1
|
Gao S, Foolad MR. Identification and mapping of late blight resistance QTLs in the wild tomato accession PI 224710 ( Solanum pimpinellifolium). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:63. [PMID: 39295771 PMCID: PMC11405559 DOI: 10.1007/s11032-024-01498-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/01/2024] [Indexed: 09/21/2024]
Abstract
Late blight (LB), caused by oomycete Phytophthora infestans, is one of the most destructive diseases of the cultivated tomato, Solanum lycopersicum. Since new and aggressive clonal lineages of P. infestans, many of which overcoming formerly effective fungicides or host resistance genes, have continued to emerge, it is crucial to identify, characterize, and utilize new sources of host resistance in tomato breeding. A recent screening of tomato germplasm identified Solanum pimpinellifolium accession PI 224710 with very strong resistance to several current P. infestans clonal lineages. The present study aimed to identify and characterize QTLs associated with LB resistance in PI 224710. Disease screening of a large F2 population (n = 1721), derived from a cross between PI 224710 and LB-susceptible tomato breeding line Fla. 8059, followed by F3 progeny testing, resulted in the identification of 43 highly-resistant and 27 highly-susceptible F2 individuals. A selective genotyping approach, using 469 non-identical SNP markers, resulted in the construction of a genetic linkage map and identification of three LB-resistance QTLs on chromosomes 6, 9 and 10 of PI 224710. A comparison of the QTLs genomic locations with the tomato physical map resulted in the identification of several candidate genes, which might be underpinning the LB-resistance QTLs in PI 224710. The identified markers associated with the LB-resistance QTLs can be utilized in breeding programs to transfer resistance from PI 224710 into tomato breeding lines and hybrid cultivars via marker-assisted breeding; they also can be used to develop near-isogenic lines for fine mapping of the QTLs. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01498-1.
Collapse
Affiliation(s)
- Sihui Gao
- Department of Plant Science and the Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA 16802 USA
- Present Address: Johnny’s Selected Seeds, 955 Benton Ave., Winslow, ME 04901 USA
| | - Majid R. Foolad
- Department of Plant Science and the Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA 16802 USA
| |
Collapse
|
2
|
Perez W, Alarcon L, Rojas T, Correa Y, Juarez H, Andrade-Piedra JL, Anglin NL, Ellis D. Screening South American Potato Landraces and Potato Wild Relatives for Novel Sources of Late Blight Resistance. PLANT DISEASE 2022; 106:1845-1856. [PMID: 35072509 DOI: 10.1094/pdis-07-21-1582-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Late blight (LB) caused by the oomycete Phytophthora infestans is one of the most important biotic constraints for potato production worldwide. This study assessed 508 accessions (79 wild potato species and 429 landraces from a cultivated core collection) held at the International Potato Center genebank for resistance to LB. One P. infestans isolate belonging to the EC-1 lineage, which is currently the predominant type of P. infestans in Peru, Ecuador, and Colombia, was used in whole plant assays under greenhouse conditions. Novel sources of resistance to LB were found in accessions of Solanum albornozii, S. andreanum, S. lesteri, S. longiconicum, S. morelliforme, S. stenophyllidium, S. mochiquense, S. cajamarquense, and S. huancabambense. All of these species are endemic to South America and thus could provide novel sources of resistance for potato breeding programs. We found that the level of resistance to LB in wild species and potato landraces cannot be predicted from altitude and bioclimatic variables of the locations where the accessions were collected. The high percentage (73%) of potato landraces susceptible to LB in our study suggests the importance of implementing disease control measures, including planting susceptible genotypes in less humid areas and seasons or switching to genotypes identified as resistant. In addition, this study points out a high risk of genetic erosion in potato biodiversity at high altitudes of the Andes due to susceptibility to LB in the native landraces, which has been exacerbated by climatic change that favors the development of LB in those regions.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Willmer Perez
- Centro Internacional de la Papa, CGIAR Research Program on Roots, Tubers and Bananas, Lima, Peru
| | - Lesly Alarcon
- Universidad Nacional del Centro del Peru, Huancayo, Peru
| | - Tania Rojas
- Universidad Nacional Agraria La Molina, Lima, Peru
| | - Yanina Correa
- Universidad Nacional Pedro Ruiz Gallo, Lambayeque, Peru
| | - Henry Juarez
- Centro Internacional de la Papa, CGIAR Research Program on Roots, Tubers and Bananas, Lima, Peru
| | - Jorge L Andrade-Piedra
- Centro Internacional de la Papa, CGIAR Research Program on Roots, Tubers and Bananas, Lima, Peru
| | - Noelle L Anglin
- Centro Internacional de la Papa, CGIAR Research Program on Roots, Tubers and Bananas, Lima, Peru
| | - David Ellis
- Centro Internacional de la Papa, CGIAR Research Program on Roots, Tubers and Bananas, Lima, Peru
| |
Collapse
|
3
|
Monino‐Lopez D, Nijenhuis M, Kodde L, Kamoun S, Salehian H, Schentsnyi K, Stam R, Lokossou A, Abd‐El‐Haliem A, Visser RG, Vossen JH. Allelic variants of the NLR protein Rpi-chc1 differentially recognize members of the Phytophthora infestans PexRD12/31 effector superfamily through the leucine-rich repeat domain. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:182-197. [PMID: 33882622 PMCID: PMC8362081 DOI: 10.1111/tpj.15284] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/30/2021] [Accepted: 04/12/2021] [Indexed: 05/22/2023]
Abstract
Phytophthora infestans is a pathogenic oomycete that causes the infamous potato late blight disease. Resistance (R) genes from diverse Solanum species encode intracellular receptors that trigger effective defense responses upon the recognition of cognate RXLR avirulence (Avr) effector proteins. To deploy these R genes in a durable fashion in agriculture, we need to understand the mechanism of effector recognition and the way the pathogen evades recognition. In this study, we cloned 16 allelic variants of the Rpi-chc1 gene from Solanum chacoense and other Solanum species, and identified the cognate P. infestans RXLR effectors. These tools were used to study effector recognition and co-evolution. Functional and non-functional alleles of Rpi-chc1 encode coiled-coil nucleotide-binding leucine-rich repeat (CNL) proteins, being the first described representatives of the CNL16 family. These alleles have distinct patterns of RXLR effector recognition. While Rpi-chc1.1 recognized multiple PexRD12 (Avrchc1.1) proteins, Rpi-chc1.2 recognized multiple PexRD31 (Avrchc1.2) proteins, both belonging to the PexRD12/31 effector superfamily. Domain swaps between Rpi-chc1.1 and Rpi-chc1.2 revealed that overlapping subdomains in the leucine-rich repeat (LRR) domain are responsible for the difference in effector recognition. This study showed that Rpi-chc1.1 and Rpi-chc1.2 evolved to recognize distinct members of the same PexRD12/31 effector family via the LRR domain. The biased distribution of polymorphisms suggests that exchange of LRRs during host-pathogen co-evolution can lead to novel recognition specificities. These insights will guide future strategies to breed durable resistant varieties.
Collapse
Affiliation(s)
- Daniel Monino‐Lopez
- Plant BreedingWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBThe Netherlands
| | - Maarten Nijenhuis
- Plant BreedingWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBThe Netherlands
- Present address:
Agrico ResearchBurchtweg 17Bant8314PPThe Netherlands
| | - Linda Kodde
- Plant BreedingWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBThe Netherlands
| | - Sophien Kamoun
- The Sainsbury LaboratoryUniversity of East AngliaNorwich Research Park, NorwichUK
| | - Hamed Salehian
- Plant BreedingWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBThe Netherlands
| | - Kyrylo Schentsnyi
- Plant BreedingWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBThe Netherlands
- Present address:
Center for Plant Molecular BiologyAuf der Morgenstelle 32Tübingen2076Germany
| | - Remco Stam
- Plant BreedingWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBThe Netherlands
- Present address:
Technical University MunichMunichGermany
| | - Anoma Lokossou
- Plant BreedingWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBThe Netherlands
| | - Ahmed Abd‐El‐Haliem
- Plant BreedingWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBThe Netherlands
- Present address:
Rijk Zwaan Breeding B.VBurgemeester Crezéelaan 40De Lier2678KXThe Netherlands
| | - Richard G.F. Visser
- Plant BreedingWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBThe Netherlands
| | - Jack H. Vossen
- Plant BreedingWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBThe Netherlands
| |
Collapse
|
4
|
Karki HS, Jansky SH, Halterman DA. Screening of Wild Potatoes Identifies New Sources of Late Blight Resistance. PLANT DISEASE 2021; 105:368-376. [PMID: 32755364 DOI: 10.1094/pdis-06-20-1367-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Late blight (LB) of potato is considered one of the most devastating plant diseases in the world. Most cultivated potatoes are susceptible to this disease. However, wild relatives of potatoes are an excellent source of LB resistance. We screened 384 accessions of 72 different wild potato species available from the U.S. Potato GeneBank against the LB pathogen Phytophthora infestans in a detached leaf assay (DLA). P. infestans isolates US-23 and NL13316 were used in the DLA to screen the accessions. Although all plants in 273 accessions were susceptible, all screened plants in 39 accessions were resistant. Resistant and susceptible plants were found in 33 accessions. All tested plants showed a partial resistance phenotype in two accessions, segregation of resistant and partial resistant plants in nine accessions, segregation of partially resistant and susceptible plants in four accessions, and segregation of resistant, partially resistant, and susceptible individuals in 24 accessions. We found several species that were never before reported to be resistant to LB: Solanum albornozii, S. agrimoniifolium, S. chomatophilum, S. ehrenbergii, S. hypacrarthrum, S. iopetalum, S. palustre, S. piurae, S. morelliforme, S. neocardenasii, S. trifidum, and S. stipuloideum. These new species could provide novel sources of LB resistance. P. infestans clonal lineage-specific screening of selected species was conducted to identify the presence of RB resistance. We found LB resistant accessions in Solanum verrucosum, Solanum stoloniferum, and S. morelliforme that were susceptible to the RB overcoming isolate NL13316, indicating the presence of RB-like resistance in these species.
Collapse
Affiliation(s)
- Hari S Karki
- U.S. Department of Agriculture-Agricultural Research Service, Vegetable Crops Research Unit, Madison, WI 53706
| | - Shelly H Jansky
- U.S. Department of Agriculture-Agricultural Research Service, Vegetable Crops Research Unit, Madison, WI 53706
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706
| | - Dennis A Halterman
- U.S. Department of Agriculture-Agricultural Research Service, Vegetable Crops Research Unit, Madison, WI 53706
| |
Collapse
|
5
|
Elnahal ASM, Li J, Wang X, Zhou C, Wen G, Wang J, Lindqvist-Kreuze H, Meng Y, Shan W. Identification of Natural Resistance Mediated by Recognition of Phytophthora infestans Effector Gene Avr3aEM in Potato. FRONTIERS IN PLANT SCIENCE 2020; 11:919. [PMID: 32636869 PMCID: PMC7318898 DOI: 10.3389/fpls.2020.00919] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/05/2020] [Indexed: 05/13/2023]
Abstract
Late blight is considered the most renowned devastating potato disease worldwide. Resistance gene (R)-based resistance to late blight is the most effective method to inhibit infection by the causal agent Phytophthora infestans. However, the limited availability of resistant potato varieties and the rapid loss of R resistance, caused by P. infestans virulence variability, make disease control rely on fungicide application. We employed an Agrobacterium tumefaciens-mediated transient gene expression assay and effector biology approach to understand late blight resistance of Chinese varieties that showed years of promising field performance. We are particularly interested in PiAvr3aEM , the most common virulent allele of PiAvr3aKI that triggers a R3a-mediated hypersensitive response (HR) and late blight resistance. Through our significantly improved A. tumefaciens-mediated transient gene expression assay in potato using cultured seedlings, we characterized two dominant potato varieties, Qingshu9 and Longshu7, in China by transient expression of P. infestans effector genes. Transient expression of 10 known avirulence genes showed that PiAvr4 and PiAvr8 (PiAvrsmira2) could induce HR in Qingshu9, and PiAvrvnt1.1 in Longshu7, respectively. Our study also indicated that PiAvr3aEM is recognized by these two potato varieties, and is likely involved in their significant field performance of late blight resistance. The identification of natural resistance mediated by PiAvr3aEM recognition in Qingshu9 and Longshu7 will facilitate breeding for improved potato resistance against P. infestans.
Collapse
Affiliation(s)
- Ahmed S. M. Elnahal
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
- Plant Pathology Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Jinyang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xiaoxia Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Chenyao Zhou
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Guohong Wen
- Institute of Potato Research, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Jian Wang
- Institute of Biotechnology, Qinghai Academy of Agricultural Sciences, Xining, China
| | | | - Yuling Meng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
| | - Weixing Shan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
- *Correspondence: Weixing Shan,
| |
Collapse
|
6
|
Ohlson EW, Ashrafi H, Foolad MR. Identification and Mapping of Late Blight Resistance Quantitative Trait Loci in Tomato Accession PI 163245. THE PLANT GENOME 2018; 11:180007. [PMID: 30512045 DOI: 10.3835/plantgenome2018.01.0007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Late blight (LB), caused by the oomycete (Mont.) de Bary, is one of the most devastating diseases of tomato ( L.) and potato ( tuberosum L. worldwide. The importance of LB on tomato has increased due to the occurrence of aggressive and fungicide-resistant clonal lineages of . Consequently, identification and characterization of new sources of genetic resistance to LB has become a priority in tomato breeding. Previously, we reported accession PI 163245 as a promising source of highly heritable LB resistance for tomato breeding. The purpose of this study was to identify and map quantitative trait loci (QTLs) associated with LB resistance in this accession using a trait-based marker analysis (a.k.a. selective genotyping). An F mapping population ( = 560) derived from a cross between a LB-susceptible tomato breeding line (Fla. 8059) and PI 163245 was screened for LB resistance, and the most resistant ( = 39) and susceptible ( = 35) individuals were selected for genotyping. Sequencing and comparison of the reduced representation libraries (RRLs) derived from genomic DNA of the two parents resulted in the identification of 33,541 putative single nucleotide polymorphism (SNP) markers, of which, 233 genome-wide markers were used to genotype the 74 selected F individuals. The marker analysis resulted in the identification of four LB resistance QTLs conferred by PI 163245, located on chromosomes 2, 3, 10, and 11. Research is underway to develop near-isogenic lines (NILs) for fine mapping the QTLs and develop tomato breeding lines with LB resistance introduced from PI 163245.
Collapse
|
7
|
Separating clods and stones from potato tubers based on color and shape. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2018. [DOI: 10.1007/s11694-018-9943-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
8
|
Machida-Hirano R. Diversity of potato genetic resources. BREEDING SCIENCE 2015; 65:26-40. [PMID: 25931978 PMCID: PMC4374561 DOI: 10.1270/jsbbs.65.26] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 02/03/2015] [Indexed: 05/05/2023]
Abstract
A considerable number of highly diverse species exist in genus Solanum. Because they can adapt to a broad range of habitats, potato wild relatives are promising sources of desirable agricultural traits. Potato taxonomy is quite complex because of introgression, interspecific hybridization, auto- and allopolyploidy, sexual compatibility among many species, a mixture of sexual and asexual reproduction, possible recent species divergence, phenotypic plasticity, and the consequent high morphological similarity among species. Recent researchers using molecular tools have contributed to the identification of genes controlling several types of resistance as well as to the revision of taxonomical relationships among potato species. Historically, primitive forms of cultivated potato and its wild relatives have been used in breeding programs and there is still an enormous and unimaginable potential for discovering desirable characteristics, particularly in wild species Different methods have been developed to incorporate useful alleles from these wild species into the improved cultivars. Potato germplasm comprising of useful alleles for different breeding objectives is preserved in various gene banks worldwide. These materials, with their invaluable information, are accessible for research and breeding purposes. Precise identification of species base on the new taxonomy is essential for effective use of the germplasm collection.
Collapse
Affiliation(s)
- Ryoko Machida-Hirano
- Gene Research Center, University of Tsukuba,
1-1-1, Tennodai, Tsukuba, Ibaraki 305-3572,
Japan
| |
Collapse
|
9
|
Mahgoub HAM, Eisa GSA, Youssef MAH. Molecular, biochemical and anatomical analysis of some potato ( Solanum tuberosum L.) cultivars growing in Egypt. J Genet Eng Biotechnol 2014; 13:39-49. [PMID: 30647565 PMCID: PMC6299736 DOI: 10.1016/j.jgeb.2014.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 10/20/2014] [Accepted: 11/23/2014] [Indexed: 11/30/2022]
Abstract
Potato (Solanum tuberosum L.) is widely used for many industrial and food applications. Nine potato cultivars were planted and collected from a private farm in new Salihiyyah city, Sharkia governorate, Egypt to compare between them at morphological, molecular, biochemical and anatomical levels. Our results indicated that the Inova cultivar was better, however the Bafana cultivar was worse in relation to yield parameters. Inter simple sequence repeat (ISSR) molecular marker has been used to determine the genetic diversity between these nine cultivars. Through using ten primers we obtained 98 bands, 85 of which were polymorphic by 87%. The highest similarity value (0.827) was found between Caruso and Alliance as the closest but the lowest value (0.418) was found between Charlotte and Bafana as the most distant. Everest tuber contained great amounts of total phenolic and peroxidase activity, while the Bafana tuber contained small amounts of it compared to other cultivars. The phellem layer of the Everest tuber had more thickness than others and the number of phellem rows was the highest. However, the Bafana cultivar listed the lowest value compared to other cultivars. Lower values from both of total bacterial and total fungi were recorded on the tuber of the Everest cultivar. However, Bafana cultivar was recorded to have a higher value of both compared to other cultivars. We suggest that the ISSR marker is a suitable procedure to examine the potato’s genetic diversity at the DNA level. The Everest cultivar is considering the best cultivar to planting and breeding in Egypt.
Collapse
Affiliation(s)
- H A M Mahgoub
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - G S A Eisa
- Agriculture Botany Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - M A H Youssef
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
10
|
Jupe F, Witek K, Verweij W, Śliwka J, Pritchard L, Etherington GJ, Maclean D, Cock PJ, Leggett RM, Bryan GJ, Cardle L, Hein I, Jones JDG. Resistance gene enrichment sequencing (RenSeq) enables reannotation of the NB-LRR gene family from sequenced plant genomes and rapid mapping of resistance loci in segregating populations. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:530-44. [PMID: 23937694 PMCID: PMC3935411 DOI: 10.1111/tpj.12307] [Citation(s) in RCA: 219] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/02/2013] [Accepted: 08/06/2013] [Indexed: 05/02/2023]
Abstract
RenSeq is a NB-LRR (nucleotide binding-site leucine-rich repeat) gene-targeted, Resistance gene enrichment and sequencing method that enables discovery and annotation of pathogen resistance gene family members in plant genome sequences. We successfully applied RenSeq to the sequenced potato Solanum tuberosum clone DM, and increased the number of identified NB-LRRs from 438 to 755. The majority of these identified R gene loci reside in poorly or previously unannotated regions of the genome. Sequence and positional details on the 12 chromosomes have been established for 704 NB-LRRs and can be accessed through a genome browser that we provide. We compared these NB-LRR genes and the corresponding oligonucleotide baits with the highest sequence similarity and demonstrated that ~80% sequence identity is sufficient for enrichment. Analysis of the sequenced tomato S. lycopersicum 'Heinz 1706' extended the NB-LRR complement to 394 loci. We further describe a methodology that applies RenSeq to rapidly identify molecular markers that co-segregate with a pathogen resistance trait of interest. In two independent segregating populations involving the wild Solanum species S. berthaultii (Rpi-ber2) and S. ruiz-ceballosii (Rpi-rzc1), we were able to apply RenSeq successfully to identify markers that co-segregate with resistance towards the late blight pathogen Phytophthora infestans. These SNP identification workflows were designed as easy-to-adapt Galaxy pipelines.
Collapse
Affiliation(s)
- Florian Jupe
- The Sainsbury LaboratoryNorwich Research Park, NR4 7UH, Norwich, UK
| | - Kamil Witek
- The Sainsbury LaboratoryNorwich Research Park, NR4 7UH, Norwich, UK
| | - Walter Verweij
- The Sainsbury LaboratoryNorwich Research Park, NR4 7UH, Norwich, UK
- The Genome Analysis CentreNorwich Research Park, NR4 7UH, Norwich, UK
| | - Jadwiga Śliwka
- The Plant Breeding and Acclimatization Institute, Research Center MłochówPlatanowa 19, 05-831, Młochów, Poland
| | - Leighton Pritchard
- Information and Computational Sciences, James Hutton InstituteDD2 5DA, Dundee, UK
| | | | - Dan Maclean
- The Sainsbury LaboratoryNorwich Research Park, NR4 7UH, Norwich, UK
| | - Peter J Cock
- Information and Computational Sciences, James Hutton InstituteDD2 5DA, Dundee, UK
| | - Richard M Leggett
- The Genome Analysis CentreNorwich Research Park, NR4 7UH, Norwich, UK
| | - Glenn J Bryan
- Cell and Molecular Sciences, James Hutton InstituteDD2 5DA, Dundee, UK
| | - Linda Cardle
- Information and Computational Sciences, James Hutton InstituteDD2 5DA, Dundee, UK
| | - Ingo Hein
- Cell and Molecular Sciences, James Hutton InstituteDD2 5DA, Dundee, UK
- *For correspondence (e-mails ; )
| | - Jonathan DG Jones
- The Sainsbury LaboratoryNorwich Research Park, NR4 7UH, Norwich, UK
- *For correspondence (e-mails ; )
| |
Collapse
|
11
|
Vossen JH, Dezhsetan S, Esselink D, Arens M, Sanz MJ, Verweij W, Verzaux E, van der Linden CG. Novel applications of motif-directed profiling to identify disease resistance genes in plants. PLANT METHODS 2013; 9:37. [PMID: 24099459 PMCID: PMC3853995 DOI: 10.1186/1746-4811-9-37] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 10/02/2013] [Indexed: 05/20/2023]
Abstract
BACKGROUND Molecular profiling of gene families is a versatile tool to study diversity between individual genomes in sexual crosses and germplasm. Nucleotide binding site (NBS) profiling, in particular, targets conserved nucleotide binding site-encoding sequences of resistance gene analogs (RGAs), and is widely used to identify molecular markers for disease resistance (R) genes. RESULTS In this study, we used NBS profiling to identify genome-wide locations of RGA clusters in the genome of potato clone RH. Positions of RGAs in the potato RH and DM genomes that were generated using profiling and genome sequencing, respectively, were compared. Largely overlapping results, but also interesting discrepancies, were found. Due to the clustering of RGAs, several parts of the genome are overexposed while others remain underexposed using NBS profiling. It is shown how the profiling of other gene families, i.e. protein kinases and different protein domain-coding sequences (i.e., TIR), can be used to achieve a better marker distribution. The power of profiling techniques is further illustrated using RGA cluster-directed profiling in a population of Solanum berthaultii. Multiple different paralogous RGAs within the Rpi-ber cluster could be genetically distinguished. Finally, an adaptation of the profiling protocol was made that allowed the parallel sequencing of profiling fragments using next generation sequencing. The types of RGAs that were tagged in this next-generation profiling approach largely overlapped with classical gel-based profiling. As a potential application of next-generation profiling, we showed how the R gene family associated with late blight resistance in the SH*RH population could be identified using a bulked segregant approach. CONCLUSIONS In this study, we provide a comprehensive overview of previously described and novel profiling primers and their genomic targets in potato through genetic mapping and comparative genomics. Furthermore, it is shown how genome-wide or fine mapping can be pursued by choosing different sets of profiling primers. A protocol for next-generation profiling is provided and will form the basis for novel applications. Using the current overview of genomic targets, a rational choice can be made for profiling primers to be employed.
Collapse
Affiliation(s)
- Jack H Vossen
- Plant Breeding, Wageningen University and Research Center, Wageningen, Netherlands
| | - Sara Dezhsetan
- Department of Agronomy & Plant Breeding, Faculty of Agricultural Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Danny Esselink
- Plant Breeding, Wageningen University and Research Center, Wageningen, Netherlands
| | - Marjon Arens
- Plant Breeding, Wageningen University and Research Center, Wageningen, Netherlands
| | - Maria J Sanz
- Department of Cell Biology and Genetics, University of Alcala, Madrid, Spain
| | | | - Estelle Verzaux
- Plant Breeding, Wageningen University and Research Center, Wageningen, Netherlands
- Current address: Universidad Técnica del Norte, Ibarra, Equador
| | | |
Collapse
|
12
|
Rodewald J, Trognitz B. Solanum resistance genes against Phytophthora infestans and their corresponding avirulence genes. MOLECULAR PLANT PATHOLOGY 2013; 14:740-57. [PMID: 23710878 PMCID: PMC6638693 DOI: 10.1111/mpp.12036] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Resistance genes against Phytophthora infestans (Rpi genes), the most important potato pathogen, are still highly valued in the breeding of Solanum spp. for enhanced resistance. The Rpi genes hitherto explored are localized most often in clusters, which are similar between the diverse Solanum genomes. Their distribution is not independent of late maturity traits. This review provides a summary of the most recent important revelations on the genomic position and cloning of Rpi genes, and the structure, associations, mode of action and activity spectrum of Rpi and corresponding avirulence (Avr) proteins. Practical implications for research into and application of Rpi genes are deduced and combined with an outlook on approaches to address remaining issues and interesting questions. It is evident that the potential of Rpi genes has not been exploited fully.
Collapse
Affiliation(s)
- Jan Rodewald
- Department of Health and Environment, Austrian Institute of Technology, Konrad-Lorenz-Straße 24, 3430, Tulln, Austria.
| | | |
Collapse
|
13
|
Leggett RM, Ramirez-Gonzalez RH, Verweij W, Kawashima CG, Iqbal Z, Jones JDG, Caccamo M, MacLean D. Identifying and classifying trait linked polymorphisms in non-reference species by walking coloured de bruijn graphs. PLoS One 2013; 8:e60058. [PMID: 23536903 PMCID: PMC3607606 DOI: 10.1371/journal.pone.0060058] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 02/21/2013] [Indexed: 11/18/2022] Open
Abstract
Single Nucleotide Polymorphisms are invaluable markers for tracing the genetic basis of inheritable traits and the ability to create marker libraries quickly is vital for timely identification of target genes. Next-generation sequencing makes it possible to sample a genome rapidly, but polymorphism detection relies on having a reference genome to which reads can be aligned and variants detected. We present Bubbleparse, a method for detecting variants directly from next-generation reads without a reference sequence. Bubbleparse uses the de Bruijn graph implementation in the Cortex framework as a basis and allows the user to identify bubbles in these graphs that represent polymorphisms, quickly, easily and sensitively. We show that the Bubbleparse algorithm is sensitive and can detect many polymorphisms quickly and that it performs well when compared with polymorphism detection methods based on alignment to a reference in Arabidopsis thaliana. We show that the heuristic can be used to maximise the number of true polymorphisms returned, and with a proof-of-principle experiment show that Bubbleparse is very effective on data from unsequenced wild relatives of potato and enabled us to identify disease resistance linked genes quickly and easily.
Collapse
Affiliation(s)
- Richard M. Leggett
- The Sainsbury Laboratory, Norwich Research Park, Colney, Norwich, United Kingdom
| | | | - Walter Verweij
- The Sainsbury Laboratory, Norwich Research Park, Colney, Norwich, United Kingdom
| | - Cintia G. Kawashima
- The Sainsbury Laboratory, Norwich Research Park, Colney, Norwich, United Kingdom
| | - Zamin Iqbal
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Jonathan D. G. Jones
- The Sainsbury Laboratory, Norwich Research Park, Colney, Norwich, United Kingdom
| | - Mario Caccamo
- The Genome Analysis Centre, Norwich Research Park, Colney, Norwich, United Kingdom
| | - Daniel MacLean
- The Sainsbury Laboratory, Norwich Research Park, Colney, Norwich, United Kingdom
| |
Collapse
|
14
|
Golas TM, van de Geest H, Gros J, Sikkema A, D'Agostino N, Nap JP, Mariani C, Allefs JJHM, Rieu I. Comparative next-generation mapping of the Phytophthora infestans resistance gene Rpi-dlc2 in a European accession of Solanum dulcamara. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:59-68. [PMID: 22907632 DOI: 10.1007/s00122-012-1959-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 07/27/2012] [Indexed: 05/08/2023]
Abstract
Phytophthora infestans, the causal agent of late blight, remains the main threat to potato production worldwide. Screening of 19 accessions of Solanum dulcamara with P. infestans isolate Ipo82001 in detached leaf assays revealed strong resistance in an individual belonging to accession A54750069-1. This plant was crossed with a susceptible genotype, and an F(1) population consisting of 63 individuals was obtained. This population segregated for resistance in 1:1 ratio, both in detached leaf assays and in an open-field experiment. Presence of the formerly mapped Rpi-dlc1 gene as the cause of the observed segregating resistance could be excluded. Subsequently, AFLP analyses using 128 primer combinations enabled identification of five markers linked to a novel resistance gene named Rpi-dlc2. AFLP markers did not show sequence similarity to the tomato and potato genomes, hampering comparative genetic positioning of the gene. For this reason we used next-generation mapping (NGM), an approach that exploits direct sequencing of DNA (in our case: cDNA) pools from bulked segregants to calculate the genetic distance between SNPs and the locus of interest. Plotting of these genetic distances on the tomato and potato genetic map and subsequent PCR-based marker analysis positioned the gene on chromosome 10, in a region overlapping with the Rpi-ber/ber1 and -ber2 loci from S. berthaultii. Pyramiding of Rpi-dlc2 and Rpi-dlc1 significantly increased resistance to P. infestans, compared with individuals containing only one of the genes, showing the usefulness of this strategy to enhance resistance against Phytophthora.
Collapse
Affiliation(s)
- T M Golas
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
You LP, Miao J, Zou AL, Qi JL, Yang YH. [Nucleotide polymorphism and molecular evolution of the LRR region in potato late blight resistance gene Rpi-blb2]. YI CHUAN = HEREDITAS 2012; 34:485-494. [PMID: 22522166 DOI: 10.3724/sp.j.1005.2012.00485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Rpi-blb2, which is originally derived from Solanum bulbocastanum, is a broad-spectrum potato late blight resistance gene and belongs to the NBS-LRR family. Here, the LRR homologues of Rpi-blb2 were cloned with PCR method from 40 potato cultivars (including 20 resistant potato cultivars and 20 susceptible ones) and 7 wild potato populations. Then, the similarities of the sequences, polymorphic (segregating) sites, and nucleotide diversities were estimated by bioinformatic methods. The results showed that high nucleotide polymorphism and some hot-spot mutations existed in the LRR region of Rpi-blb2. The test of Ka/Ks ratio showed that the function of LRR was conserved because of the purifying selection, although different positions of the Rpi-blb2 LRR region were under different selection pressures. Moreover, the LRR region of Rpi-blb2 had no clear differentiation between the cultivated and wild potatoes.
Collapse
Affiliation(s)
- Lu-Peng You
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China.
| | | | | | | | | |
Collapse
|
16
|
Kim HJ, Lee HR, Jo KR, Mortazavian SMM, Huigen DJ, Evenhuis B, Kessel G, Visser RGF, Jacobsen E, Vossen JH. Broad spectrum late blight resistance in potato differential set plants MaR8 and MaR9 is conferred by multiple stacked R genes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 124:923-35. [PMID: 22109085 PMCID: PMC3284673 DOI: 10.1007/s00122-011-1757-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Accepted: 11/05/2011] [Indexed: 05/20/2023]
Abstract
Phytophthora infestans is the causal agent of late blight in potato. The Mexican species Solanum demissum is well known as a good resistance source. Among the 11 R gene differentials, which were introgressed from S. demissum, especially R8 and R9 differentials showed broad spectrum resistance both under laboratory and under field conditions. In order to gather more information about the resistance of the R8 and R9 differentials, F1 and BC1 populations were made by crossing Mastenbroek (Ma) R8 and R9 clones to susceptible plants. Parents and offspring plants were examined for their pathogen recognition specificities using agroinfiltration with known Avr genes, detached leaf assays (DLA) with selected isolates, and gene-specific markers. An important observation was the discrepancy between DLA and field trial results for Pi isolate IPO-C in all F1 and BC1 populations, so therefore also field trial results were included in our characterization. It was shown that in MaR8 and MaR9, respectively, at least four (R3a, R3b, R4, and R8) and seven (R1, Rpi-abpt1, R3a, R3b, R4, R8, R9) R genes were present. Analysis of MaR8 and MaR9 offspring plants, that contained different combinations of multiple resistance genes, showed that R gene stacking contributed to the Pi recognition spectrum. Also, using a Pi virulence monitoring system in the field, it was shown that stacking of multiple R genes strongly delayed the onset of late blight symptoms. The contribution of R8 to this delay was remarkable since a plant that contained only the R8 resistance gene still conferred a delay similar to plants with multiple resistance genes, like, e.g., cv Sarpo Mira. Using this "de-stacking" approach, many R gene combinations can be made and tested in order to select broad spectrum R gene stacks that potentially provide enhanced durability for future application in new late blight resistant varieties.
Collapse
Affiliation(s)
- Hyoun-Joung Kim
- Wageningen UR Plant Breeding, Wageningen University and Research Center, Wageningen, The Netherlands
- Present Address: Biotechnology Institute, Nongwoo Bio. Co., Ltd, Yeoju, Gyeonggi Republic of Korea
| | - Heung-Ryul Lee
- Wageningen UR Plant Breeding, Wageningen University and Research Center, Wageningen, The Netherlands
- Present Address: Biotechnology Institute, Nongwoo Bio. Co., Ltd, Yeoju, Gyeonggi Republic of Korea
| | - Kwang-Ryong Jo
- Wageningen UR Plant Breeding, Wageningen University and Research Center, Wageningen, The Netherlands
- Research Institute of Agrobiology, Academy of Agricultural Sciences, Pyongyang, Democratic People’s Republic of Korea
| | - S. M. Mahdi Mortazavian
- Wageningen UR Plant Breeding, Wageningen University and Research Center, Wageningen, The Netherlands
- Present Address: Department of Agronomy and Plant Breeding Sciences, College of Aburaihan, University of Tehran, Pakdasht, Iran
| | - Dirk Jan Huigen
- Wageningen UR Plant Breeding, Wageningen University and Research Center, Wageningen, The Netherlands
| | - Bert Evenhuis
- Plant Research International, Biointeractions and Plant Health, Wageningen University and Research Center, Wageningen, The Netherlands
| | - Geert Kessel
- Plant Research International, Biointeractions and Plant Health, Wageningen University and Research Center, Wageningen, The Netherlands
| | - Richard G. F. Visser
- Wageningen UR Plant Breeding, Wageningen University and Research Center, Wageningen, The Netherlands
| | - Evert Jacobsen
- Wageningen UR Plant Breeding, Wageningen University and Research Center, Wageningen, The Netherlands
| | - Jack H. Vossen
- Wageningen UR Plant Breeding, Wageningen University and Research Center, Wageningen, The Netherlands
| |
Collapse
|
17
|
Sliwka J, Jakuczun H, Chmielarz M, Hara-Skrzypiec A, Tomczyńska I, Kilian A, Zimnoch-Guzowska E. Late blight resistance gene from Solanum ruiz-ceballosii is located on potato chromosome X and linked to violet flower colour. BMC Genet 2012; 13:11. [PMID: 22369123 PMCID: PMC3347998 DOI: 10.1186/1471-2156-13-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 02/27/2012] [Indexed: 11/10/2022] Open
Abstract
Background Phytophthora infestans (Mont.) de Bary, the causal organism of late blight, is economically the most important pathogen of potato and resistance against it has been one of the primary goals of potato breeding. Some potentially durable, broad-spectrum resistance genes against this disease have been described recently. However, to obtain durable resistance in potato cultivars more genes are needed to be identified to realize strategies such as gene pyramiding or use of genotype mixtures based on diverse genes. Results A major resistance gene, Rpi-rzc1, against P. infestans originating from Solanum ruiz-ceballosii was mapped to potato chromosome X using Diversity Array Technology (DArT) and sequence-specific PCR markers. The gene provided high level of resistance in both detached leaflet and tuber slice tests. It was linked, at a distance of 3.4 cM, to violet flower colour most likely controlled by the previously described F locus. The marker-trait association with the closest marker, violet flower colour, explained 87.1% and 85.7% of variance, respectively, for mean detached leaflet and tuber slice resistance. A genetic linkage map that consisted of 1,603 DArT markers and 48 reference sequence-specific PCR markers of known chromosomal localization with a total map length of 1204.8 cM was constructed. Conclusions The Rpi-rzc1 gene described here can be used for breeding potatoes resistant to P. infestans and the breeding process can be expedited using the molecular markers and the phenotypic marker, violet flower colour, identified in this study. Knowledge of the chromosomal localization of Rpi-rzc1 can be useful for design of gene pyramids. The genetic linkage map constructed in this study contained 1,149 newly mapped DArT markers and will be a valuable resource for future mapping projects using this technology in the Solanum genus.
Collapse
Affiliation(s)
- Jadwiga Sliwka
- Plant Breeding and Acclimatization Institute-National Research Institute, Młochów Research Centre, Młochów, Poland.
| | | | | | | | | | | | | |
Collapse
|
18
|
Jo KR, Arens M, Kim TY, Jongsma MA, Visser RGF, Jacobsen E, Vossen JH. Mapping of the S. demissum late blight resistance gene R8 to a new locus on chromosome IX. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 123:1331-40. [PMID: 21877150 PMCID: PMC3214258 DOI: 10.1007/s00122-011-1670-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 07/26/2011] [Indexed: 05/20/2023]
Abstract
The use of resistant varieties is an important tool in the management of late blight, which threatens potato production worldwide. Clone MaR8 from the Mastenbroek differential set has strong resistance to Phytophthora infestans, the causal agent of late blight. The F1 progeny of a cross between the susceptible cultivar Concurrent and MaR8 were assessed for late blight resistance in field trials inoculated with an incompatible P. infestans isolate. A 1:1 segregation of resistance and susceptibility was observed, indicating that the resistance gene referred to as R8, is present in simplex in the tetraploid MaR8 clone. NBS profiling and successive marker sequence comparison to the potato and tomato genome draft sequences, suggested that the R8 gene is located on the long arm of chromosome IX and not on the short arm of chromosome XI as was suggested previously. Analysis of SSR, CAPS and SCAR markers confirmed that R8 was on the distal end of the long arm of chromosome IX. R gene cluster directed profiling markers CDP(Sw5)4 and CDP(Sw5)5 flanked the R8 gene at the distal end (1 cM). CDP(Tm2)1-1, CDP(Tm2)1-2 and CDP(Tm2)2 flanked the R8 gene on the proximal side (2 cM). An additional co-segregating marker (CDP(Hero)3) was found, which will be useful for marker assisted breeding and map based cloning of R8.
Collapse
Affiliation(s)
- Kwang-Ryong Jo
- Laboratory of Plant Breeding, Wageningen University and Research Centre, Wageningen, The Netherlands
- Research Institute of Agrobiology, Academy of Agricultural Sciences, Pyongyang, DPR Korea
| | - Marjon Arens
- Laboratory of Plant Breeding, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Tok-Yong Kim
- Research Institute of Agrobiology, Academy of Agricultural Sciences, Pyongyang, DPR Korea
| | - Maarten A. Jongsma
- Plant Research International, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Richard G. F. Visser
- Laboratory of Plant Breeding, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Evert Jacobsen
- Laboratory of Plant Breeding, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Jack H. Vossen
- Laboratory of Plant Breeding, Wageningen University and Research Centre, Wageningen, The Netherlands
| |
Collapse
|
19
|
Rauscher G, Simko I, Mayton H, Bonierbale M, Smart CD, Grünwald NJ, Greenland A, Fry WE. Quantitative resistance to late blight from Solanum berthaultii cosegregates with R(Pi-ber): insights in stability through isolates and environment. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 121:1553-67. [PMID: 20689906 DOI: 10.1007/s00122-010-1410-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 07/13/2010] [Indexed: 05/20/2023]
Abstract
Genetic resistance is a valuable tool in the fight against late blight of potatoes but little is known about the stability and specificity of quantitative resistance including the effect of defeated major resistance genes. In the present study we investigated the effect of different isolates of Phytophthora infestans on the mode of action of R(Pi-ber), an R-gene originating from Solanum berthaultii. The experiments were conducted on progenies derived from two reciprocal inter-specific backcrosses of Solanum tuberosum and S. berthaultii. The plant-pathogen interaction was tested in diverse environments including field, greenhouse and growth chamber conditions. The R(Pi-ber) gene provided complete resistance against a US8 isolate of P. infestans in all trials. When isolates compatible with R(Pi-ber) were used for inoculation, a smaller, but significant resistance effect was consistently detected in the same map position as the R-gene. This indicates that this R-gene provides a residual resistance effect, and/or that additional resistance loci are located in this genomic region of chromosome X. Additional quantitative resistance loci (QRL) were identified in the analyzed progenies. While some of the QRL (such as those near TG130 on chromosome III) were effective against several isolates of the pathogen, others were isolate specific. With a single exception, the S. berthaultii alleles were associated with a decrease in disease severity. Resistance loci reported in the present study co-locate with previously reported R-genes and QRL to P. infestans and other pathogens.
Collapse
Affiliation(s)
- Gilda Rauscher
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Tan MYA, Hutten RCB, Visser RGF, van Eck HJ. The effect of pyramiding Phytophthora infestans resistance genes R Pi-mcd1 and R Pi-ber in potato. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 121:117-25. [PMID: 20204320 PMCID: PMC2871099 DOI: 10.1007/s00122-010-1295-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 02/05/2010] [Indexed: 05/18/2023]
Abstract
Despite efforts to control late blight in potatoes by introducing R(pi)-genes from wild species into cultivated potato, there are still concerns regarding the durability and level of resistance. Pyramiding R(pi)-genes can be a solution to increase both durability and level of resistance. In this study, two resistance genes, R(Pi-mcd1) and R(Pi-ber), introgressed from the wild tuber-bearing potato species Solanum microdontum and S. berthaultii were combined in a diploid S. tuberosum population. Individual genotypes from this population were classified after four groups, carrying no R(pi)-gene, with only R (Pi-mcd1), with only R(Pi-ber), and a group with the pyramided R(Pi-mcd1) and R (Pi-ber) by means of tightly linked molecular markers. The levels of resistance between the groups were compared in a field experiment in 2007. The group with R(Pi-mcd1) showed a significant delay to reach 50% infection of the leaf area of 3 days. The group with R ( Pi-ber ) showed a delay of 3 weeks. The resistance level in the pyramid group suggested an additive effect of R (Pi-mcd1) with R(Pi-ber). This suggests that potato breeding can benefit from combining individual R(pi)-genes, irrespective of the weak effect of R(Pi-mcd1) or the strong effect of R(Pi-ber).
Collapse
Affiliation(s)
- M. Y. Adillah Tan
- Laboratory of Plant Breeding, Wageningen University and Research Centre, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Ronald C. B. Hutten
- Laboratory of Plant Breeding, Wageningen University and Research Centre, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Richard G. F. Visser
- Laboratory of Plant Breeding, Wageningen University and Research Centre, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Herman J. van Eck
- Laboratory of Plant Breeding, Wageningen University and Research Centre, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| |
Collapse
|
21
|
Marker-assisted selection of diploid and tetraploid potatoes carryingRpi-phu1, a major gene for resistance toPhytophthora infestans. J Appl Genet 2010; 51:133-40. [DOI: 10.1007/bf03195721] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Jacobs MMJ, Vosman B, Vleeshouwers VGAA, Visser RGF, Henken B, van den Berg RG. A novel approach to locate Phytophthora infestans resistance genes on the potato genetic map. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 120:785-96. [PMID: 19902171 PMCID: PMC2812419 DOI: 10.1007/s00122-009-1199-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2009] [Accepted: 10/21/2009] [Indexed: 05/20/2023]
Abstract
Mapping resistance genes is usually accomplished by phenotyping a segregating population for the resistance trait and genotyping it using a large number of markers. Most resistance genes are of the NBS-LRR type, of which an increasing number is sequenced. These genes and their analogs (RGAs) are often organized in clusters. Clusters tend to be rather homogenous, viz. containing genes that show high sequence similarity with each other. From many of these clusters the map position is known. In this study we present and test a novel method to quickly identify to which cluster a new resistance gene belongs and to produce markers that can be used for introgression breeding. We used NBS profiling to identify markers in bulked DNA samples prepared from resistant and susceptible genotypes of small segregating populations. Markers co-segregating with resistance can be tested on individual plants and directly used for breeding. To identify the resistance gene cluster a gene belongs to, the fragments were sequenced and the sequences analyzed using bioinformatics tools. Putative map positions arising from this analysis were validated using markers mapped in the segregating population. The versatility of the approach is demonstrated with a number of populations derived from wild Solanum species segregating for P. infestans resistance. Newly identified P. infestans resistance genes originating from S. verrucosum, S. schenckii, and S. capsicibaccatum could be mapped to potato chromosomes 6, 4, and 11, respectively.
Collapse
Affiliation(s)
- Mirjam M. J. Jacobs
- Biosystematics Group, Wageningen University and Research Centre, Generaal Foulkesweg 37, 6703 BL Wageningen, The Netherlands
- Wageningen UR Plant Breeding, P.O. Box 16, 6700 AA Wageningen, The Netherlands
- Centre for BioSystems Genomics, P.O. Box 98, 6700 AB Wageningen, The Netherlands
| | - Ben Vosman
- Wageningen UR Plant Breeding, P.O. Box 16, 6700 AA Wageningen, The Netherlands
- Centre for BioSystems Genomics, P.O. Box 98, 6700 AB Wageningen, The Netherlands
| | - Vivianne G. A. A. Vleeshouwers
- Wageningen UR Plant Breeding, P.O. Box 16, 6700 AA Wageningen, The Netherlands
- Centre for BioSystems Genomics, P.O. Box 98, 6700 AB Wageningen, The Netherlands
| | - Richard G. F. Visser
- Wageningen UR Plant Breeding, P.O. Box 16, 6700 AA Wageningen, The Netherlands
- Centre for BioSystems Genomics, P.O. Box 98, 6700 AB Wageningen, The Netherlands
| | - Betty Henken
- Wageningen UR Plant Breeding, P.O. Box 16, 6700 AA Wageningen, The Netherlands
- Centre for BioSystems Genomics, P.O. Box 98, 6700 AB Wageningen, The Netherlands
| | - Ronald G. van den Berg
- Biosystematics Group, Wageningen University and Research Centre, Generaal Foulkesweg 37, 6703 BL Wageningen, The Netherlands
- Centre for BioSystems Genomics, P.O. Box 98, 6700 AB Wageningen, The Netherlands
| |
Collapse
|
23
|
Champouret N, Bouwmeester K, Rietman H, van der Lee T, Maliepaard C, Heupink A, van de Vondervoort PJI, Jacobsen E, Visser RGF, van der Vossen EAG, Govers F, Vleeshouwers VGAA. Phytophthora infestans isolates lacking class I ipiO variants are virulent on Rpi-blb1 potato. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:1535-45. [PMID: 19888819 DOI: 10.1094/mpmi-22-12-1535] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A strategy to control the devastating late blight disease is providing potato cultivars with genes that are effective in resistance to a broad spectrum of Phytophthora infestans isolates. Thus far, most late blight resistance (R) genes that were introgressed in potato were quickly defeated. In contrast, the Rpi-blb1 gene originating from Solanum bulbocastanum has performed as an exclusive broad-spectrum R gene for many years. Recently, the RXLR effector family ipiO was identified to contain Avr-blb1. Monitoring the genetic diversity of the ipiO family in a large set of isolates of P. infestans and related species resulted in 16 ipiO variants in three distinct classes. Class I and class II but not class III ipiO variants induce cell death when coinfiltrated with Rpi-blb1 in Nicotiana benthamiana. Class I is highly diverse and is represented in all analyzed P. infestans isolates except two Mexican P. infestans isolates, and these were found virulent on Rpi-blb1 plants. In its C-terminal domain, IPI-O contains a W motif that is essential for triggering Rpi-blb1-mediated cell death and is under positive selection. This study shows that profiling the variation of Avr-blb1 within a P. infestans population is instrumental for predicting the effectiveness of Rpi-blb1-mediated resistance in potato.
Collapse
|
24
|
Danan S, Chauvin JE, Caromel B, Moal JD, Pellé R, Lefebvre V. Major-effect QTLs for stem and foliage resistance to late blight in the wild potato relatives Solanum sparsipilum and S. spegazzinii are mapped to chromosome X. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 119:705-719. [PMID: 19533081 DOI: 10.1007/s00122-009-1081-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 05/21/2009] [Indexed: 05/27/2023]
Abstract
To find out new resistance sources to late blight in the wild germplasm for potato breeding, we examined the polygenic resistance of Solanum sparsipilum and S. spegazzinii by a quantitative trait locus (QTL) analysis. We performed stem and foliage tests under controlled conditions in two diploid mapping progenies. Four traits were selected for QTL detection. A total of 30 QTLs were mapped, with a large-effect QTL region on chromosome X detected in both potato relatives. The mapping of literature-derived markers highlighted colinearities with published late blight QTLs or R-genes. Results showed (a) the resistance potential of S. sparsipilum and S. spegazzinii for late blight control, and (b) the efficacy of the stem test as a complement to the foliage test to break down the complex late blight resistance into elementary components. The relationships of late blight resistance QTLs with R-genes and maturity QTLs are discussed.
Collapse
Affiliation(s)
- Sarah Danan
- INRA, UR 1052 GAFL Génétique et Amélioration des Fruits et Légumes, BP 94, 84140, Montfavet, France
| | | | | | | | | | | |
Collapse
|
25
|
Lokossou AA, Park TH, van Arkel G, Arens M, Ruyter-Spira C, Morales J, Whisson SC, Birch PRJ, Visser RGF, Jacobsen E, van der Vossen EAG. Exploiting knowledge of R/Avr genes to rapidly clone a new LZ-NBS-LRR family of late blight resistance genes from potato linkage group IV. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:630-41. [PMID: 19445588 DOI: 10.1094/mpmi-22-6-0630] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In addition to the resistance to Phytophthora infestans (Rpi) genes Rpi-blb1 and Rpi-blb2, Solanum bulbocastanum appears to harbor Rpi-blb3 located at a major late blight resistance locus on LG IV, which also harbors Rpi-abpt, R2, R2-like, and Rpi-mcd1 in other Solanum spp. Here, we report the cloning and functional analyses of four Rpi genes, using a map-based cloning approach, allele-mining strategy, Gateway technology, and transient complementation assays in Nicotiana benthamiana. Rpi-blb3, Rpi-abpt, R2, and R2-like contain all signature sequences characteristic of leucine zipper nucleotide binding site leucine-rich repeat (LZ-NBS-LRR) proteins, and share amino-acid sequences 34.9% similar to RPP13 from Arabidopsis thaliana. The LRR domains of all four Rpi proteins are highly homologous whereas LZ and NBS domains are more polymorphic, those of R2 being the most divergent. Clear blocks of sequence affiliation between the four functional resistance proteins and those encoded by additional Rpi-blb3 gene homologs suggest exchange of LZ, NBS, and LRR domains, underlining the modular nature of these proteins. All four Rpi genes recognize the recently identified RXLR effector PiAVR2.
Collapse
Affiliation(s)
- Anoma A Lokossou
- Wageningen UR Plant Breeding, 6700 AJ Wageningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Tan MYA, Hutten RCB, Celis C, Park TH, Niks RE, Visser RGF, van Eck HJ. The R(Pi-mcd1) locus from Solanum microdontum involved in resistance to Phytophthora infestans, causing a delay in infection, maps on potato chromosome 4 in a cluster of NBS-LRR genes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:909-18. [PMID: 18533831 DOI: 10.1094/mpmi-21-7-0909] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The distinction between field resistance and resistance based on resistance (R) genes has been proven valid for many plant-pathogen interactions. This distinction does not seem to be valid for the interaction between potato and late blight. In this study, a locus involved in late blight resistance, derived from Solanum microdontum, provides additional evidence for this lack of distinction. The resistance is associated with a hypersensitive response and results in a delay of infection of approximately 1 to 2 weeks. Both a quantitative as well as a qualitative genetic approach were used, based on data from a field assay. Quantitative trait locus (QTL) analysis identified a QTL on chromosome 4 after correction of the resistance data for plant maturity. A qualitative genetic analysis resulted in the positioning of this locus on the short arm of chromosome 4 in between amplified fragment length polymorphism marker pCTmACG_310 and cleaved amplified polymorphic sequence markers TG339 and T0703. This position coincides with a conserved Phytophthora R gene cluster which includes R2, R(2-like), R(Pi-blb3), and R(Pi-abpt). This implies that R(Pi-mcd1) is the fifth R gene of this nucleotide-binding site leucine-rich repeat cluster. The implications of our results on R-gene-based and field resistance are discussed.
Collapse
Affiliation(s)
- M Y Adillah Tan
- Laboratory of Plant Breeding, Wageningen University and Research Centre, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
27
|
Zhu W, Ouyang S, Iovene M, O'Brien K, Vuong H, Jiang J, Buell CR. Analysis of 90 Mb of the potato genome reveals conservation of gene structures and order with tomato but divergence in repetitive sequence composition. BMC Genomics 2008; 9:286. [PMID: 18554403 PMCID: PMC2442093 DOI: 10.1186/1471-2164-9-286] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Accepted: 06/13/2008] [Indexed: 11/29/2022] Open
Abstract
Background The Solanaceae family contains a number of important crop species including potato (Solanum tuberosum) which is grown for its underground storage organ known as a tuber. Albeit the 4th most important food crop in the world, other than a collection of ~220,000 Expressed Sequence Tags, limited genomic sequence information is currently available for potato and advances in potato yield and nutrition content would be greatly assisted through access to a complete genome sequence. While morphologically diverse, Solanaceae species such as potato, tomato, pepper, and eggplant share not only genes but also gene order thereby permitting highly informative comparative genomic analyses. Results In this study, we report on analysis 89.9 Mb of potato genomic sequence representing 10.2% of the genome generated through end sequencing of a potato bacterial artificial chromosome (BAC) clone library (87 Mb) and sequencing of 22 potato BAC clones (2.9 Mb). The GC content of potato is very similar to Solanum lycopersicon (tomato) and other dicotyledonous species yet distinct from the monocotyledonous grass species, Oryza sativa. Parallel analyses of repetitive sequences in potato and tomato revealed substantial differences in their abundance, 34.2% in potato versus 46.3% in tomato, which is consistent with the increased genome size per haploid genome of these two Solanum species. Specific classes and types of repetitive sequences were also differentially represented between these two species including a telomeric-related repetitive sequence, ribosomal DNA, and a number of unclassified repetitive sequences. Comparative analyses between tomato and potato at the gene level revealed a high level of conservation of gene content, genic feature, and gene order although discordances in synteny were observed. Conclusion Genomic level analyses of potato and tomato confirm that gene sequence and gene order are conserved between these solanaceous species and that this conservation can be leveraged in genomic applications including cross-species annotation and genome sequencing initiatives. While tomato and potato share genic features, they differ in their repetitive sequence content and composition suggesting that repetitive sequences may have a more significant role in shaping speciation than previously reported.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Plant Biology, Michigan State University, 166 Plant Biology Building, East Lansing, MI 48824, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Wang M, Allefs S, van den Berg RG, Vleeshouwers VGAA, van der Vossen EAG, Vosman B. Allele mining in Solanum: conserved homologues of Rpi-blb1 are identified in Solanum stoloniferum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 116:933-43. [PMID: 18274723 DOI: 10.1007/s00122-008-0725-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Accepted: 01/27/2008] [Indexed: 05/03/2023]
Abstract
Allele mining facilitates the discovery of novel resistance (R) genes that can be used in breeding programs and sheds light on the evolution of R genes. Here we focus on two R genes, Rpi-blb1 and Rpi-blb2, originally derived from Solanum bulbocastanum. The Rpi-blb1 gene is part of a cluster of four paralogues and is flanked by RGA1-blb and RGA3-blb. Highly conserved RGA1-blb homologues were discovered in all the tested tuber-bearing (TB) and non-tuber-bearing (NTB) Solanum species, suggesting RGA1-blb was present before the divergence of TB and NTB Solanum species. The frequency of the RGA3-blb gene was much lower. Interestingly, highly conserved Rpi-blb1 homologues were discovered not only in S. bulbocastanum but also in Solanum stoloniferum that is part of the series Longipedicellata. Resistance assays and genetic analyses in several F1 populations derived from the relevant late blight resistant parental genotypes harbouring the conserved Rpi-blb1 homologues, indicated the presence of four dominant R genes, designated as Rpi-sto1, Rpi-plt1, Rpi-pta1 and Rpi-pta2. Furthermore, Rpi-sto1 and Rpi-plt1 resided at the same position on chromosome VIII as Rpi-blb1 in S. bulbocastanum. Segregation data also indicated that an additional unknown late blight resistance gene was present in three populations. In contrast to Rpi-blb1, no homologues of Rpi-blb2 were detected in any material examined. Hypotheses are proposed to explain the presence of conserved Rpi-blb1 homologues in S. stoloniferum. The discovery of conserved homologues of Rpi-blb1 in EBN 2 tetraploid species offers the possibility to more easily transfer the late blight resistance genes to potato varieties by classical breeding.
Collapse
Affiliation(s)
- Miqia Wang
- Plant Research International BV, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
Phytophthora infestans remains a problem to production agriculture. Historically there have been many controversies concerning its biology and pathogenicity, some of which remain today. Advances in molecular biology and genomics promise to reveal fascinating insight into its pathogenicity and biology. However, the plasticity of its genome as revealed in population diversity and in the abundance of putative effectors means that this oomycete remains a formidable foe.
Collapse
Affiliation(s)
- William Fry
- Cornell University, Department of Plant Pathology, Ithaca, NY 14853, USA.
| |
Collapse
|
30
|
Bhaskar PB, Raasch JA, Kramer LC, Neumann P, Wielgus SM, Austin-Phillips S, Jiang J. Sgt1, but not Rar1, is essential for the RB-mediated broad-spectrum resistance to potato late blight. BMC PLANT BIOLOGY 2008; 8:8. [PMID: 18215301 PMCID: PMC2267190 DOI: 10.1186/1471-2229-8-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2007] [Accepted: 01/23/2008] [Indexed: 05/19/2023]
Abstract
BACKGROUND Late blight is the most serious potato disease world-wide. The most effective and environmentally sound way for controlling late blight is to incorporate natural resistance into potato cultivars. Several late blight resistance genes have been cloned recently. However, there is almost no information available about the resistance pathways mediated by any of those genes. RESULTS We previously cloned a late blight resistance gene, RB, from a diploid wild potato species Solanum bulbocastanum. Transgenic potato lines containing a single RB gene showed a rate-limiting resistance against all known races of Phytophthora infestans, the late blight pathogen. To better understand the RB-mediated resistance we silenced the potato Rar1 and Sgt1 genes that have been implicated in mediating disease resistance responses against various plant pathogens and pests. The Rar1 and Sgt1 genes of a RB-containing potato clone were silenced using a RNA interference (RNAi)-based approach. All of the silenced potato plants displayed phenotypically normal growth. The late blight resistance of the Rar1 and Sgt1 silenced lines were evaluated by a traditional greenhouse inoculation method and quantified using a GFP-tagged P. infestans strain. The resistance of the Rar1-silenced plants was not affected. However, silencing of the Sgt1 gene abolished the RB-mediated resistance. CONCLUSION Our study shows that silencing of the Sgt1 gene in potato does not result in lethality. However, the Sgt1 gene is essential for the RB-mediated late blight resistance. In contrast, the Rar1 gene is not required for RB-mediated resistance. These results provide additional evidence for the universal role of the Sgt1 gene in various R gene-mediated plant defense responses.
Collapse
Affiliation(s)
- Pudota B Bhaskar
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - John A Raasch
- Biotechnology Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lara C Kramer
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Pavel Neumann
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Susan M Wielgus
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - Jiming Jiang
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
31
|
Smart CD, Tanksley SD, Mayton H, Fry WE. Resistance to Phytophthora infestans in Lycopersicon pennellii. PLANT DISEASE 2007; 91:1045-1049. [PMID: 30780440 DOI: 10.1094/pdis-91-8-1045] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
To determine if the desert tomato, Lycopersicon pennellii, possesses resistance to late blight, caused by Phytophthora infestans, two plant populations were analyzed. Resistance was identified through assessments of disease progress in an F2 mapping population (L. esculentum × L. pennellii) and in a series of introgression lines (L. pennellii into L. esculentum). Levels of resistance varied widely among individuals within each population. However, the response of individuals to different strains of P. infestans was consistent. In the mapping population, a quantitative trait locus (QTL) was detected near marker T1556 on chromosome 6. This QTL accounted for 25% of the phenotypic variance in the population. The occurrence of this QTL was confirmed from analysis of the introgression lines (ILs), where IL 6-2 (containing marker T1556) was the most resistant IL in 2002 and the second most resistant IL in 2001. The identification of an additional QTL for resistance to late blight in tomato will aid in the development of durable resistance to this devastating disease.
Collapse
Affiliation(s)
| | | | - Hilary Mayton
- Department of Plant Pathology, Cornell University, Ithaca, NY 14853
| | - William E Fry
- Department of Plant Pathology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
32
|
Sliwka J, Jakuczun H, Lebecka R, Marczewski W, Gebhardt C, Zimnoch-Guzowska E. The novel, major locus Rpi-phu1 for late blight resistance maps to potato chromosome IX and is not correlated with long vegetation period. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2006; 113:685-95. [PMID: 16835764 DOI: 10.1007/s00122-006-0336-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Accepted: 06/03/2006] [Indexed: 05/10/2023]
Abstract
Despite the long history of breeding potatoes resistant to Phytophthora infestans, this oomycete is still economically the most important pathogen of potato worldwide. The correlation of high levels of resistance to late blight with a long vegetation period is one of the bottlenecks for progress in breeding resistant cultivars of various maturity types. Solanum phureja was identified as a source of effective late blight resistance, which was transferred to the cultivated gene pool by interspecific crosses with dihaploids of Solanum tuberosum. A novel major resistance locus, Rpi-phu1, derived most likely from S. phureja and conferring broad-spectrum resistance to late blight, was mapped to potato chromosome IX, 6.4 cM proximal to the marker GP94. Rpi-phu1 was highly effective in detached leaflet, tuber slice and whole tuber tests during 5 years of quantitative phenotypic assessment. The resistance did not show significant correlation with vegetation period length. Our findings provide a well-characterized new source of resistance for breeding early and resistant-to-P. infestans potatoes.
Collapse
Affiliation(s)
- J Sliwka
- Plant Breeding and Acclimatization Institute, Research Centre Młochów, Platanowa 19, 05-831 Młochów, Poland.
| | | | | | | | | | | |
Collapse
|