 to 0.69 between the two populations for eight stalk traits. Heritability values of all stalk traits ranged from 0.49 to 0.81 in the DH population, and 0.58 to 0.89 in the haploid population. Quantitative trait loci (QTL) mapping study showed that a total of 47 QTL for all traits accounting for genetic variations ranging from 1.6 to 36.5% were detected in two populations. One or more QTL sharing common region for each trait were detected between two different ploidy populations. Potential candidate genes predicated from the four QTL support intervals for RPR and IVDMD were indirectly or directly involved with cellulose and lignin biosynthesis, which participated in cell wall formation. The increased expression levels of lignin and cellulose synthesis key genes in the haploid situation illustrated that dosage compensation may account for genome dosage effect in our study. CONCLUSIONS The current investigation extended understanding about the genetic basis of stalk traits and correlations between DH and its haploid populations, which showed consistence and difference between them in phenotype, QTL characters, and gene expression. The higher heritabilities and partly higher QTL detection power were presented in haploid population than in DH population. All of which described above could lay a preliminary foundation for genetic architecture study with haploid population and may benefit selection in haploid-stage to reduce cost in DH breeding.
Collapse
Affiliation(s)
- Yujie Meng
- National Maize Improvement Center of China, China Agricultural University (West Campus), 2# Yuanmingyuan West Road, Beijing, 100193, China.
| | - Junhui Li
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy, China Agricultural University (West Campus), 2# Yuanmingyuan West Road, Beijing, 100193, China.
| | - Jianju Liu
- National Maize Improvement Center of China, China Agricultural University (West Campus), 2# Yuanmingyuan West Road, Beijing, 100193, China.
| | - Haixiao Hu
- Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, 70599, Stuttgart, Germany.
| | - Wei Li
- National Maize Improvement Center of China, China Agricultural University (West Campus), 2# Yuanmingyuan West Road, Beijing, 100193, China.
| | - Wenxin Liu
- National Maize Improvement Center of China, China Agricultural University (West Campus), 2# Yuanmingyuan West Road, Beijing, 100193, China.
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy, China Agricultural University (West Campus), 2# Yuanmingyuan West Road, Beijing, 100193, China.
| | - Shaojiang Chen
- National Maize Improvement Center of China, China Agricultural University (West Campus), 2# Yuanmingyuan West Road, Beijing, 100193, China.
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy, China Agricultural University (West Campus), 2# Yuanmingyuan West Road, Beijing, 100193, China.
| |
Collapse
|
7
|
Samayoa LF, Malvar RA, McMullen MD, Butrón A. Identification of QTL for resistance to Mediterranean corn borer in a maize tropical line to improve temperate germplasm. BMC PLANT BIOLOGY 2015; 15:265. [PMID: 26530038 PMCID: PMC4632334 DOI: 10.1186/s12870-015-0652-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/22/2015] [Indexed: 05/09/2023]
Abstract
BACKGROUND A QTL mapping study for maize resistance to the Mediterranean corn borer (MCB) was performed with a RIL population derived from the cross B73 × CML103. To develop commercial inbreds of maize resistant to the MCB for use in Europe, it would be useful to transfer resistance from tropical germplasm like the subtropical inbred CML103 to temperate lines. The inbred B73 was chosen as representative of the Stiff Stock heterotic group, a major heterotic group used in hybrid grown in both North American and Europe. The objectives were to study the architecture of genetic factors for resistance to MCB and to check the feasibility of using marker-assisted selection (MAS) for transferring those genetic factors. RESULTS Eight quantitative trait loci (QTL) were declared significant for resistance traits and eight QTL were located for agronomic traits. Alleles from CML103 at QTL significant for tunnel length could reduce tunnel length made for MCB in inbred B73 in more than 8 cm; favorable alleles for yield were also found in CML103 and no genetic correlation coefficient between tunnel length and yield was detected. CONCLUSIONS MAS for transferring resistance genes to corn borer attack from CML103 to B73 could be successful based on cross validation results and a negative effect on yield would not be expected.
Collapse
Affiliation(s)
- Luis Fernando Samayoa
- Misión Biológica de Galicia, Spanish National Research Council (CSIC), P.O. Box 28, 36080, Pontevedra, Spain.
| | - Rosa Ana Malvar
- Misión Biológica de Galicia, Spanish National Research Council (CSIC), P.O. Box 28, 36080, Pontevedra, Spain.
| | - Michael D McMullen
- Plant Sciences Research Unit, USDA-Agricultural Research Service; and Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA.
| | - Ana Butrón
- Misión Biológica de Galicia, Spanish National Research Council (CSIC), P.O. Box 28, 36080, Pontevedra, Spain.
| |
Collapse
|
8
|
Foiada F, Westermeier P, Kessel B, Ouzunova M, Wimmer V, Mayerhofer W, Presterl T, Dilger M, Kreps R, Eder J, Schön CC. Improving resistance to the European corn borer: a comprehensive study in elite maize using QTL mapping and genome-wide prediction. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:875-91. [PMID: 25758357 DOI: 10.1007/s00122-015-2477-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 02/04/2015] [Indexed: 05/19/2023]
Abstract
The efficiency of marker-assisted selection for native resistance to European corn borer stalk damage can be increased when progressing from a QTL-based towards a genome-wide approach. Marker-assisted selection (MAS) has been shown to be effective in improving resistance to the European corn borer (ECB) in maize. In this study, we investigated the performance of whole-genome-based selection, relative to selection based on individual quantitative trait loci (QTL), for resistance to ECB stalk damage in European elite maize. Three connected biparental populations, comprising 590 doubled haploid (DH) lines, were genotyped with high-density single nucleotide polymorphism markers and phenotyped under artificial and natural infestation in 2011. A subset of 195 DH lines was evaluated in the following year as lines per se and as testcrosses. Resistance was evaluated based on stalk damage ratings, the number of feeding tunnels in the stalk and tunnel length. We performed individual- and joint-population QTL analyses and compared the cross-validated predictive abilities of the QTL models with genomic best linear unbiased prediction (GBLUP). For all traits, the GBLUP model consistently outperformed the QTL model despite the detection of QTL with sizeable effects. For stalk damage rating, GBLUP's predictive ability exceeded at times 0.70. Model training based on DH line per se performance was efficient in predicting stalk breakage in testcrosses. We conclude that the efficiency of MAS for ECB stalk damage resistance can be increased considerably when progressing from a QTL-based towards a genome-wide approach. With the availability of native ECB resistance in elite European maize germplasm, our results open up avenues for the implementation of an integrated genome-based selection approach for the simultaneous improvement of yield, maturity and ECB resistance.
Collapse
Affiliation(s)
- Flavio Foiada
- Plant Breeding, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Liesel-Beckmann-Str. 2, 85354, Freising, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Samayoa LF, Malvar RA, Olukolu BA, Holland JB, Butrón A. Genome-wide association study reveals a set of genes associated with resistance to the Mediterranean corn borer (Sesamia nonagrioides L.) in a maize diversity panel. BMC PLANT BIOLOGY 2015; 15:35. [PMID: 25652257 PMCID: PMC4340109 DOI: 10.1186/s12870-014-0403-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/22/2014] [Indexed: 05/21/2023]
Abstract
BACKGROUND Corn borers are the primary maize pest; their feeding on the pith results in stem damage and yield losses. In this study, we performed a genome-wide association study (GWAS) to identify SNPs associated with resistance to Mediterranean corn borer in a maize diversity panel using a set of more than 240,000 SNPs. RESULTS Twenty five SNPs were significantly associated with three resistance traits: 10 were significantly associated with tunnel length, 4 with stem damage, and 11 with kernel resistance. Allelic variation at each significant SNP was associated with from 6 to 9% of the phenotypic variance. A set of genes containing or physically close to these SNPs are proposed as candidate genes for borer resistance, supported by their involvement in plant defense-related mechanisms in previously published evidence. The linkage disequilibrium decayed (r(2) < 0.10) rapidly within short distance, suggesting high resolution of GWAS associations. CONCLUSIONS Most of the candidate genes found in this study are part of signaling pathways, others act as regulator of expression under biotic stress condition, and a few genes are encoding enzymes with antibiotic effect against insects such as the cystatin1 gene and the defensin proteins. These findings contribute to the understanding the complex relationship between plant-insect interactions.
Collapse
Affiliation(s)
- Luis Fernando Samayoa
- Misión Biológica de Galicia, Spanish National Research Council (CSIC), P.O. Box 28, 36080, Pontevedra, Spain.
| | - Rosa Ana Malvar
- Misión Biológica de Galicia, Spanish National Research Council (CSIC), P.O. Box 28, 36080, Pontevedra, Spain.
| | - Bode A Olukolu
- Department of Crop Science, North Carolina State University, Raleigh, North Carolina, 27695, USA.
| | - James B Holland
- Department of Crop Science, North Carolina State University, Raleigh, North Carolina, 27695, USA.
- U.S. Department of Agriculture-Agricultural Research Service, Plant Science Research Unit, Raleigh, North Carolina, 27695, USA.
| | - Ana Butrón
- Misión Biológica de Galicia, Spanish National Research Council (CSIC), P.O. Box 28, 36080, Pontevedra, Spain.
| |
Collapse
|
10
|
Betsiashvili M, Ahern KR, Jander G. Additive effects of two quantitative trait loci that confer Rhopalosiphum maidis (corn leaf aphid) resistance in maize inbred line Mo17. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:571-8. [PMID: 25249072 PMCID: PMC4286405 DOI: 10.1093/jxb/eru379] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plants show considerable within-species variation in their resistance to insect herbivores. In the case of Zea mays (cultivated maize), Rhopalosiphum maidis (corn leaf aphids) produce approximately twenty times more progeny on inbred line B73 than on inbred line Mo17. Genetic mapping of this difference in maize aphid resistance identified quantitative trait loci (QTL) on chromosomes 4 and 6, with the Mo17 allele reducing aphid reproduction in each case. The chromosome 4 QTL mapping interval includes several genes involved in the biosynthesis of DIMBOA (2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one), a maize defensive metabolite that also is required for callose accumulation in response to aphid feeding. Consistent with the known association of callose with plant defence against aphids, R. maidis reproduction on B73×Mo17 recombinant inbred lines was negatively correlated with both DIMBOA content and callose formation. Further genetic mapping, as well as experiments with near-isogenic lines, confirmed that the Mo17 allele causes increased DIMBOA accumulation relative to the B73 allele. The chromosome 6 aphid resistance QTL functions independently of DIMBOA accumulation and has an effect that is additive to that of the chromosome 4 QTL. Thus, at least two separate defence mechanisms account for the higher level of R. maidis resistance in Mo17 compared with B73.
Collapse
Affiliation(s)
| | - Kevin R Ahern
- Boyce Thompson Institute for Plant Research, Ithaca, New York, 14853, USA
| | - Georg Jander
- Boyce Thompson Institute for Plant Research, Ithaca, New York, 14853, USA
| |
Collapse
|
11
|
Francisco M, Ali M, Ferreres F, Moreno DA, Velasco P, Soengas P. Organ-Specific Quantitative Genetics and Candidate Genes of Phenylpropanoid Metabolism in Brassica oleracea. FRONTIERS IN PLANT SCIENCE 2015; 6:1240. [PMID: 26858727 PMCID: PMC4729930 DOI: 10.3389/fpls.2015.01240] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/20/2015] [Indexed: 05/21/2023]
Abstract
Phenolic compounds are proving to be increasingly important for human health and in crop development, defense and adaptation. In spite of the economical importance of Brassica crops in agriculture, the mechanisms involved in the biosynthesis of phenolic compounds presents in these species remain unknown. The genetic and metabolic basis of phenolics accumulation was dissected through analysis of total phenolics concentration and its individual components in leaves, flower buds, and seeds of a double haploid (DH) mapping population of Brassica oleracea. The quantitative trait loci (QTL) that had an effect on phenolics concentration in each organ were integrated, resulting in 33 consensus QTLs controlling phenolics traits. Most of the studied compounds had organ-specific genomic regulation. Moreover, this information allowed us to propose candidate genes and to predict the function of genes underlying the QTL. A number of previously unknown potential regulatory regions involved in phenylpropanoid metabolism were identified and this study illustrates how plant ontogeny can affect a biochemical pathway.
Collapse
Affiliation(s)
- Marta Francisco
- Group of Genetics, Breeding and Biochemistry of Brassicas, Misión Biológica de Galicia - Consejo Superior de Investigaciones Científicas (MBG-CSIC)Pontevedra, Spain
| | - Mahmoud Ali
- Group of Genetics, Breeding and Biochemistry of Brassicas, Misión Biológica de Galicia - Consejo Superior de Investigaciones Científicas (MBG-CSIC)Pontevedra, Spain
- Department of Horticulture, Faculty of Agriculture, Ain Shams UniversityCairo, Egypt
| | - Federico Ferreres
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, Centro de Edafología y Biología Aplicada del Segura - Consejo Superior de Investigaciones Científicas (CEBAS-CSIC)Murcia, Spain
| | - Diego A. Moreno
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, Centro de Edafología y Biología Aplicada del Segura - Consejo Superior de Investigaciones Científicas (CEBAS-CSIC)Murcia, Spain
| | - Pablo Velasco
- Group of Genetics, Breeding and Biochemistry of Brassicas, Misión Biológica de Galicia - Consejo Superior de Investigaciones Científicas (MBG-CSIC)Pontevedra, Spain
| | - Pilar Soengas
- Group of Genetics, Breeding and Biochemistry of Brassicas, Misión Biológica de Galicia - Consejo Superior de Investigaciones Científicas (MBG-CSIC)Pontevedra, Spain
- *Correspondence: Pilar Soengas
| |
Collapse
|
12
|
Sotelo T, Cartea ME, Velasco P, Soengas P. Identification of antioxidant capacity -related QTLs in Brassica oleracea. PLoS One 2014; 9:e107290. [PMID: 25198771 PMCID: PMC4157872 DOI: 10.1371/journal.pone.0107290] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 08/11/2014] [Indexed: 01/11/2023] Open
Abstract
Brassica vegetables possess high levels of antioxidant metabolites associated with beneficial health effects including vitamins, carotenoids, anthocyanins, soluble sugars and phenolics. Until now, no reports have been documented on the genetic basis of the antioxidant activity (AA) in Brassicas and the content of metabolites with AA like phenolics, anthocyanins and carotenoids. For this reason, this study aimed to: (1) study the relationship among different electron transfer (ET) methods for measuring AA, (2) study the relationship between these methods and phenolic, carotenoid and anthocyanin content, and (3) find QTLs of AA measured with ET assays and for phenolic, carotenoid and anthocyanin contents in leaves and flower buds in a DH population of B. oleracea as an early step in order to identify genes related to these traits. Low correlation coefficients among different methods for measuring AA suggest that it is necessary to employ more than one method at the same time. A total of 19 QTLs were detected for all traits. For AA methods, seven QTLs were found in leaves and six QTLs were found in flower buds. Meanwhile, for the content of metabolites with AA, two QTLs were found in leaves and four QTLs were found in flower buds. AA of the mapping population is related to phenolic compounds but also to carotenoid content. Three genomic regions determined variation for more than one ET method measuring AA. After the syntenic analysis with A. thaliana, several candidate genes related to phenylpropanoid biosynthesis are proposed for the QTLs found.
Collapse
Affiliation(s)
- Tamara Sotelo
- Group of Genetics, Breeding and Biochemistry of Brassicas, Department of Plant Genetics, Misión Biológica de Galicia, Spanish Council for Scientific Research (MBG-CSIC), Pontevedra, Spain
| | - María Elena Cartea
- Group of Genetics, Breeding and Biochemistry of Brassicas, Department of Plant Genetics, Misión Biológica de Galicia, Spanish Council for Scientific Research (MBG-CSIC), Pontevedra, Spain
| | - Pablo Velasco
- Group of Genetics, Breeding and Biochemistry of Brassicas, Department of Plant Genetics, Misión Biológica de Galicia, Spanish Council for Scientific Research (MBG-CSIC), Pontevedra, Spain
| | - Pilar Soengas
- Group of Genetics, Breeding and Biochemistry of Brassicas, Department of Plant Genetics, Misión Biológica de Galicia, Spanish Council for Scientific Research (MBG-CSIC), Pontevedra, Spain
| |
Collapse
|
13
|
Sotelo T, Soengas P, Velasco P, Rodríguez VM, Cartea ME. Identification of metabolic QTLs and candidate genes for glucosinolate synthesis in Brassica oleracea leaves, seeds and flower buds. PLoS One 2014; 9:e91428. [PMID: 24614913 PMCID: PMC3948865 DOI: 10.1371/journal.pone.0091428] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 02/11/2014] [Indexed: 12/29/2022] Open
Abstract
Glucosinolates are major secondary metabolites found in the Brassicaceae family. These compounds play an essential role in plant defense against biotic and abiotic stresses, but more interestingly they have beneficial effects on human health. We performed a genetic analysis in order to identify the genome regions regulating glucosinolates biosynthesis in a DH mapping population of Brassica oleracea. In order to obtain a general overview of regulation in the whole plant, analyses were performed in the three major organs where glucosinolates are synthesized (leaves, seeds and flower buds). Eighty two significant QTLs were detected, which explained a broad range of variability in terms of individual and total glucosinolate (GSL) content. A meta-analysis rendered eighteen consensus QTLs. Thirteen of them regulated more than one glucosinolate and its content. In spite of the considerable variability of glucosinolate content and profiles across the organ, some of these consensus QTLs were identified in more than one tissue. Consensus QTLs control the GSL content by interacting epistatically in complex networks. Based on in silico analysis within the B. oleracea genome along with synteny with Arabidopsis, we propose seven major candidate loci that regulate GSL biosynthesis in the Brassicaceae family. Three of these loci control the content of aliphatic GSL and four of them control the content of indolic glucosinolates. GSL-ALK plays a central role in determining aliphatic GSL variation directly and by interacting epistatically with other loci, thus suggesting its regulatory effect.
Collapse
Affiliation(s)
- Tamara Sotelo
- Group of Genetics, Breeding and Biochemistry of Brassicas, Department of Plant Genetics, Misión Biológica de Galicia, Spanish Council for Scientific Research (MBG-CSIC), Pontevedra, Spain
| | - Pilar Soengas
- Group of Genetics, Breeding and Biochemistry of Brassicas, Department of Plant Genetics, Misión Biológica de Galicia, Spanish Council for Scientific Research (MBG-CSIC), Pontevedra, Spain
| | - Pablo Velasco
- Group of Genetics, Breeding and Biochemistry of Brassicas, Department of Plant Genetics, Misión Biológica de Galicia, Spanish Council for Scientific Research (MBG-CSIC), Pontevedra, Spain
| | - Víctor M. Rodríguez
- Group of Genetics, Breeding and Biochemistry of Brassicas, Department of Plant Genetics, Misión Biológica de Galicia, Spanish Council for Scientific Research (MBG-CSIC), Pontevedra, Spain
| | - María Elena Cartea
- Group of Genetics, Breeding and Biochemistry of Brassicas, Department of Plant Genetics, Misión Biológica de Galicia, Spanish Council for Scientific Research (MBG-CSIC), Pontevedra, Spain
| |
Collapse
|
14
|
Hu H, Liu W, Fu Z, Homann L, Technow F, Wang H, Song C, Li S, Melchinger AE, Chen S. QTL mapping of stalk bending strength in a recombinant inbred line maize population. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:2257-66. [PMID: 23737073 DOI: 10.1007/s00122-013-2132-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 05/21/2013] [Indexed: 05/04/2023]
Abstract
Stalk bending strength (SBS) is a reliable indicator for evaluating stalk lodging resistance of maize plants. Based on biomechanical considerations, the maximum load exerted to breaking (F max), the breaking moment (M max) and critical stress (σ max) are three important parameters to characterize SBS. We investigated the genetic architecture of SBS by phenotyping F max, M max and σ max of the fourth internode of maize plants in a population of 216 recombinant inbred lines derived from the cross B73 × Ce03005 evaluated in four environments. Heritability of F max, M max and σ max was 0.81, 0.79 and 0.75, respectively. F max and σ max were positively correlated with several other stalk characters. By using a linkage map with 129 SSR markers, we detected two, three and two quantitative trait loci (QTL) explaining 22.4, 26.1 and 17.2 % of the genotypic variance for F max, M max and σ max, respectively. The QTL for F max, M max and σ max located in adjacent bins 5.02 and 5.03 as well as in bin 10.04 for F max were detected with high frequencies in cross-validation. As our QTL mapping results suggested a complex polygenic inheritance for SBS-related traits, we also evaluated the prediction accuracy of two genomic prediction methods (GBLUP and BayesB). In general, we found that both explained considerably higher proportions of the genetic variance than the values obtained in QTL mapping with cross-validation. Nevertheless, the identified QTL regions could be used as a starting point for fine mapping and gene cloning.
Collapse
Affiliation(s)
- Haixiao Hu
- National Maize Improvement Center of China, China Agricultural University (West Campus), 2# Yuanmingyuan West Road, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Peiffer JA, Flint-Garcia SA, De Leon N, McMullen MD, Kaeppler SM, Buckler ES. The genetic architecture of maize stalk strength. PLoS One 2013; 8:e67066. [PMID: 23840585 PMCID: PMC3688621 DOI: 10.1371/journal.pone.0067066] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 05/14/2013] [Indexed: 01/16/2023] Open
Abstract
Stalk strength is an important trait in maize (Zea mays L.). Strong stalks reduce lodging and maximize harvestable yield. Studies show rind penetrometer resistance (RPR), or the force required to pierce a stalk rind with a spike, is a valid approximation of strength. We measured RPR across 4,692 recombinant inbreds (RILs) comprising the maize nested association mapping (NAM) panel derived from crosses of diverse inbreds to the inbred, B73. An intermated B73×Mo17 family (IBM) of 196 RILs and a panel of 2,453 diverse inbreds from the North Central Regional Plant Introduction Station (NCRPIS) were also evaluated. We measured RPR in three environments. Family-nested QTL were identified by joint-linkage mapping in the NAM panel. We also performed a genome-wide association study (GWAS) and genomic best linear unbiased prediction (GBLUP) in each panel. Broad sense heritability computed on a line means basis was low for RPR. Only 8 of 26 families had a heritability above 0.20. The NCRPIS diversity panel had a heritability of 0.54. Across NAM and IBM families, 18 family-nested QTL and 141 significant GWAS associations were identified for RPR. Numerous weak associations were also found in the NCRPIS diversity panel. However, few were linked to loci involved in phenylpropanoid and cellulose synthesis or vegetative phase transition. Using an identity-by-state (IBS) relationship matrix estimated from 1.6 million single nucleotide polymorphisms (SNPs) and RPR measures from 20% of the NAM panel, genomic prediction by GBLUP explained 64±2% of variation in the remaining RILs. In the NCRPIS diversity panel, an IBS matrix estimated from 681,257 SNPs and RPR measures from 20% of the panel explained 33±3% of variation in the remaining inbreds. These results indicate the high genetic complexity of stalk strength and the potential for genomic prediction to hasten its improvement.
Collapse
Affiliation(s)
- Jason A Peiffer
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
Genome-wide mapping analyses are now commonplace in many species and several networks of interacting loci have been reported. However, relatively few details regarding epistatic interactions and their contribution to complex trait variation in multicellular organisms are available and the identification of positional candidate loci for epistatic QTL (epiQTL) is hampered, especially in mammals, by the limited genetic resolution inherent in most study designs. Here we further investigate the genetic architecture of reproductive fatpad weight in mice using the F(10) generation of the LG,SM advanced intercross (AI) line. We apply multiple mapping techniques including a single-locus model, locus-specific composite interval mapping (CIM), and tests for multiple QTL per chromosome to the 12 chromosomes known to harbor single-locus QTL (slQTL) affecting obesity in this cross. We also perform a genome-wide scan for pairwise epistasis. Using this combination of approaches we detect 199 peaks spread over all 19 autosomes, which potentially contribute to trait variation including all eight original F(2) loci (Adip1-8), novel slQTL peaks on chromosomes 7 and 9, and several novel epistatic loci. Extensive epistasis is confirmed involving both slQTL confidence intervals (C.I.) as well as regions that show no significant additive or dominance effects. These results provide important new insights into mapping complex genetic architectures and the role of epistasis in complex trait variation.
Collapse
|
17
|
Ordas B, Malvar RA, Santiago R, Butron A. QTL mapping for Mediterranean corn borer resistance in European flint germplasm using recombinant inbred lines. BMC Genomics 2010; 11:174. [PMID: 20230603 PMCID: PMC2841681 DOI: 10.1186/1471-2164-11-174] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 03/15/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ostrinia nubilalis (ECB) and Sesamia nonagrioides (MCB) are two maize stem borers which cause important losses in temperate maize production, but QTL analyses for corn borer resistance were mostly restricted to ECB resistance and maize materials genetically related (mapping populations derived from B73). Therefore, the objective of this work was to identify and characterize QTLs for MCB resistance and agronomic traits in a RILs population derived from European flint inbreds. RESULTS Three QTLs were detected for stalk tunnel length at bins 1.02, 3.05 and 8.05 which explained 7.5% of the RILs genotypic variance. The QTL at bin 3.05 was co-located to a QTL related to plant height and grain humidity and the QTL at bin 8.05 was located near a QTL related to yield. CONCLUSIONS Our results, when compared with results from other authors, suggest the presence of genes involved in cell wall biosynthesis or fortification with effects on resistance to different corn borer species and digestibility for dairy cattle. Particularly, we proposed five candidate genes related to cell wall characteristics which could explain the QTL for stalk tunnelling in the region 3.05. However, the small proportion of genotypic variance explained by the QTLs suggest that there are also many other genes of small effect regulating MCB resistance and we conclude that MAS seems not promising for this trait. Two QTLs detected for stalk tunnelling overlap with QTLs for agronomic traits, indicating the presence of pleitropism or linkage between genes affecting resistance and agronomic traits.
Collapse
Affiliation(s)
- Bernardo Ordas
- Misión Biológica de Galicia, Spanish National Research Council (CSIC), Apartado 28, 36080 Pontevedra, Spain.
| | | | | | | |
Collapse
|
18
|
Ordas B, Malvar RA, Santiago R, Sandoya G, Romay MC, Butron A. Mapping of QTL for resistance to the Mediterranean corn borer attack using the intermated B73 x Mo17 (IBM) population of maize. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 119:1451-9. [PMID: 19756472 DOI: 10.1007/s00122-009-1147-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Accepted: 08/30/2009] [Indexed: 05/21/2023]
Abstract
The Mediterranean corn borer or pink stem borer (MCB, Sesamia nonagrioides Lefebvre) causes important yield losses as a consequence of stalk tunneling and direct kernel damage. B73 and Mo17 are the source of the most commercial valuable maize inbred lines in temperate zones, while the intermated B73 x Mo17 (IBM) population is an invaluable source for QTL identification. However, no or few experiments have been carried out to detect QTL for corn borer resistance in the B73 x Mo17 population. The objective of this work was to locate QTL for resistance to stem tunneling and kernel damage by MCB in the IBM population. We detected a QTL for kernel damage at bin 8.05, although the effect was small and two QTL for stalk tunneling at bins 1.06 and 9.04 in which the additive effects were 4 cm, approximately. The two QTL detected for MCB resistance were close to other QTL consistently found for European corn borer (ECB, Ostrinia nubilalis Hübner) resistance, indicating mechanisms of resistance common to both pests or gene clusters controlling resistance to different plagues. The precise mapping achieved with the IBM population will facilitate the QTL pyramiding and the positional cloning of the detected QTL.
Collapse
Affiliation(s)
- Bernardo Ordas
- Misión Biológica de Galicia, Spanish National Research Council (CSIC), 36080, Apartado 28, Pontevedra, Spain.
| | | | | | | | | | | |
Collapse
|
19
|
Krakowsky MD, Lee M, Garay L, Woodman-Clikeman W, Long MJ, Sharopova N, Frame B, Wang K. Quantitative trait loci for callus initiation and totipotency in maize (Zea mays L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2006; 113:821-30. [PMID: 16896717 DOI: 10.1007/s00122-006-0334-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Accepted: 06/03/2006] [Indexed: 05/11/2023]
Abstract
Induction of embryogenic callus in culture is an important step in plant transformation procedures, but response is genotype specific and the genetics of the trait are not well understood. Quantitative trait loci (QTL) were mapped in a set of 126 recombinant inbred lines (RILs) of inbred H99 (high Type I callus response) by inbred Mo17 (low Type I callus response) that were evaluated over two years for Type I callus response. QTL were observed in a total of eleven bins on eight chromosomes, including eight QTL with main effects and three epistatic interactions. Many of the QTL were mapped to the same or bordering chromosomal bins as candidate genes for abscisic acid metabolism, indicating a possible role for the hormone in the induction of embryogenic callus, as has previously been indicated in microspore embryo induction. Further examinations of allelic variability for known candidate genes located near the observed QTL could be useful for expanding the understanding of the genetic basis of induction embryogenic callus. The QTL observed herein could also be used in a marker assisted selection (MAS) program to improve the response of agronomically useful inbreds, but only if the resources required for MAS are lower than those required for phenotypic selection.
Collapse
Affiliation(s)
- M D Krakowsky
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Krakowsky MD, Lee M, Coors JG. Quantitative trait loci for cell wall components in recombinant inbred lines of maize (Zea mays L.) II: leaf sheath tissue. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2006; 112:717-26. [PMID: 16362276 DOI: 10.1007/s00122-005-0175-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Accepted: 11/30/2005] [Indexed: 05/05/2023]
Abstract
While maize silage is a significant feed component in animal production operations, little information is available on the genetic bases of fiber and lignin concentrations in maize, which are negatively correlated with digestibility. Fiber is composed largely of cellulose, hemicellulose and lignin, which are the primary components of plant cell walls. Variability for these traits in maize germplasm has been reported, but the sources of the variation and the relationships between these traits in different tissues are not well understood. In this study, 191 recombinant inbred lines of B73 (low-intermediate levels of cell wall components, CWCs) x De811 (high levels of CWCs) were analyzed for quantitative trait loci (QTL) associated with CWCs in the leaf sheath. Samples were harvested from plots at two locations in 1998 and one in 1999 and assayed for neutral detergent fiber (NDF), acid detergent fiber (ADF) and acid detergent lignin (ADL). QTL were detected on all ten chromosomes, most in tissue specific clusters in concordance with the high genotypic correlations for CWCs within the same tissue. Adjustment of NDF for its subfraction, ADF, revealed that most of the genetic variation in NDF was probably due to variation in ADF. The low to moderate genotypic correlations for the same CWC across leaf sheath and stalk tissues indicate that some genes for CWCs may only be expressed in certain tissues. Many of the QTL herein were detected in other populations, and some are linked to candidate genes for cell wall carbohydrate biosynthesis.
Collapse
Affiliation(s)
- M D Krakowsky
- United States Department of Agriculture, Agricultural Research Service, Tifton, GA, 31794, USA.
| | | | | |
Collapse
|
21
|
Sala RG, Andrade FH, Camadro EL, Cerono JC. Quantitative trait loci for grain moisture at harvest and field grain drying rate in maize (Zea mays, L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2006; 112:462-71. [PMID: 16311725 DOI: 10.1007/s00122-005-0146-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Accepted: 10/23/2005] [Indexed: 05/05/2023]
Abstract
Hybrids with low grain moisture (GM) at harvest are specially required in mid- to short-season environments. One of the most important factors determining this trait is field grain drying rate (FDR). To produce hybrids with low GM at harvest, inbred lines can be obtained through selection for either GM or FDR. Thus, a single-cross population (181 F (2:3)-generation plants) of two divergent inbred lines was evaluated to locate QTL affecting GM at harvest and FDR as a starting point for marker assisted selection (MAS). Moisture measurements were made with a hand-held moisture meter. Detection of QTL was facilitated with interval mapping in one and two dimensions including an interaction term, and a genetic linkage map of 122 SSR loci covering 1,557.8 cM. The markers were arranged in ten linkage groups. QTL mapping was made for the mean trait performance of the F (2:3) population across years. Ten QTL and an interaction were associated with GM. These QTL accounted for 54.8 and 65.2% of the phenotypic and genotypic variation, respectively. Eight QTL and two interactions were associated with FDR accounting for 35.7 and 45.2% of the phenotypic and genotypic variation, respectively. Two regions were in common between traits. The interaction between QTL for GM at harvest had practical implications for MAS. We conclude that MAS per se will not be an efficient method for reducing GM at harvest and/or increasing FDR. A selection index including both molecular marker information and phenotypic values, each appropriately weighted, would be the best selection strategy.
Collapse
Affiliation(s)
- Rodrigo G Sala
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Capital Federal, Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
22
|
Krakowsky MD, Lee M, Coors JG. Quantitative trait loci for cell-wall components in recombinant inbred lines of maize (Zea mays L.) I: stalk tissue. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2005; 111:337-46. [PMID: 15902397 DOI: 10.1007/s00122-005-2026-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Accepted: 04/01/2005] [Indexed: 05/02/2023]
Abstract
Maize silage is a significant energy source for animal production operations, and the efficiency of the conversion of forage into animal mass is an important consideration when selecting cultivars for use as feed. Fiber and lignin are negatively correlated with digestibility of feed, so the development of forage with reduced levels of these cell-wall components (CWCs) is desirable. While variability for fiber and lignin is present in maize germplasm, traditional selection has focused on the yield of the ear rather than the forage quality of the whole plant, and little information is available concerning the genetics of fiber and lignin. The objectives of this study were to map quantitative trait loci (QTLs) for fiber and lignin in the maize stalk and compare them with QTLs from other populations. Stalk samples were harvested from 191 recombinant inbred lines (RILs) of B73 (an inbred line with low-to-intermediate levels of CWCs) x De811 (an inbred line with high levels of CWCs) at two locations in 1998 and one in 1999 and assayed for neutral detergent fiber (NDF), acid detergent fiber (ADF), and acid detergent lignin (ADL). The QTLs were detected on nine chromosomes, mostly clustered in concordance with the high genetic correlations between NDF and ADF. Adjustment of NDF for ADF and ADF for ADL revealed that most of the variability for CWCs in this population is in ADF. Many of the QTLs detected in this study have also been detected in other populations, and several are linked to candidate genes for cellulose or starch biosynthesis. The genetic information obtained in this study should be useful to breeding efforts aimed at improving the quality of maize silage.
Collapse
Affiliation(s)
- M D Krakowsky
- Department of Agronomy, Iowa State University, Ames, 50011, USA.
| | | | | |
Collapse
|