1
|
Genetic Diversity and Differentiation of Eleven Medicago Species from Campania Region Revealed by Nuclear and Chloroplast Microsatellites Markers. Genes (Basel) 2021; 13:genes13010097. [PMID: 35052437 PMCID: PMC8774365 DOI: 10.3390/genes13010097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 11/17/2022] Open
Abstract
The species belonging to the genus Medicago are considered a very important genetic resource at global level both for planet’s food security and for sustainable rangelands management. The checklist of the Italian flora (2021) includes a total number of 40 Medicago species for Italy, and 27 for Campania region, with a number of doubtful records or related to species no more found in the wild. In this study, 10 Medicago species native to Campania region, and one archaeophyte (M. sativa), identified by means of morphological diagnostic characters, were analyzed in a blind test to assay the efficacy of nine microsatellite markers (five cp-SSRs and four n-SSRs). A total number of 33 individuals from 6 locations were sampled and genotyped. All markers were polymorphic, 40 alleles were obtained with n-SSRs ranging from 8–12 alleles per locus with an average of 10 alleles per marker, PIC values ranged from 0.672 to 0.847, and the most polymorphic SSR was MTIC 564. The cp-SSRs markers were highly polymorphic too; PIC values ranged from 0.644 to 0.891 with an average of 0.776, the most polymorphic cp-SSR was CCMP10. 56 alleles were obtained with cp-SSRs ranging from 7 to 17 alleles per locus with an average of 11. AMOVA analysis with n-SSR markers highlighted a great level of genetic differentiation among the 11 species, with a statistically significant fixation index (FST). UPGMA clustering and Bayesian-based population structure analysis assigned these 11 species to two main clusters, but the distribution of species within clusters was not the same for the two analyses. In conclusion, our results demonstrated that the combination of the used SSRs well distinguished the 11 Medicago species. Moreover, our results demonstrated that the use of a limited number of SSRs might be considered for further genetic studies on other Medicago species.
Collapse
|
2
|
Naik A, Mishra SK, Nag A, Soren GK, Panda AK, Panda SK, Panigrahi J. Cross-genera amplification of Cajanus spp. specific SSR markers in Clitoria ternatea (L.) and their application in genetic diversity studies. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:2371-2390. [PMID: 33424153 PMCID: PMC7772131 DOI: 10.1007/s12298-020-00907-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/08/2020] [Accepted: 10/26/2020] [Indexed: 06/12/2023]
Abstract
Clitoria ternatea (L.) is a medicinal leguminous plant and is cultivated to cater the need of herbal industries and asthetic purposes. The unavailability of steady molecular marker impedes the genetic improvement of C. ternatea. In the present study, transferability of 98 pairs of Cajanus spp. specific SSR primers were assessed among 14 genotypes of C. ternatea, varied for their flower color, floral architecture and bio-metabolite (taraxerol and delphinidin) content, and out of them 43 had successfully amplified the fragments. Among them, 36 pairs of primers showed 100% transferability, whereas rest seven varied from 42.86 to 92.85% transferability. The transferable 43 pairs of SSR primers generated 196 alleles across the 14 genotypes and the AMOVA analysis showed moderate genetic variation (55.1%) among the genotypes of C. ternatea, which was also reinforced by Nei's genetic distance and gene identity estimates derived haplotype matrix. Similarly, both the principal coordinate analysis and dendrogram grouped these 14 genotypes of C. ternatea into two major clusters based on SSR allele distribution and frequency, and the clustering pattern is in accordance with petal color but in contrast to floral architecture. MCheza based outlier analysis revealed 16 alleles for balancing selection, which are putatively involved in the maintenance of genetic polymorphism in C. ternatea. Moreover, the estimates of molecular diversity and bio-metabolite content revealed the possible use of these genotypes in future breeding programme of this species.
Collapse
Affiliation(s)
- Aparupa Naik
- Department of Bioscience and Bioinformatics, Khallikote University, Konishi, Berhampur, Odisha 761008 India
- Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, Odisha 768019 India
| | - Sujit K. Mishra
- Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, Odisha 768019 India
- Department of Zoology, Centurion University of Technology and Management, Bhubaneswar, Odisha India
| | - Atul Nag
- Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, Odisha 768019 India
| | - Gopal K. Soren
- Department of Bioscience and Bioinformatics, Khallikote University, Konishi, Berhampur, Odisha 761008 India
| | - Aditya K. Panda
- Department of Bioscience and Bioinformatics, Khallikote University, Konishi, Berhampur, Odisha 761008 India
| | - Sanjib K. Panda
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan 305817 India
| | - Jogeswar Panigrahi
- Department of Bioscience and Bioinformatics, Khallikote University, Konishi, Berhampur, Odisha 761008 India
- Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, Odisha 768019 India
| |
Collapse
|
3
|
Development of new genetic resources for faba bean (Vicia faba L.) breeding through the discovery of gene-based SNP markers and the construction of a high-density consensus map. Sci Rep 2020; 10:6790. [PMID: 32321933 PMCID: PMC7176738 DOI: 10.1038/s41598-020-63664-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/02/2020] [Indexed: 12/31/2022] Open
Abstract
Faba bean (Vicia faba L.) is a pulse crop of high nutritional value and high importance for sustainable agriculture and soil protection. With the objective of identifying gene-based SNPs, transcriptome sequencing was performed in order to reduce faba bean genome complexity. A set of 1,819 gene-based SNP markers polymorphic in three recombinant line populations was selected to enable the construction of a high-density consensus genetic map encompassing 1,728 markers well distributed in six linkage groups and spanning 1,547.71 cM with an average inter-marker distance of 0.89 cM. Orthology-based comparison of the faba bean consensus map with legume genome assemblies highlighted synteny patterns that partly reflected the phylogenetic relationships among species. Solid blocks of macrosynteny were observed between faba bean and the most closely-related sequenced legume species such as pea, barrel medic or chickpea. Numerous blocks could also be identified in more divergent species such as common bean or cowpea. The genetic tools developed in this work can be used in association mapping, genetic diversity, linkage disequilibrium or comparative genomics and provide a backbone for map-based cloning. This will make the identification of candidate genes of interest more efficient and will accelerate marker-assisted selection (MAS) and genomic-assisted breeding (GAB) in faba bean.
Collapse
|
4
|
Lambein F, Travella S, Kuo YH, Van Montagu M, Heijde M. Grass pea (Lathyrus sativus L.): orphan crop, nutraceutical or just plain food? PLANTA 2019; 250:821-838. [PMID: 30719530 DOI: 10.1007/s00425-018-03084-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/21/2018] [Indexed: 05/28/2023]
Abstract
Although grass pea is an environmentally successful robust legume with major traits of interest for food and nutrition security, the genetic potential of this orphan crop has long been neglected. Grass pea (Lathyrus sativus L.) is a Neolithic plant that has survived millennia of cultivation and has spread over three continents. It is a robust legume crop that is considered one of the most resilient to climate changes and to be survival food during drought-triggered famines. The hardy penetrating root system allows the cultivation of grass pea in various soil types, including marginal ones. As an efficient nitrogen fixer, it meets its own nitrogen requirements and positively benefits subsequent crops. However, already in ancient India and Greece, overconsumption of the seeds and a crippling neurological disorder, later coined neurolathyrism, had been linked. Overemphasis of their suspected toxic properties has led to disregard the plant's exceptionally positive agronomic properties and dietary advantages. In normal socio-economic and environmental situations, in which grass pea is part of a balanced diet, neurolathyrism is virtually non-existent. The etiology of neurolathyrism has been oversimplified and the deficiency in methionine in the diet has been overlooked. In view of the global climate change, this very adaptable and nutritious orphan crop deserves more attention. Grass pea can become a wonder crop if the double stigma on its reputation as a toxic plant and as food of the poor can be disregarded. Additionally, recent research has exposed the potential of grass pea as a health-promoting nutraceutical. Development of varieties with an improved balance in essential amino acids and diet may be relevant to enhance the nutritional value without jeopardizing the multiple stress tolerance of this promising crop.
Collapse
Affiliation(s)
- Fernand Lambein
- International Plant Biotechnology Outreach, VIB, Technologiepark 122, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
| | - Silvia Travella
- International Plant Biotechnology Outreach, VIB, Technologiepark 122, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
| | - Yu-Haey Kuo
- International Plant Biotechnology Outreach, VIB, Technologiepark 122, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
| | - Marc Van Montagu
- International Plant Biotechnology Outreach, VIB, Technologiepark 122, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
| | - Marc Heijde
- International Plant Biotechnology Outreach, VIB, Technologiepark 122, 9052, Ghent, Belgium.
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium.
| |
Collapse
|
5
|
Singh A, Sharma V, Dikshit HK, Aski M, Kumar H, Thirunavukkarasu N, Patil BS, Kumar S, Sarker A. Association mapping unveils favorable alleles for grain iron and zinc concentrations in lentil (Lens culinaris subsp. culinaris). PLoS One 2017; 12:e0188296. [PMID: 29161321 PMCID: PMC5697819 DOI: 10.1371/journal.pone.0188296] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 11/04/2017] [Indexed: 11/18/2022] Open
Abstract
Lentil is a major cool-season grain legume grown in South Asia, West Asia, and North Africa. Populations in developing countries of these regions have micronutrient deficiencies; therefore, breeding programs should focus more on improving the micronutrient content of food. In the present study, a set of 96 diverse germplasm lines were evaluated at three different locations in India to examine the variation in iron (Fe) and zinc (Zn) concentration and identify simple sequence repeat (SSR) markers that associate with the genetic variation. The genetic variation among genotypes of the association mapping (AM) panel was characterized using a genetic distance-based and a general model-based clustering method. The model-based analysis identified six subpopulations, which satisfactorily explained the genetic structure of the AM panel. AM analysis identified three SSRs (PBALC 13, PBALC 206, and GLLC 563) associated with grain Fe concentration explaining 9% to 11% of phenotypic variation and four SSRs (PBALC 353, SSR 317-1, PLC 62, and PBALC 217) were associated with grain Zn concentration explaining 14%, to 21% of phenotypic variation. These identified SSRs exhibited consistent performance across locations. These candidate SSRs can be used in marker-assisted genetic improvement for developing Fe and Zn fortified lentil varieties. Favorable alleles and promising genotypes identified in this study can be utilized for lentil biofortification.
Collapse
Affiliation(s)
- Akanksha Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
- Department of Bioscience and Biotechnology, Banasthali University, Banasthali, Rajasthan, India
| | - Vinay Sharma
- Department of Bioscience and Biotechnology, Banasthali University, Banasthali, Rajasthan, India
| | - Harsh Kumar Dikshit
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Muraleedhar Aski
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Harish Kumar
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
- Punjab Agriculture University, RRS, Faridkot, Punjab, India
| | | | | | - Shiv Kumar
- ICARDA, B.P. 6299, Station Experiment, INRA-Quich, Rue Hafiane Cherkaoui Agdal, Rabat-Institutes, Rabat, Morocco
| | - Ashutosh Sarker
- South Asia and China Program (ICARDA), NASC Complex, New Delhi, India
| |
Collapse
|
6
|
Sindhu A, Tehlan SK, Chaudhury A. Analysis of genetic diversity among medicinal therapist Trigonella foenum-graecum L. genotypes through RAPD and SSR markers. ACTA PHYSIOLOGIAE PLANTARUM 2017; 39:100. [DOI: 10.1007/s11738-017-2395-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
7
|
Tian C, Guo W, Liang XF, Sun L, Lv L, Zhao C, Song Y, He S. Identification of species-specific microsatellite markers in three Siniperca species by RNA-Seq. BIOCHEM SYST ECOL 2017. [DOI: 10.1016/j.bse.2016.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
8
|
Dixit GP, Parihar AK, Bohra A, Singh NP. Achievements and prospects of grass pea ( Lathyrus sativus L.) improvement for sustainable food production. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.cj.2016.06.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Kamphuis LG, Guo SM, Gao LL, Singh KB. Genetic Mapping of a Major Resistance Gene to Pea Aphid (Acyrthosipon pisum) in the Model Legume Medicago truncatula. Int J Mol Sci 2016; 17:E1224. [PMID: 27483247 PMCID: PMC5000622 DOI: 10.3390/ijms17081224] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 01/05/2023] Open
Abstract
Resistance to the Australian pea aphid (PA; Acyrthosiphon pisum) biotype in cultivar Jester of the model legume Medicago truncatula is mediated by a single dominant gene and is phloem-mediated. The genetic map position for this resistance gene, APR (Acyrthosiphon pisum resistance), is provided and shows that APR maps 39 centiMorgans (cM) distal of the A. kondoi resistance (AKR) locus, which mediates resistance to a closely related species of the same genus bluegreen aphid (A. kondoi). The APR region on chromosome 3 is dense in classical nucleotide binding site leucine-rich repeats (NLRs) and overlaps with the region harbouring the RAP1 gene which confers resistance to a European PA biotype in the accession Jemalong A17. Further screening of a core collection of M. truncatula accessions identified seven lines with strong resistance to PA. Allelism experiments showed that the single dominant resistance to PA in M. truncatula accessions SA10481 and SA1516 are allelic to SA10733, the donor of the APR locus in cultivar Jester. While it remains unclear whether there are multiple PA resistance genes in an R-gene cluster or the resistance loci identified in the other M. truncatula accessions are allelic to APR, the introgression of APR into current M. truncatula cultivars will provide more durable resistance to PA.
Collapse
Affiliation(s)
- Lars G Kamphuis
- Commenwealth Scientific and Industrial Research Organisation, Agriculture and Food, 147 Underwood Avenue, Floreat, WA 6014, Australia.
- University of Western Australia Insititute of Agriculture, 35 Stirling Highway, Crawley, WA 6009, Australia.
| | - Su-Min Guo
- Commenwealth Scientific and Industrial Research Organisation, Agriculture and Food, 147 Underwood Avenue, Floreat, WA 6014, Australia.
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA.
| | - Ling-Ling Gao
- Commenwealth Scientific and Industrial Research Organisation, Agriculture and Food, 147 Underwood Avenue, Floreat, WA 6014, Australia.
| | - Karam B Singh
- Commenwealth Scientific and Industrial Research Organisation, Agriculture and Food, 147 Underwood Avenue, Floreat, WA 6014, Australia.
- University of Western Australia Insititute of Agriculture, 35 Stirling Highway, Crawley, WA 6009, Australia.
| |
Collapse
|
10
|
Satya P, Paswan PK, Ghosh S, Majumdar S, Ali N. Confamiliar transferability of simple sequence repeat (SSR) markers from cotton (Gossypium hirsutum L.) and jute (Corchorus olitorius L.) to twenty two Malvaceous species. 3 Biotech 2016; 6:65. [PMID: 28330135 PMCID: PMC4754293 DOI: 10.1007/s13205-016-0392-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 11/21/2015] [Indexed: 12/31/2022] Open
Abstract
Cross-species transferability is a quick and economic method to enrich SSR database, particularly for minor crops where little genomic information is available. However, transferability of SSR markers varies greatly between species, genera and families of plant species. We assessed confamiliar transferability of SSR markers from cotton (Gossypium hirsutum) and jute (Corchorus olitorius) to 22 species distributed in different taxonomic groups of Malvaceae. All the species selected were potential industrial crop species having little or no genomic resources or SSR database. Of the 14 cotton SSR loci tested, 13 (92.86 %) amplified in G. arboreum and 71.43 % exhibited cross-genera transferability. Nine out of 11 jute SSRs (81.81 %) showed cross-transferability across genera. SSRs from both the species exhibited high polymorphism and resolving power in other species. The correlation between transferability of cotton and jute SSRs were highly significant (r = 0.813). The difference in transferability among species was also significant for both the marker groups. High transferability was observed at genus, tribe and subfamily level. At tribe level, transferability of jute SSRs (41.04 %) was higher than that of cotton SSRs (33.74 %). The tribe Byttnerieae exhibited highest SSR transferability (48.7 %). The high level of cross-genera transferability (>50 %) in ten species of Malvaceae, where no SSR resource is available, calls for large scale transferability testing from the enriched SSR databases of cotton and jute.
Collapse
Affiliation(s)
- Pratik Satya
- Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata, 700120, India.
| | | | - Swagata Ghosh
- Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata, 700120, India
| | - Snehalata Majumdar
- Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata, 700120, India
| | - Nasim Ali
- Ramakrishna Mission Vivekananda University, Narendrapur, West Bengal, India
| |
Collapse
|
11
|
Haerinasab M, Rahiminejad MR, Ellison NW. Transferability of Simple Sequence Repeat (SSR) Markers Developed in Red Clover (Trifolium pratense L.) to Some Trifolium Species. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY, TRANSACTIONS A: SCIENCE 2016. [DOI: 10.1007/s40995-016-0011-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
CNMS: The preferred genic markers for comparative genomic, molecular phylogenetic, functional genetic diversity and differential gene regulatory expression analyses in chickpea. J Biosci 2015; 40:579-92. [PMID: 26333404 DOI: 10.1007/s12038-015-9545-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The intra/inter-genomic comparative mapping-based phylogenetic footprinting identified 5 paralogous and 656 orthologous genome-wide CNMS markers in the upstream sequences of chickpea genes. These CNMS markers revealed a high-degree of gene-based syntenic relationship between chickpea and Medicago genomes while minimum between chickpea and Vitis genomes. The time of divergence and duplication estimated using CNMS markers highlight the expected phylogenetic relationships between chickpea and six dicot (legume) species as well as occurrence of ancient genome (approximately 53 Mya) with small-scale recent segmental (approximately 10 Mya) duplication events in chickpea. A wider level of functional molecular diversity (14 to 88 percent) and admixed population genetic structure was detected among desi, kabuli and wild genotypes by genic CNMS markers at a genome-wide scale suggesting their utility in large-scale genetic analysis in chickpea. The subfunctionalization at the cis-regulatory element region and TFBS (transcription factor binding site) motif levels in the upstream sequences of CNMS marker-associated orthologous genes than the paralogues was predominant. Functional constraint might have considerable effect on these CNMScontaining regulatory elements controlling consistent orthologous gene expression in dicots. A rapid subfunctionalization based on diverge differential expression of paralogous CNMS marker-associated genes particularly those that underwent recent small-scale segmental duplication events in chickpea was apparent. The differential regulation of expression and subfunctionalization potential of Ultra CNMS marker-associated genes suggest their utility in deciphering the complex gene regulatory function as well as identification and targeted mapping of potential genes/QTLs governing vital agronomic traits in chickpea. The gene-based CNMS markers with desirable inherent genetic attributes like higher degree of comparative genome mapping, functional genetic diversity and differential gene regulatory expression potential can significantly propel the genomics-assisted chickpea crop improvement.
Collapse
|
13
|
Liu W, Jia X, Liu Z, Zhang Z, Wang Y, Liu Z, Xie W. Development and Characterization of Transcription Factor Gene-Derived Microsatellite (TFGM) Markers in Medicago truncatula and Their Transferability in Leguminous and Non-Leguminous Species. Molecules 2015; 20:8759-71. [PMID: 25988608 PMCID: PMC6272326 DOI: 10.3390/molecules20058759] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 05/10/2015] [Accepted: 05/12/2015] [Indexed: 12/31/2022] Open
Abstract
Transcription factors (TFs) are critical adaptor molecules that regulate many plant processes by controlling gene expression. The recent increase in the availability of TF data has made TFs a valuable resource for genic functional microsatellite marker development. In the present study, we developed TF gene-derived microsatellite (TFGM) markers for Medicago truncatula and assessed their cross-species transferability. A total of 203 SSRs were identified from 1467 M. truncatula TF coding sequences, 87.68% of which were trinucleotide repeats, followed by mono- (4.93%) and hexanucleotide repeats (1.48%). Further, 142 TFGM markers showed a high level of transferability to the leguminous (55.63%-85.21%) and non-leguminous (28.17%-50.00%) species. Polymorphisms of 27 TFGM markers were evaluated in 44 alfalfa accessions. The allele number per marker ranged from two to eight with an average of 4.41, and the PIC values ranged from 0.08 to 0.84 with an average of 0.60. Considering the high polymorphism, these TFGM markers developed in our study will be valuable for genetic relationship assessments, marker-assisted selection and comparative genomic studies in leguminous and non-leguminous species.
Collapse
Affiliation(s)
- Wenxian Liu
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Xitao Jia
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Zhimin Liu
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Zhengshe Zhang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Yanrong Wang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Zhipeng Liu
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Wengang Xie
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, China
| |
Collapse
|
14
|
Raveendar S, Lee GA, Jeon YA, Lee YJ, Lee JR, Cho GT, Cho JH, Park JH, Ma KH, Chung JW. Cross-amplification of Vicia sativa subsp. sativa microsatellites across 22 other Vicia species. Molecules 2015; 20:1543-50. [PMID: 25608853 PMCID: PMC6272350 DOI: 10.3390/molecules20011543] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 01/14/2015] [Indexed: 11/16/2022] Open
Abstract
The temperate and herbaceous genus Vicia L. is a member of the legume tribe Fabeae of the subfamily Papilionoideae. The genus Vicia comprises 166 annual or perennial species distributed mainly in Europe, Asia, and North America, but also extending to the temperate regions of South America and tropical Africa. The use of simple sequence repeat (SSR) markers for Vicia species has not been investigated as extensively as for other crop species. In this study, we assessed the potential for cross-species amplification of cDNA microsatellite markers developed from common vetch (Vicia sativa subsp. sativa). For cross-species amplification of the SSRs, amplification was carried out with genomic DNA isolated from two to eight accessions of 22 different Vicia species. For individual species or subspecies, the transferability rates ranged from 33% for V. ervilia to 82% for V. sativa subsp. nigra with an average rate of 52.0%. Because the rate of successful SSR marker amplification generally correlates with genetic distance, these SSR markers are potentially useful for analyzing genetic relationships between or within Vicia species.
Collapse
Affiliation(s)
- Sebastin Raveendar
- National Agrobiodiversity Centre, National Academy of Agricultural Science, Rural Development Administration, Jeonju 560-500, Korea
| | - Gi-An Lee
- National Agrobiodiversity Centre, National Academy of Agricultural Science, Rural Development Administration, Jeonju 560-500, Korea
| | - Young-Ah Jeon
- National Agrobiodiversity Centre, National Academy of Agricultural Science, Rural Development Administration, Jeonju 560-500, Korea
| | - Yun Jeong Lee
- National Agrobiodiversity Centre, National Academy of Agricultural Science, Rural Development Administration, Jeonju 560-500, Korea
| | - Jung-Ro Lee
- National Agrobiodiversity Centre, National Academy of Agricultural Science, Rural Development Administration, Jeonju 560-500, Korea
| | - Gyu-Taek Cho
- National Agrobiodiversity Centre, National Academy of Agricultural Science, Rural Development Administration, Jeonju 560-500, Korea
| | - Joon-Hyeong Cho
- Department of Biological and Environmental Science, Dongguk University, Seoul 100-175, Korea
| | - Jong-Hyun Park
- Food Grain Policy Division, Ministry of Agriculture, Food and Rural Affairs, Sejong-si 339-012, Korea
| | - Kyung-Ho Ma
- National Agrobiodiversity Centre, National Academy of Agricultural Science, Rural Development Administration, Jeonju 560-500, Korea
| | - Jong-Wook Chung
- National Agrobiodiversity Centre, National Academy of Agricultural Science, Rural Development Administration, Jeonju 560-500, Korea.
| |
Collapse
|
15
|
Identification and characterization of microsatellites in expressed sequence tags and their cross transferability in different plants. Int J Genomics 2014; 2014:863948. [PMID: 25389527 PMCID: PMC4217358 DOI: 10.1155/2014/863948] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/31/2014] [Accepted: 09/22/2014] [Indexed: 12/20/2022] Open
Abstract
Expressed sequence tags (EST) are potential source for the development of genic microsatellite markers, gene discovery, comparative genomics, and other genomic studies. In the present study, 7630 ESTs were examined from NCBI for SSR identification and characterization. A total of 263 SSRs were identified with an average density of one SSR/4.2 kb (3.4% frequency). Analysis revealed that trinucleotide repeats (47.52%) were most abundant followed by tetranucleotide (19.77%), dinucleotide (19.01%), pentanucleotide (9.12%), and hexanucleotide repeats (4.56%). Functional annotation was done through homology search and gene ontology, and 35 EST-SSRs were selected. Primer pairs were designed for evaluation of cross transferability and polymorphism among 11 plants belonging to five different families. Total 402 alleles were generated at 155 loci with an average of 2.6 alleles/locus and the polymorphic information content (PIC) ranged from 0.15 to 0.92 with an average of 0.75. The cross transferability ranged from 34.84% to 98.06% in different plants, with an average of 67.86%. Thus, the validation study of annotated 35 EST-SSR markers which correspond to particular metabolic activity revealed polymorphism and evolutionary nature in different families of Angiospermic plants.
Collapse
|
16
|
Genetic diversity and population structure of Armillaria luteo-virens (Physalacriaceae) in Qinghai-Tibet Plateau revealed by SSR markers. BIOCHEM SYST ECOL 2014. [DOI: 10.1016/j.bse.2014.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Almeida NF, Leitão ST, Caminero C, Torres AM, Rubiales D, Vaz Patto MC. Transferability of molecular markers from major legumes to Lathyrus spp. for their application in mapping and diversity studies. Mol Biol Rep 2013; 41:269-83. [DOI: 10.1007/s11033-013-2860-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 10/31/2013] [Indexed: 12/01/2022]
|
18
|
Zitouna N, Marghali S, Gharbi M, Chennaoui-Kourda H, Haddioui A, Trifi-Farah N. Mediterranean Hedysarum phylogeny by transferable microsatellites from Medicago. BIOCHEM SYST ECOL 2013. [DOI: 10.1016/j.bse.2013.03.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Development of pineapple microsatellite markers and germplasm genetic diversity analysis. BIOMED RESEARCH INTERNATIONAL 2013; 2013:317912. [PMID: 24024187 PMCID: PMC3760190 DOI: 10.1155/2013/317912] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/02/2013] [Indexed: 11/17/2022]
Abstract
Two methods were used to develop pineapple microsatellite markers. Genomic library-based SSR development: using selectively amplified microsatellite assay, 86 sequences were generated from pineapple genomic library. 91 (96.8%) of the 94 Simple Sequence Repeat (SSR) loci were dinucleotide repeats (39 AC/GT repeats and 52 GA/TC repeats, accounting for 42.9% and 57.1%, resp.), and the other three were mononucleotide repeats. Thirty-six pairs of SSR primers were designed; 24 of them generated clear bands of expected sizes, and 13 of them showed polymorphism. EST-based SSR development: 5659 pineapple EST sequences obtained from NCBI were analyzed; among 1397 nonredundant EST sequences, 843 were found containing 1110 SSR loci (217 of them contained more than one SSR locus). Frequency of SSRs in pineapple EST sequences is 1SSR/3.73 kb, and 44 types were found. Mononucleotide, dinucleotide, and trinucleotide repeats dominate, accounting for 95.6% in total. AG/CT and AGC/GCT were the dominant type of dinucleotide and trinucleotide repeats, accounting for 83.5% and 24.1%, respectively. Thirty pairs of primers were designed for each of randomly selected 30 sequences; 26 of them generated clear and reproducible bands, and 22 of them showed polymorphism. Eighteen pairs of primers obtained by the one or the other of the two methods above that showed polymorphism were selected to carry out germplasm genetic diversity analysis for 48 breeds of pineapple; similarity coefficients of these breeds were between 0.59 and 1.00, and they can be divided into four groups accordingly. Amplification products of five SSR markers were extracted and sequenced, corresponding repeat loci were found and locus mutations are mainly in copy number of repeats and base mutations in the flanking region.
Collapse
|
20
|
Jayashree B, Jagadeesh VT, Hoisington D. cisprimertool: software to implement a comparative genomics strategy for the development of conserved intron scanning (CIS) markers. Mol Ecol Resour 2013; 8:575-7. [PMID: 21585836 DOI: 10.1111/j.1471-8286.2007.02035.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The availability of complete, annotated genomic sequence information in model organisms is a rich resource that can be extended to understudied orphan crops through comparative genomic approaches. We report here a software tool (cisprimertool) for the identification of conserved intron scanning regions using expressed sequence tag alignments to a completely sequenced model crop genome. The method used is based on earlier studies reporting the assessment of conserved intron scanning primers (called CISP) within relatively conserved exons located near exon-intron boundaries from onion, banana, sorghum and pearl millet alignments with rice. The tool is freely available to academic users at http://www.icrisat.org/gt-bt/CISPTool.htm.
Collapse
Affiliation(s)
- B Jayashree
- Bioinformatics Unit, ICRISAT, Patancheru, Andhra Pradesh 502324, India, GTL-Biotechnology, ICRISAT, Patancheru, Andhra Pradesh 502324, India
| | | | | |
Collapse
|
21
|
Rai MK, Phulwaria M, Shekhawat NS. Transferability of simple sequence repeat (SSR) markers developed in guava (Psidium guajava L.) to four Myrtaceae species. Mol Biol Rep 2013; 40:5067-71. [PMID: 23657599 DOI: 10.1007/s11033-013-2608-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 04/30/2013] [Indexed: 10/26/2022]
Abstract
Present study demonstrated the cross-genera transferability of 23 simple sequence repeat (SSR) primer pairs developed for guava (Psidium guajava L.) to four new targets, two species of eucalypts (Eucalyptus citriodora, Eucalyptus camaldulensis), bottlebrush (Callistemon lanceolatus) and clove (Syzygium aromaticum), belonging to the family Myrtaceae and subfamily Myrtoideae. Off the 23 SSR loci assayed, 18 (78.2%) gave cross-amplification in E. citriodora, 14 (60.8%) in E. camaldulensis and 17-17 (73.9%) in C. lanceolatus and S. aromaticum. Eight primer pairs were found to be transferable to all four species. The number of alleles detected at each locus ranged from one to nine, with an average of 4.8, 2.6, 4.5 and 4.6 alleles in E. citriodora, E. camaldulensis, C. lanceolatus and S. aromaticum, respectively. The high levels of cross-genera transferability of guava SSRs may be applicable for the analysis of intra- and inter specific genetic diversity of target species, especially in E. citriodora, C. lanceolatus and S. aromaticum, for which till date no information about EST-derived as well as genomic SSR is available.
Collapse
Affiliation(s)
- Manoj K Rai
- Department of Botany, Biotechnology Centre, Jai Narain Vyas University, Jodhpur, 342033, Rajasthan, India.
| | | | | |
Collapse
|
22
|
Cruz-Izquierdo S, Avila CM, Satovic Z, Palomino C, Gutierrez N, Ellwood SR, Phan HTT, Cubero JI, Torres AM. Comparative genomics to bridge Vicia faba with model and closely-related legume species: stability of QTLs for flowering and yield-related traits. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 125:1767-82. [PMID: 22864387 DOI: 10.1007/s00122-012-1952-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 07/21/2012] [Indexed: 05/20/2023]
Abstract
This study presents the development of an enhanced map in faba bean. The map contains 258 loci, mostly gene-based markers, organized in 16 linkage groups that expand 1,875 cM, with an average inter-marker distance of 7.26 cM. The combination of EST-derived markers with a number of markers physically located or previously ascribed to chromosomes by trisomic segregation, allowed the allocation of eight linkage groups (229 markers), to specific chromosomes. Moreover, this approach provided anchor points to establish a global homology among the faba bean chromosomes and those of closely-related legumes species. The map was used to identify and validate, for the first time, QTLs controlling five flowering and reproductive traits: days to flowering, flowering length, pod length, number of seeds per pod and number of ovules per pod. Twelve QTLs stable in the 2 years of evaluation were identified in chromosomes II, V and VI. Comparative mapping suggested the conservation of one of the faba bean genomic regions controlling the character days to flowering in other five legume species (Medicago, Lotus, pea, lupine, chickpea). Additional syntenic co-localizations of QTLs controlling pod length and number of seeds per pod between faba bean and Lotus japonicus are likely. The new genetic map opens the way for further translational studies between faba bean and related legume species, and provides an efficient tool for breeding applications such as QTL analysis and marker-assisted selection.
Collapse
Affiliation(s)
- S Cruz-Izquierdo
- Área de Mejora y Biotecnología, IFAPA, Centro Alameda del Obispo, Apdo. 3092, 14080 Córdoba, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Gaur R, Azam S, Jeena G, Khan AW, Choudhary S, Jain M, Yadav G, Tyagi AK, Chattopadhyay D, Bhatia S. High-throughput SNP discovery and genotyping for constructing a saturated linkage map of chickpea (Cicer arietinum L.). DNA Res 2012; 19:357-73. [PMID: 22864163 PMCID: PMC3473369 DOI: 10.1093/dnares/dss018] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The present study reports the large-scale discovery of genome-wide single-nucleotide polymorphisms (SNPs) in chickpea, identified mainly through the next generation sequencing of two genotypes, i.e. Cicer arietinum ICC4958 and its wild progenitor C. reticulatum PI489777, parents of an inter-specific reference mapping population of chickpea. Development and validation of a high-throughput SNP genotyping assay based on Illumina's GoldenGate Genotyping Technology and its application in building a high-resolution genetic linkage map of chickpea is described for the first time. In this study, 1022 SNPs were identified, of which 768 high-confidence SNPs were selected for designing the custom Oligo Pool All (CpOPA-I) for genotyping. Of these, 697 SNPs could be successfully used for genotyping, demonstrating a high success rate of 90.75%. Genotyping data of the 697 SNPs were compiled along with those of 368 co-dominant markers mapped in an earlier study, and a saturated genetic linkage map of chickpea was constructed. One thousand and sixty-three markers were mapped onto eight linkage groups spanning 1808.7 cM (centiMorgans) with an average inter-marker distance of 1.70 cM, thereby representing one of the most advanced maps of chickpea. The map was used for the synteny analysis of chickpea, which revealed a higher degree of synteny with the phylogenetically close Medicago than with soybean. The first set of validated SNPs and map resources developed in this study will not only facilitate QTL mapping, genome-wide association analysis and comparative mapping in legumes but also help anchor scaffolds arising out of the whole-genome sequencing of chickpea.
Collapse
Affiliation(s)
- Rashmi Gaur
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box 10531, New Delhi 110067, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Shiferaw E, Pè ME, Porceddu E, Ponnaiah M. Exploring the genetic diversity of Ethiopian grass pea (Lathyrus sativus L.) using EST-SSR markers. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2012; 30:789-797. [PMID: 22924019 PMCID: PMC3410020 DOI: 10.1007/s11032-011-9662-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 10/19/2011] [Indexed: 05/10/2023]
Abstract
Expressed sequence tags (ESTs) in public databases and cross-species transferable markers are considered to be a cost-effective means for developing sequence-based markers for less-studied species. In this study, EST-simple sequence repeat (SSR) markers developed from Lathyrus sativus L. EST sequences and cross-transferable EST-SSRs derived from Medicago truncatula L. were utilized to investigate the genetic diversity among grass pea populations from Ethiopia. A total of 45 alleles were detected using eleven EST-SSRs with an average of four alleles per locus. The average polymorphism information content for all primers was 0.416. The average gene diversity was 0.477, ranging from 0.205 for marker Ls942 to 0.804 for MtBA32F05. F(ST) values estimated by analysis of molecular variance were 0.01, 0.15, and 0.84 for among regions, among accessions and within accessions respectively, indicating that most of the variation (84%) resides within accessions. Model-based cluster analysis grouped the accessions into three clusters, grouping accessions irrespective of their collection regions. Among the regions, high levels of diversity were observed in Gojam, Gonder, Shewa and Welo regions, with Gonder region showing a higher number of different alleles. From breeding and conservation aspects, conducting a close study on a specific population would be advisable for genetic improvement in the crop, and it would be appropriate if future collection and conservation plans give due attention to under-represented regions. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11032-011-9662-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- E. Shiferaw
- Scuola Superiore Sant’Anna, Piazza Martiri Della Libertà, 33, 56127 Pisa, Italy
| | - M. E. Pè
- Scuola Superiore Sant’Anna, Piazza Martiri Della Libertà, 33, 56127 Pisa, Italy
| | - E. Porceddu
- DABAC, University of Tuscia, Via S. C. De Lellis, 01100 Viterbo, Italy
| | - M. Ponnaiah
- Scuola Superiore Sant’Anna, Piazza Martiri Della Libertà, 33, 56127 Pisa, Italy
| |
Collapse
|
25
|
Choudhary S, Gaur R, Gupta S. EST-derived genic molecular markers: development and utilization for generating an advanced transcript map of chickpea. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 124:1449-62. [PMID: 22301907 DOI: 10.1007/s00122-012-1800-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 01/05/2012] [Indexed: 05/17/2023]
Abstract
Well-saturated linkage maps especially those based on expressed sequence tag (EST)-derived genic molecular markers (GMMs) are a pre-requisite for molecular breeding. This is especially true in important legumes such as chickpea where few simple sequence repeats (SSR) and even fewer GMM-based maps have been developed. Therefore, in this study, 2,496 ESTs were generated from chickpea seeds and utilized for the development of 487 novel EST-derived functional markers which included 125 EST-SSRs, 151 intron targeted primers (ITPs), 109 expressed sequence tag polymorphisms (ESTPs), and 102 single nucleotide polymorphisms (SNPs). Whereas ESTSSRs, ITPs, and ESTPs were developed by in silico analysis of the developed EST sequences, SNPs were identified by allele resequencing and their genotyping was performedusing the Illumina GoldenGate Assay. Parental polymorphism was analyzed between C. arietinum ICC4958 and C. reticulatum PI489777, parents of the reference chickpea mapping population, using a total of 872 markers: 487 new gene-based markers developed in this study along with 385 previously published markers, of which 318 (36.5%) were found to be polymorphic and were used for genotyping. The genotypic data were integrated with the previously published data of 108 markers and an advanced linkage map was generated that contained 406 loci distributed on eight linkage groups that spanned 1,497.7 cM. The average marker density was 3.68 cM and the average number of markers per LG was 50.8. Among the mapped markers, 303 new genomic locations were defined that included 177 gene-based and 126 gSSRs (genomic SSRs) thereby producing the most advanced gene-rich map of chickpea solely based on co-dominant markers.
Collapse
Affiliation(s)
- Shalu Choudhary
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, Post Box No 10531, New Delhi 110067, India
| | | | | |
Collapse
|
26
|
Kongjaimun A, Kaga A, Tomooka N, Somta P, Shimizu T, Shu Y, Isemura T, Vaughan DA, Srinives P. An SSR-based linkage map of yardlong bean (Vigna unguiculata (L.) Walp. subsp. unguiculata Sesquipedalis Group) and QTL analysis of pod length. Genome 2012; 55:81-92. [DOI: 10.1139/g11-078] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Yardlong bean (Vigna unguiculata (L.) Walp. subsp. unguiculata Sesquipedalis Group) (2n = 2x = 22) is one of the most important vegetable legumes of Asia. The objectives of this study were to develop a genetic linkage map of yardlong bean using SSR makers from related Vigna species and to identify QTLs for pod length. The map was constructed from 226 simple sequence repeat (SSR) markers from cowpea (Vigna unguiculata (L.) Walp. subsp. unguiculata Unguiculata Group), azuki bean (Vigna angularis (Willd.) Ohwi & Ohashi), and mungbean (Vigna radiata (L.) Wilczek) in a BC1F1 ((JP81610 × TVnu457) × JP81610) population derived from the cross between yardlong bean accession JP81610 and wild cowpea (Vigna unguiculata subsp. unguiculata var. spontanea) accession TVnu457. The markers were clustered into 11 linkage groups (LGs) spanning 852.4 cM in total length with a mean distance between adjacent markers of 3.96 cM. All markers on LG11 showed segregation distortion towards the homozygous yardlong bean JP81610 genotype. The markers on LG11 were also distorted in the rice bean (Vigna umbellata (Thunb.) Ohwi & Ohashi) map, suggesting the presence of common segregation distortion factors in Vigna species on this LG. One major and six minor QTLs were identified for pod length variation between yardlong bean and wild cowpea. Using flanking markers, six of the seven QTLs were confirmed in an F2 population of JP81610 × TVnu457. The molecular linkage map developed and markers linked to pod length QTLs would be potentially useful for yardlong bean and cowpea breeding.
Collapse
Affiliation(s)
- Alisa Kongjaimun
- Program in Plant Breeding, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom 73140, Thailand
| | - Akito Kaga
- Genebank, National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602, Japan
| | - Norihiko Tomooka
- Genebank, National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602, Japan
| | - Prakit Somta
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom 73140, Thailand
| | - Takehiko Shimizu
- Institute of Society for Techno-Innovation of Agriculture, Forestry and Fisheries, Kamiyokoba Ippaizuka 446-1, Tsukuba, Ibaraki 305-0854, Japan
| | - Yujian Shu
- Genebank, National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602, Japan
| | - Takehisa Isemura
- Genebank, National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602, Japan
| | - Duncan A. Vaughan
- Genebank, National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602, Japan
- FAO Regional Office for Asia and the Pacific, Maliwan Mansion, 39 Phra Atit Road, Bangkok 10200, Thailand
| | - Peerasak Srinives
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom 73140, Thailand
| |
Collapse
|
27
|
Savadi SB, Fakrudin B, Nadaf HL, Gowda MVC. Transferability of Sorghum Genic Microsatellite Markers to Peanut. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/ajps.2012.39142] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Lesser MR, Parchman TL, Buerkle CA. Cross-species transferability of SSR loci developed from transciptome sequencing in lodgepole pine. Mol Ecol Resour 2011; 12:448-55. [PMID: 22171820 DOI: 10.1111/j.1755-0998.2011.03102.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
With the advent of next generation sequencing technologies, transcriptome level sequence collections are arising as prominent resources for the discovery of gene-based molecular markers. In a previous study more than 15,000 simple sequence repeats (SSRs) in expressed sequence tag (EST) sequences resulting from 454 pyrosequencing of Pinus contorta cDNA were identified. From these we developed PCR primers for approximately 4000 candidate SSRs. Here, we tested 184 of these SSRs for successful amplification across P. contorta and eight other pine species and examined patterns of polymorphism and allelic variability for a subset of these SSRs. Cross-species transferability was high, with high percentages of loci producing PCR products in all species tested. In addition, 50% of the loci we screened across panels of individuals from three of these species were polymorphic and allelically diverse. We examined levels of diversity in a subset of these SSRs by collecting genotypic data across several populations of Pinus ponderosa in northern Wyoming. Our results indicate the utility of mining pyrosequenced EST collections for gene-based SSRs and provide a source of molecular markers that should bolster evolutionary genetic investigations across the genus Pinus.
Collapse
Affiliation(s)
- Mark R Lesser
- Program in Ecology, University of Wyoming, Laramie, WY 82071, USA.
| | | | | |
Collapse
|
29
|
Das A, Kesari V, Satyanarayana VM, Parida A, Rangan L. Genetic relationship of Curcuma species from Northeast India using PCR-based markers. Mol Biotechnol 2011; 49:65-76. [PMID: 21253894 DOI: 10.1007/s12033-011-9379-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Molecular genetic fingerprints of nine Curcuma species from Northeast India were developed using PCR-based markers. The aim involves elucidating there intra- and inter-specific genetic diversity important for utilization, management, and conservation. Twelve random amplified polymorphic DNA (RAPD), 19 Inter simple sequence repeats (ISSRs), and four amplified fragment length polymorphism (AFLP) primers produced 266 polymorphic fragments. ISSR confirmed maximum polymorphism of 98.55% whereas RAPD and AFLP showed 93.22 and 97.27%, respectively. Marker index and polymorphic information content varied in the range of 8.64-48.1, 19.75-48.14, and 25-28 and 0.17-0.48, 0.19-0.48, and 0.25-0.29 for RAPD, ISSR, and AFLP markers, respectively. The average value of number of observed alleles, number of effective alleles, mean Nei's gene diversity, and Shannon's information index were 1.93-1.98, 1.37-1.62, 0.23-0.36, and 0.38-0.50, respectively, for three DNA markers used. Dendrograms based on three molecular data using unweighted pair group method with arithmetic mean (UPGMA) was congruent and classified the Curcuma species into two major clusters. Cophenetic correlation coefficient between dendrogram and original similarity matrix were significant for RAPD (r = 0.96), ISSR (r = 0.94), and AFLP (r = 0.97). Clustering was further supported by principle coordinate analysis. High genetic polymorphism documented is significant for conservation and further improvement of Curcuma species.
Collapse
Affiliation(s)
- Archana Das
- Department of Biotechnology, Indian Institute of Technology Guwahati, North Guwahati, 781 039, Assam, India
| | | | | | | | | |
Collapse
|
30
|
Lenz D, May P, Walther D. Comparative analysis of miRNAs and their targets across four plant species. BMC Res Notes 2011; 4:483. [PMID: 22067256 PMCID: PMC3225354 DOI: 10.1186/1756-0500-4-483] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 11/08/2011] [Indexed: 01/06/2023] Open
Abstract
Background MicroRNA (miRNA) mediated regulation of gene expression has been recognized as a major posttranscriptional regulatory mechanism also in plants. We performed a comparative analysis of miRNAs and their respective gene targets across four plant species: Arabidopsis thaliana (Ath), Medicago truncatula(Mtr), Brassica napus (Bna), and Chlamydomonas reinhardtii (Cre). Results miRNAs were obtained from mirBase with 218 miRNAs for Ath, 375 for Mtr, 46 for Bna, and 73 for Cre, annotated for each species respectively. miRNA targets were obtained from available database annotations, bioinformatic predictions using RNAhybrid as well as predicted from an analysis of mRNA degradation products (degradome sequencing) aimed at identifying miRNA cleavage products. On average, and considering both experimental and bioinformatic predictions together, every miRNA was associated with about 46 unique gene transcripts with considerably variation across species. We observed a positive and linear correlation between the number miRNAs and the total number of transcripts across different plant species suggesting that the repertoire of miRNAs correlates with the size of the transcriptome of an organism. Conserved miRNA-target pairs were found to be associated with developmental processes and transcriptional regulation, while species-specific (in particular, Ath) pairs are involved in signal transduction and response to stress processes. Conserved miRNAs have more targets and higher expression values than non-conserved miRNAs. We found evidence for a conservation of not only the sequence of miRNAs, but their expression levels as well. Conclusions Our results support the notion of a high birth and death rate of miRNAs and that miRNAs serve many species specific functions, while conserved miRNA are related mainly to developmental processes and transcriptional regulation with conservation operating at both the sequence and expression level.
Collapse
Affiliation(s)
- Dorina Lenz
- Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| | | | | |
Collapse
|
31
|
Rai R, Singh AK, Singh BD, Joshi AK, Chand R, Srivastava CP. Molecular mapping for resistance to pea rust caused by Uromyces fabae (Pers.) de-Bary. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 123:803-13. [PMID: 21671067 DOI: 10.1007/s00122-011-1628-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 05/31/2011] [Indexed: 05/19/2023]
Abstract
Pea rust caused by Uromyces fabae (Pers.) de-Bary is a major problem in warm humid regions causing huge economic losses. A mapping population of 136 F(6:7) recombinant inbred lines (RILs) derived from the cross between pea genotypes, HUVP 1 (susceptible) and FC 1 (resistant) was evaluated in polyhouse as well as under field conditions during two consecutive years. Infection frequency (IF) and area under disease progress curve (AUDPC) were used for evaluation of rust reaction of the RILs. A linkage map was constructed with 57 polymorphic loci selected from 148 simple sequence repeats (SSRs), 3 sequence tagged sites (STS), and 2 random amplified polymorphic (RAPD) markers covering 634 cM of genetic distance on the seven linkage groups of pea with an average interval length of 11.3 cM. Composite interval mapping (CIM) revealed one major (Qruf) and one minor (Qruf1) QTL for rust resistance on LGVII. The LOD (5.2-15.8) peak for Qruf was flanked by SSR markers, AA505 and AA446 (10.8 cM), explaining 22.2-42.4% and 23.5-58.8% of the total phenotypic variation for IF and AUDPC, respectively. The minor QTL was environment-specific, and it was detected only in the polyhouse (LOD values 4.2 and 4.8). It was flanked by SSR markers, AD146 and AA416 (7.3 cM), and explained 11.2-12.4% of the total phenotypic variation. The major QTL Qruf was consistently identified across all the four environments. Therefore, the SSR markers flanking Qruf would be useful for marker-assisted selection for pea rust (U. fabae) resistance.
Collapse
Affiliation(s)
- Rashmi Rai
- School of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi, 221005, India
| | | | | | | | | | | |
Collapse
|
32
|
Li G, Ra WH, Park JW, Kwon SW, Lee JH, Park CB, Park YJ. Developing EST-SSR markers to study molecular diversity in Liriope and Ophiopogon. BIOCHEM SYST ECOL 2011. [DOI: 10.1016/j.bse.2011.08.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
Hamon C, Baranger A, Coyne CJ, McGee RJ, Le Goff I, L'anthoëne V, Esnault R, Rivière JP, Klein A, Mangin P, McPhee KE, Roux-Duparque M, Porter L, Miteul H, Lesné A, Morin G, Onfroy C, Moussart A, Tivoli B, Delourme R, Pilet-Nayel ML. New consistent QTL in pea associated with partial resistance to Aphanomyces euteiches in multiple French and American environments. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 123:261-81. [PMID: 21479935 DOI: 10.1007/s00122-011-1582-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Accepted: 03/23/2011] [Indexed: 05/03/2023]
Abstract
Partial resistances, often controlled by quantitative trait loci (QTL), are considered to be more durable than monogenic resistances. Therefore, a precursor to developing efficient breeding programs for polygenic resistance to pathogens should be a greater understanding of genetic diversity and stability of resistance QTL in plants. In this study, we deciphered the diversity and stability of resistance QTL to Aphanomyces euteiches in pea towards pathogen variability, environments and scoring criteria, from two new sources of partial resistance (PI 180693 and 552), effective in French and USA infested fields. Two mapping populations of 178 recombinant inbred lines each, derived from crosses between 552 or PI 180693 (partially resistant) and Baccara (susceptible), were used to identify QTL for Aphanomyces root rot resistance in controlled and in multiple French and USA field conditions using several resistance criteria. We identified a total of 135 additive-effect QTL corresponding to 23 genomic regions and 13 significant epistatic interactions associated with partial resistance to A. euteiches in pea. Among the 23 additive-effect genomic regions identified, five were consistently detected, and showed highly stable effects towards A. euteiches strains, environments, resistance criteria, condition tests and RIL populations studied. These results confirm the complexity of inheritance of partial resistance to A. euteiches in pea and provide good bases for the choice of consistent QTL to use in marker-assisted selection schemes to increase current levels of resistance to A. euteiches in pea breeding programs.
Collapse
Affiliation(s)
- Céline Hamon
- Université de Rennes 1, Amélioration des Plantes et Biotechnologies Végétales, Rennes, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kirk H, Freeland JR. Applications and implications of neutral versus non-neutral markers in molecular ecology. Int J Mol Sci 2011; 12:3966-88. [PMID: 21747718 PMCID: PMC3131602 DOI: 10.3390/ijms12063966] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 06/06/2011] [Accepted: 06/07/2011] [Indexed: 11/17/2022] Open
Abstract
The field of molecular ecology has expanded enormously in the past two decades, largely because of the growing ease with which neutral molecular genetic data can be obtained from virtually any taxonomic group. However, there is also a growing awareness that neutral molecular data can provide only partial insight into parameters such as genetic diversity, local adaptation, evolutionary potential, effective population size, and taxonomic designations. Here we review some of the applications of neutral versus adaptive markers in molecular ecology, discuss some of the advantages that can be obtained by supplementing studies of molecular ecology with data from non-neutral molecular markers, and summarize new methods that are enabling researchers to generate data from genes that are under selection.
Collapse
Affiliation(s)
- Heather Kirk
- Department of Biology, Trent University, Peterborough, Ontario K9J 7B8, Canada; E-Mail:
| | - Joanna R. Freeland
- Department of Biology, Trent University, Peterborough, Ontario K9J 7B8, Canada; E-Mail:
| |
Collapse
|
35
|
Yu F, Wang BH, Feng SP, Wang JY, Li WG, Wu YT. Development, characterization, and cross-species/genera transferability of SSR markers for rubber tree (Hevea brasiliensis). PLANT CELL REPORTS 2011; 30:335-44. [PMID: 20960206 DOI: 10.1007/s00299-010-0908-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Revised: 06/18/2010] [Accepted: 07/25/2010] [Indexed: 05/05/2023]
Abstract
Genomic simple sequence repeat (SSR) markers are particularly valuable in studies of genetic diversity, evolution, genetic linkage map construction, quantitative trait loci tagging, and marker-assisted selection because of their multi-allelic nature, reproducibility, co-dominant inheritance, high abundance, and extensive genome coverage. The traditional methods of SSR marker development, such as genomic-SSR hybrid screening and microsatellite enrichment, have the disadvantages of high cost and complex operation. The selectively amplified microsatellite method is less costly and highly efficient as well as being simple and convenient. In this study, 252 sequences with SSRs were cloned from the rubber tree (Hevea brasiliensis) genome from which 258 SSR loci were obtained. The average repeat number was six. There were only 10 (3.9%) mononucleotide, trinucleotide, and pentanucleotide repeats, whereas the remaining 248 (96.1%) were dinucleotide repeats, including 128 (49.6%) GT/CA repeats, 118 (45.7%) GA/CT repeats, and 2 (0.8%) AT/TA repeats. A total of 126 primer pairs (see ESM) were successfully designed of which 36 primer pairs generated polymorphic products from 12 accessions of the cultivated species, 4 related species, and 3 species of the family Euphorbiaceae. In addition, investigations based on four genomic SSRs (GAR4, ACR22, CTR25, and GTR28) by cloning and sequencing provided evidence for cross-species/genera applicability, and homologous sequences were obtained from the rubber tree and Euphorbiaceae. Further analysis about the variation of the flanking regions of the four markers was carried out.
Collapse
Affiliation(s)
- Fei Yu
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science, 4 Xueyuan Street, Longhua District, Haikou, 571101 Hainan, People's Republic of China
| | | | | | | | | | | |
Collapse
|
36
|
Prentis PJ, Woolfit M, Thomas-Hall SR, Ortiz-Barrientos D, Pavasovic A, Lowe AJ, Schenk PM. Massively parallel sequencing and analysis of expressed sequence tags in a successful invasive plant. ANNALS OF BOTANY 2010; 106:1009-17. [PMID: 20929896 PMCID: PMC2990670 DOI: 10.1093/aob/mcq201] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND Invasive species pose a significant threat to global economies, agriculture and biodiversity. Despite progress towards understanding the ecological factors associated with plant invasions, limited genomic resources have made it difficult to elucidate the evolutionary and genetic factors responsible for invasiveness. This study presents the first expressed sequence tag (EST) collection for Senecio madagascariensis, a globally invasive plant species. METHODS We used pyrosequencing of one normalized and two subtractive libraries, derived from one native and one invasive population, to generate an EST collection. ESTs were assembled into contigs, annotated by BLAST comparison with the NCBI non-redundant protein database and assigned gene ontology (GO) terms from the Plant GO Slim ontologies. KEY RESULTS Assembly of the 221,746 sequence reads resulted in 12,442 contigs. Over 50 % (6183) of 12,442 contigs showed significant homology to proteins in the NCBI database, representing approx. 4800 independent transcripts. The molecular transducer GO term was significantly over-represented in the native (South African) subtractive library compared with the invasive (Australian) library. Based on NCBI BLAST hits and literature searches, 40 % of the molecular transducer genes identified in the South African subtractive library are likely to be involved in response to biotic stimuli, such as fungal, bacterial and viral pathogens. CONCLUSIONS This EST collection is the first representation of the S. madagascariensis transcriptome and provides an important resource for the discovery of candidate genes associated with plant invasiveness. The over-representation of molecular transducer genes associated with defence responses in the native subtractive library provides preliminary support for aspects of the enemy release and evolution of increased competitive ability hypotheses in this successful invasive. This study highlights the contribution of next-generation sequencing to better understanding the molecular mechanisms underlying ecological hypotheses that are important in successful plant invasions.
Collapse
Affiliation(s)
- Peter J Prentis
- Australian Centre for Evolutionary Biology and Biodiversity, School of Earth and Environmental Sciences, University of Adelaide, Adelaide, SA 5005, Australia.
| | | | | | | | | | | | | |
Collapse
|
37
|
Gong YM, Xu SC, Mao WH, Hu QZ, Zhang GW, Ding J, Li YD. Developing new SSR markers from ESTs of pea (Pisum sativum L.). J Zhejiang Univ Sci B 2010; 11:702-7. [PMID: 20803774 PMCID: PMC2932880 DOI: 10.1631/jzus.b1000004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2010] [Accepted: 04/16/2010] [Indexed: 11/11/2022]
Abstract
The development of expressed sequence tags (ESTs) from pea has provided a useful source for mining novel simple sequence repeat (SSR) markers. In the present research, in order to find EST-derived SSR markers, 18 552 pea ESTs from the National Center for Biotechnology Information (NCBI) database were downloaded and assembled into 10 086 unigenes. A total of 586 microsatellites in 530 unigenes were identified, indicating that merely 5.25% of sequences contained SSRs. The most abundant SSRs within pea were tri-nucleotide repeat motifs, and among all the tri-nucleotide repeats, the motif GAA was the most abundant type. In total, 49 SSRs were used for primer design. EST-SSR loci were subsequently screened on 10 widely adapted varieties in China. Of these, nine loci showed polymorphic profiles that revealed two to three alleles per locus. The polymorphism information content value ranged from 0.18 to 0.58 with an average of 0.41. Furthermore, transferable analysis revealed that some of these loci showed transferability to faba bean. Because of their polymorphism and transferability, these nine novel EST-SSRs will be valuable tools for marker-assisted breeding and comparative mapping of pea in the future.
Collapse
Affiliation(s)
- Ya-ming Gong
- Institute of Vegetables, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Sheng-chun Xu
- Institute of Vegetables, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Wei-hua Mao
- Center of Analysis and Measurement, Zhejiang University, Hangzhou 310029, China
| | - Qi-zan Hu
- Institute of Vegetables, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Gu-wen Zhang
- Institute of Vegetables, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Ju Ding
- Institute of Vegetables, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Ya-dan Li
- Center of Analysis and Measurement, Zhejiang University, Hangzhou 310029, China
| |
Collapse
|
38
|
Marquez-Lema A, Velasco L, Perez-Vich B. Transferability, amplification quality, and genome specificity of microsatellites in Brassica carinata and related species. J Appl Genet 2010; 51:123-31. [PMID: 20453299 DOI: 10.1007/bf03195720] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
No information is available on the transferability and amplification quality of microsatellite (SSR) markers of the public domain in Brassica carinata A. Braun. The objective of the presented research was to study the amplification of a set of 73 SSRs from B. nigra (L.) Koch and B. napus L. in B. carinata, and to compare the results with those obtained in the amplification of the same markers in other Brassica species of the U triangle. This set of SSRs from B. nigra (B genome) and B. napus (AC genome) allows the identification of the 3 basic genomes of the Brassica species tested. 94.3% of the SSR markers from B. nigra and 97.4% of those from B. napus amplified SSR-specific products in B. carinata. Very high-quality amplification with a strong signal and easy scoring in B. carinata was recorded for 52.8% of the specific loci from B. nigra SSRs and 59.3% of the specific loci from B. napus SSRs, compared to 66.7% in B. nigra and 62.8% in B. napus. Genome specificity and amplification quality of B. nigra and B. napus SSR markers in the 6 species under study is reported. High-quality transferable SSR markers provide an efficient and cost-effective platform to advance in molecular research in B. carinata.
Collapse
Affiliation(s)
- A Marquez-Lema
- Institute for Sustainable Agriculture (CSIC), Córdoba, Spain
| | | | | |
Collapse
|
39
|
Datta S, Mahfooz S, Singh P, Choudhary AK, Singh F, Kumar S. Cross-genera amplification of informative microsatellite markers from common bean and lentil for the assessment of genetic diversity in pigeonpea. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2010; 16:123-134. [PMID: 23572962 PMCID: PMC3550605 DOI: 10.1007/s12298-010-0014-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A total of 24 pigeonpea (Cajanus cajan L. Millspaugh) cultivars representing different maturity groups were evaluated for genetic diversity analysis using 10 pigeonpea specific and 66 cross-genera microsatellite markers. Of the cross-genera microsatellite markers, only 12 showed amplification. A total of 45 alleles were amplified by the 22 markers. Nine markers showed 100 % polymorphism. Markers Lc 14, BMd 48 and CCB 9 amplified maximum number (5) of alleles each. One genotype specific unique band in Pusa 9 was generated by markers CCB 8. Maximum genetic diversity (74 %) was observed between cultivars MA 3 and CO 6, while the minimum diversity (12 %) was observed between NDA 1 and DA 11. The average diversity among the cultivars was estimated to be 45.6 %. SSR primers from pigeonpea were found to be more polymorphic (37 %) as compared to common bean and lentil markers. The arithmetic mean heterozygosity (Hav) and marker index (MI) were found to be 0.014 and 0.03, respectively, indicating the potential of common bean and lentil microsatellite markers for genetic mapping, diversity analysis and genotyping in Cajanus.
Collapse
Affiliation(s)
- Subhojit Datta
- />Crop Improvement Division, Indian Institute of Pulses Research, Kanpur, Uttar Pradesh 208 024 India
| | - Sahil Mahfooz
- />Crop Improvement Division, Indian Institute of Pulses Research, Kanpur, Uttar Pradesh 208 024 India
| | - Pallavi Singh
- />Crop Improvement Division, Indian Institute of Pulses Research, Kanpur, Uttar Pradesh 208 024 India
| | - A. K. Choudhary
- />Crop Improvement Division, Indian Institute of Pulses Research, Kanpur, Uttar Pradesh 208 024 India
| | - Farindra Singh
- />Crop Improvement Division, Indian Institute of Pulses Research, Kanpur, Uttar Pradesh 208 024 India
| | - Shiv Kumar
- />Crop Improvement Division, Indian Institute of Pulses Research, Kanpur, Uttar Pradesh 208 024 India
- />International Center for Agricultural Research in the Dry Areas, Aleppo, Syria
| |
Collapse
|
40
|
HONG YB, CHEN XP, LIU HY, ZHOU GY, LI SX, WEN SJ, LIANG XQ. Development and Utilizaiton of Orthologous SSR Markers in Arachis through Soybean ( Glycine max) EST. ZUOWU XUEBAO 2010. [DOI: 10.3724/sp.j.1006.2010.00410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Gupta S, Prasad M. Development and characterization of genic SSR markers in Medicago truncatula and their transferability in leguminous and non-leguminous species. Genome 2009; 52:761-71. [PMID: 19935924 DOI: 10.1139/g09-051] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Expressed sequence tag (EST)-derived simple sequence repeat (eSSR) markers are important resources for gene discovery and comparative mapping aimed at crop improvement. In this study, we developed eSSR markers for Medicago truncatula and assessed their cross-species transferability. We detected 36,847 non-redundant sequences ("unigenes") from 198,642 M. truncatula EST sequences. Mining of microsatellites from the 36,847 unigene sequences (representing approximately 25.8 Mb) revealed 14,637 eSSRs in 11,750 SSR-containing ESTs, and primer pairs were successfully designed for 4,636 (39.5%). Of the 14 637 eSSRs, 82.6% were mononucleotide repeats and the rest (in descending order of abundance) were tri-, di-, penta-, and tetranucleotide repeats. When less stringent SSR detection criteria were used, the frequency of dinucleotide repeat motifs increased more than twofold, and the frequencies of di- (11%) and trinucleotide motifs (10.6%) were almost equal. This demonstrates that the eSSR frequency and distribution were related to the choice of search criteria. Forty-one randomly selected primer pairs were validated, and their transferability in three leguminous and three non-leguminous species was assessed. The markers showed a high level of transferability in the leguminous (53%-71%) and non-leguminous (33%-44%) species. The validation studies thus demonstrate the utility of the Medicago eSSRs in assessing genomic relationships in both leguminous and non-leguminous species.
Collapse
Affiliation(s)
- Sarika Gupta
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110 067, India
| | | |
Collapse
|
42
|
Smýkal P, Kalendar R, Ford R, Macas J, Griga M. Evolutionary conserved lineage of Angela-family retrotransposons as a genome-wide microsatellite repeat dispersal agent. Heredity (Edinb) 2009; 103:157-67. [PMID: 19384338 DOI: 10.1038/hdy.2009.45] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A detailed examination of 45 pea (Pisum sativum L.) simple sequence repeat (SSR) loci revealed that 21 of them included homologous sequences corresponding to the long terminal repeat (LTR) of a novel retrotransposon. Further investigation, including full-length sequencing, led to its classification as an RLC-Angela-family-FJ434420 element. The LTR contained a variable region ranging from a simple TC repeat (TC)(11) to more complex repeats of TC/CA, (TC)(12-30), (CA)(18-22) and was up to 146 bp in length. These elements are the most abundant Ty1/copia retrotransposons identified in the pea genome and also occur in other legume species. It is interesting that analysis of 63 LTR-derived sequences originating from 30 legume species showed high phylogenetic conservation in their sequence, including the position of the variable SSR region. This extraordinary conservancy led us to the proposition of a new lineage, named MARTIANS, within the Angela family. Similar LTR structures and partial sequence similarities were detected in more distant members of this Angela family, the barley BARE-1 and rice RIRE-1 elements. Comparison of the LTR sequences from pea and Medicago truncatula elements indicated that microsatellites arise through the expansion of a pre-existing repeat motif. Thus, the presence of an SSR region within the LTR seems to be a typical feature of this MARTIANS lineage, and the evidence gathered from a wide range of species suggests that these elements may facilitate amplification and genome-wide dispersal of associated SSR sequences. The implications of this finding regarding the evolution of SSRs within the genome, as well as their utilization as molecular markers, are discussed.
Collapse
Affiliation(s)
- P Smýkal
- Agritec Plant Research Ltd, Plant Biotechnology Department, Sumperk, Czech Republic.
| | | | | | | | | |
Collapse
|
43
|
Mishra RK, Kumar A, Chaudhary S, Kumar S. Mapping of the multifoliate pinna (mfp) leaf-blade morphology mutation in grain pea Pisum sativum. J Genet 2009; 88:227-32. [PMID: 19700861 DOI: 10.1007/s12041-009-0031-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The multifoliate pinna (mfp) mutation alters the leaf-blade architecture of pea, such that simple tendril pinnae of distal domain are replaced by compound pinna blades of tendrilled leaflets in mfp homozygotes. The MFP locus was mapped with reference to DNA markers using F2 and F2:5 RIL as mapping populations. Among 205 RAPD, 27 ISSR and 35 SSR markers that demonstrated polymorphism between the parents of mapping populations, three RAPD markers were found linked to the MFP locus by bulk segregant analyses on mfp/mfp and MFP/MFP bulks assembled from the F2:5 population. The segregational analysis of mfp and 267 DNA markers on 96 F2 plants allowed placement of 26 DNA markers with reference to MFP on a linkage group. The existence of common markers on reference genetic maps and MFP linkage group developed here showed that MFP is located on linkage group IV of the consensus genetic map of pea.
Collapse
|
44
|
Young ND, Udvardi M. Translating Medicago truncatula genomics to crop legumes. CURRENT OPINION IN PLANT BIOLOGY 2009; 12:193-201. [PMID: 19162532 DOI: 10.1016/j.pbi.2008.11.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 11/18/2008] [Accepted: 11/20/2008] [Indexed: 05/20/2023]
Abstract
Genomic resources developed in the model legume, Medicago truncatula, have the potential to accelerate practical advances in crop legumes. M. truncatula is closely related to many economically important legumes, frequently displaying genome-scale synteny. Translating genome data from M. truncatula should be highly effective in marker development, gene discovery, and positional cloning in crop legumes. The M. truncatula genome sequence also provides valuable insights about gene families of practical importance, especially those that are legume-specific. The M. truncatula genome sequence should also simplify the assembly of next-generation sequence data in closely related taxa, especially alfalfa. Genomic resources, such as whole-genome arrays, make it possible to pursue detailed questions about gene expression in both M. truncatula and related crop species, while tagged mutant populations simplify the process of determining gene function.
Collapse
Affiliation(s)
- Nevin Dale Young
- Department of Plant Pathology, 495 Borlaug Hall, University of Minnesota, St. Paul, MN 55108, USA.
| | | |
Collapse
|
45
|
Simko I. Development of EST-SSR markers for the study of population structure in lettuce (Lactuca sativa L.). J Hered 2009; 100:256-62. [PMID: 18796462 DOI: 10.1093/jhered/esn072] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A set of 61 simple sequence repeat (SSR) markers was developed from the 19,523 Lactuca sativa and Lactuca serriola unigenes. Approximately 4.5% of the unigenes contained a perfect SSR at least 20 bp long, corresponding to roughly 1 perfect SSR per 14.7 kb. Marker polymorphism was tested on a set comprising 96 accessions representing all major horticultural types and 3 wild species (L. serriola, Lactuca saligna, and Lactuca virosa). Both the average marker heterozygosity (UHe = 0.32) and the number of different alleles per locus (Na = 3.56) were significantly reduced in expressed sequence tag (EST)-SSRs as compared with anonymous SSRs (UHe = 0.59, Na = 5.53). Marker transfer rate to the wild species corresponded to the decreasing sexual compatibility with L. sativa and was higher for EST-SSRs (100% L. serriola, 87% L. saligna, and 75% L. virosa) than for anonymous SSRs (93%, 66%, and 42%, respectively). Assessment of population structure among 90 L. sativa cultivars with SSRs was in good agreement with classification into the horticultural types. The average marker heterozygosity was smallest in iceberg (0.097), Latin (0.140), and romaine-type (0.151) cultivars while highest in leaf (green leaf 0.208 and red leaf 0.240) lettuces. The level of marker heterozygosity is in accord with morphological variability observed in different horticultural types.
Collapse
Affiliation(s)
- Ivan Simko
- USDA-ARS, Crop Improvement and Protection Research Unit, 1636 East Alisal Street, Salinas, CA 93905, USA.
| |
Collapse
|
46
|
Pilet-Nayel ML, Prospéri JM, Hamon C, Lesné A, Lecointe R, Le Goff I, Hervé M, Deniot G, Delalande M, Huguet T, Jacquet C, Baranger A. AER1, a major gene conferring resistance to Aphanomyces euteiches in Medicago truncatula. PHYTOPATHOLOGY 2009; 99:203-8. [PMID: 19159312 DOI: 10.1094/phyto-99-2-0203] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Aphanomyces euteiches is a major soilborne oomycete pathogen that infects various legume species, including pea and alfalfa. The model legume Medicago truncatula has recently emerged as a valuable genetic system for understanding the genetic basis of resistance to A. euteiches in leguminous crops. The objective of this study was to identify genetic determinants of resistance to a broad host-range pea-infecting strain of A. euteiches in M. truncatula. Two M. truncatula segregating populations of 178 F(5) recombinant inbred lines and 200 F(3) families from the cross F83005.5 (susceptible) x DZA045.5 (resistant) were screened for resistance to A. euteiches. Phenotypic distributions observed suggested a dominant monogenic control of resistance. A major locus associated with resistance to A. euteiches, namely AER1, was mapped by bulk segregant analysis to a terminal end of chromosome 3 in M. truncatula and explained 88% of the phenotypic variation. AER1 was identified in a resistance-gene-rich region, where resistance gene analogs and genes associated with disease resistance phenotypes have been identified. Discovery of AER1 opens up new prospects for improving resistance to A. euteiches in cultivated legumes using a comparative genomics approach.
Collapse
Affiliation(s)
- M-L Pilet-Nayel
- INRA, Agrocampus Ouest, Université Rennes I, UMR118, Amélioration des Plantes et Biotechnologies Végétales, Plant Genetics and Biotechnology, OUEST-genopole, Domaine de la Motte, BP35327, 35653 Le Rheu, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Choudhary S, Sethy NK, Shokeen B, Bhatia S. Development of chickpea EST-SSR markers and analysis of allelic variation across related species. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 118:591-608. [PMID: 19020854 DOI: 10.1007/s00122-008-0923-z] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Accepted: 10/24/2008] [Indexed: 05/23/2023]
Abstract
Despite chickpea being the third important grain legume, there is a limited availability of genomic resources, especially of the expressed sequence tag (EST)-based markers. In this study, we generated 822 chickpea ESTs from immature seeds as well as exploited 1,309 ESTs from the chickpea database, thus utilizing a total of 2,131 EST sequences for development of functional EST-SSR markers. Two hundred and forty-six simple sequence repeat (SSR) motifs were identified from which 183 primer pairs were designed and 60 validated as functional markers. Genetic diversity analysis across 30 chickpea accessions revealed ten markers to be polymorphic producing a total of 29 alleles and an observed heterozygosity average of 0.16 thereby exhibiting low levels of intra-specific polymorphism. However, the markers exhibited high cross-species transferability ranging from 68.3 to 96.6% across the six annual Cicer species and from 29.4 to 61.7% across the seven legume genera. Sequence analysis of size variant amplicons from various species revealed that size polymorphism was due to multiple events such as copy number variation, point mutations and insertions/deletions in the microsatellite repeat as well as in the flanking regions. Interestingly, a wide prevalence of crossability-group-specific sequence variations were observed among Cicer species that were phylogenetically informative. The neighbor joining dendrogram clearly separated the chickpea cultivars from the wild Cicer and validated the proximity of C. judaicum with C. pinnatifidum. Hence, this study for the first time provides an insight into the distribution of SSRs in the chickpea transcribed regions and also demonstrates the development and utilization of genic-SSRs. In addition to proving their suitability for genetic diversity analysis, their high rates of transferability also proved their potential for comparative genomic studies and for following gene introgressions and evolution in wild species, which constitute the valuable secondary genepool in chickpea.
Collapse
Affiliation(s)
- Shalu Choudhary
- National Institute of Plant Genome Research, Post Box Number 10531, Aruna Asaf Ali Marg, Jawaharlal Nehru University Campus, New Delhi, 110067, India
| | | | | | | |
Collapse
|
48
|
Morphological and microsatellite diversity associated with ecological factors in natural populations of Medicago laciniata Mill. (Fabaceae). J Genet 2009; 87:241-55. [PMID: 19147909 DOI: 10.1007/s12041-008-0038-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Genetic variability in 10 natural Tunisian populations of Medicago laciniata were analysed using 19 quantitative traits and 12 polymorphic microsatellite loci. A large degree of genetic variability within-populations and among-populations was detected for both quantitative characters and molecular markers. High genetic differentiation among populations for quantitative traits was seen, with Q(ST) = 0.47, and F(ST) = 0.47 for microsatellite markers. Several quantitative traits displayed no statistical difference in the levels of Q(ST) and F(ST). Further, significant correlations between quantitative traits and eco-geographical factors suggest that divergence in the traits among populations may track environmental differences. There was no significant correlation between genetic variability at quantitative traits and microsatellite markers within populations. The site-of-origin of eco-geographical factors explain between 18.13% and 23.40% of genetic variance among populations at quantitative traits and microsatellite markers, respectively. The environmental factors that most influence variation in measured traits among populations are assimilated phosphorus (P(2)0(5)) and mean annual rainfall, followed by climate and soil texture, altitude and organic matter. Significant associations between eco-geographical factors and gene diversity, He, were established in five microsatellite loci suggesting that these simple sequence repeats (SSRs) are not necessarily biologically neutral.
Collapse
|
49
|
Wang S, Zhang L, Matz M. Microsatellite characterization and marker development from public EST and WGS databases in the reef-building coral Acropora millepora (Cnidaria, Anthozoa, Scleractinia). J Hered 2008; 100:329-37. [PMID: 19043068 DOI: 10.1093/jhered/esn100] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mining for microsatellites (also called simple sequence repeats [SSRs]) in public sequence databases of a common Indo-Pacific coral Acropora millepora identified 191 SSRs from 10 258 expressed sequence tag (EST) and 618 SSRs from 14 625 whole-genome shotgun (WGS) sequences. In contrast to other animals, trinucleotide repeats, rather than dinucleotide repeats, are dominant in the WGS-SSRs, and AAT is the most frequent trinucleotide motif in EST-SSRs. We successfully developed 40 polymorphic markers from EST-SSRs and WGS-SSRs. Both EST- and WGS-SSRs show high levels of polymorphism within corals from the same reef patch. Interestingly, markers WGS079 and WGS227 revealed SSR duplications in a few individuals, suggesting recent duplication events. Genotypic linkage disequilibrium was identified in 5 pairs of SSR markers, which will be invaluable for high-resolution studies of genetic admixture in natural populations of A. millepora. Transferability analysis showed that 25 of these markers can be successfully amplified in one of the most ubiquitous Indo-Pacific corals Acropora hyacinthus. The marker collection reported here is the largest ever developed for any reef-building coral. It holds great potential for addressing coral reef connectivity across the Indo-Pacific with an unprecedented precision, especially taking into account the cross-species transferability of a substantial number of markers.
Collapse
Affiliation(s)
- Shi Wang
- University of Texas at Austin, 78712, USA.
| | | | | |
Collapse
|
50
|
Senthilvel S, Jayashree B, Mahalakshmi V, Kumar PS, Nakka S, Nepolean T, Hash CT. Development and mapping of simple sequence repeat markers for pearl millet from data mining of expressed sequence tags. BMC PLANT BIOLOGY 2008; 8:119. [PMID: 19038016 PMCID: PMC2632669 DOI: 10.1186/1471-2229-8-119] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 11/27/2008] [Indexed: 05/21/2023]
Abstract
BACKGROUND Pearl millet [Pennisetum glaucum (L.) R. Br.] is a staple food and fodder crop of marginal agricultural lands of sub-Saharan Africa and the Indian subcontinent. It is also a summer forage crop in the southern USA, Australia and Latin America, and is the preferred mulch in Brazilian no-till soybean production systems. Use of molecular marker technology for pearl millet genetic improvement has been limited. Progress is hampered by insufficient numbers of PCR-compatible co-dominant markers that can be used readily in applied breeding programmes. Therefore, we sought to develop additional SSR markers for the pearl millet research community. RESULTS A set of new pearl millet SSR markers were developed using available sequence information from 3520 expressed sequence tags (ESTs). After clustering, unigene sequences (2175 singlets and 317 contigs) were searched for the presence of SSRs. We detected 164 sequences containing SSRs (at least 14 bases in length), with a density of one per 1.75 kb of EST sequence. Di-nucleotide repeats were the most abundant followed by tri-nucleotide repeats. Ninety primer pairs were designed and tested for their ability to detect polymorphism across a panel of 11 pairs of pearl millet mapping population parental lines. Clear amplification products were obtained for 58 primer pairs. Of these, 15 were monomorphic across the panel. A subset of 21 polymorphic EST-SSRs and 6 recently developed genomic SSR markers were mapped using existing mapping populations. Linkage map positions of these EST-SSR were compared by homology search with mapped rice genomic sequences on the basis of pearl millet-rice synteny. Most new EST-SSR markers mapped to distal regions of linkage groups, often to previous gaps in these linkage maps. These new EST-SSRs are now are used by ICRISAT in pearl millet diversity assessment and marker-aided breeding programs. CONCLUSION This study has demonstrated the potential of EST-derived SSR primer pairs in pearl millet. As reported for other crops, EST-derived SSRs provide a cost-saving marker development option in pearl millet. Resources developed in this study have added a sizeable number of useful SSRs to the existing repertoire of circa 100 genomic SSRs that were previously available to pearl millet researchers.
Collapse
Affiliation(s)
- S Senthilvel
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh, 502 324, India
| | - B Jayashree
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh, 502 324, India
| | - V Mahalakshmi
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh, 502 324, India
| | - P Sathish Kumar
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh, 502 324, India
| | - S Nakka
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh, 502 324, India
| | - T Nepolean
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh, 502 324, India
| | - CT Hash
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh, 502 324, India
| |
Collapse
|