1
|
Inturrisi F, Bayer PE, Cantila AY, Tirnaz S, Edwards D, Batley J. In silico integration of disease resistance QTL, genes and markers with the Brassica juncea physical map. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:37. [PMID: 37309382 PMCID: PMC10248627 DOI: 10.1007/s11032-022-01309-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 06/09/2022] [Indexed: 06/14/2023]
Abstract
Brassica juncea (AABB), Indian mustard, is a source of disease resistance genes for a wide range of pathogens. The availability of reference genome sequences for B. juncea has made it possible to characterise the genomic structure and distribution of these disease resistance genes. Potentially functional disease resistance genes can be identified by co-localization with genetically mapped disease resistance quantitative trait loci (QTL). Here we identify and characterise disease resistance gene analogs (RGAs), including nucleotide-binding site-leucine-rich repeat (NLR), receptor-like kinase (RLK) and receptor-like protein (RLP) classes, and investigate their association with disease resistance QTL intervals. The molecular genetic marker sequences for four white rust (Albugo candida) disease resistance QTL, six blackleg (Leptosphaeria maculans) disease resistance QTL and BjCHI1, a gene cloned from B. juncea for hypocotyl rot disease, were extracted from previously published studies and used to compare with candidate RGAs. Our results highlight the complications for the identification of functional resistance genes, including the duplicated appearance of genetic markers for several resistance loci, including Ac2(t), AcB1-A4.1, AcB1-A5.1, Rlm6 and PhR2 in both the A and B genomes, due to the presence of homoeologous regions. Furthermore, the white rust loci, Ac2(t) and AcB1-A4.1, mapped to the same position on chromosome A04 and may be different alleles of the same gene. Despite these challenges, a total of nine candidate genomic regions hosting 14 RLPs, 28 NLRs and 115 RLKs were identified. This study facilitates the mapping and cloning of functional resistance genes for applications in crop improvement programs. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01309-5.
Collapse
Affiliation(s)
- Fabian Inturrisi
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA Australia
| | - Philipp E. Bayer
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA Australia
| | - Aldrin Y. Cantila
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA Australia
| | - Soodeh Tirnaz
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA Australia
| | - David Edwards
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA Australia
| | - Jacqueline Batley
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA Australia
| |
Collapse
|
2
|
Mining of Cloned Disease Resistance Gene Homologs (CDRHs) in Brassica Species and Arabidopsis thaliana. BIOLOGY 2022; 11:biology11060821. [PMID: 35741342 PMCID: PMC9220128 DOI: 10.3390/biology11060821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/15/2022] [Accepted: 05/24/2022] [Indexed: 01/23/2023]
Abstract
Simple Summary Developing cultivars with resistance genes (R genes) is an effective strategy to support high yield and quality in Brassica crops. The availability of clone R gene and genomic sequences in Brassica species and Arabidopsis thaliana provide the opportunity to compare genomic regions and survey R genes across genomic databases. In this paper, we aim to identify genes related to cloned genes through sequence identity, providing a repertoire of species-wide related R genes in Brassica crops. The comprehensive list of candidate R genes can be used as a reference for functional analysis. Abstract Various diseases severely affect Brassica crops, leading to significant global yield losses and a reduction in crop quality. In this study, we used the complete protein sequences of 49 cloned resistance genes (R genes) that confer resistance to fungal and bacterial diseases known to impact species in the Brassicaceae family. Homology searches were carried out across Brassica napus, B. rapa, B. oleracea, B. nigra, B. juncea, B. carinata and Arabidopsis thaliana genomes. In total, 660 cloned disease R gene homologs (CDRHs) were identified across the seven species, including 431 resistance gene analogs (RGAs) (248 nucleotide binding site-leucine rich repeats (NLRs), 150 receptor-like protein kinases (RLKs) and 33 receptor-like proteins (RLPs)) and 229 non-RGAs. Based on the position and distribution of specific homologs in each of the species, we observed a total of 87 CDRH clusters composed of 36 NLR, 16 RLK and 3 RLP homogeneous clusters and 32 heterogeneous clusters. The CDRHs detected consistently across the seven species are candidates that can be investigated for broad-spectrum resistance, potentially providing resistance to multiple pathogens. The R genes identified in this study provide a novel resource for the future functional analysis and gene cloning of Brassicaceae R genes towards crop improvement.
Collapse
|
3
|
Raman H, Raman R, Qiu Y, Zhang Y, Batley J, Liu S. The Rlm13 Gene, a New Player of Brassica napus- Leptosphaeria maculans Interaction Maps on Chromosome C03 in Canola. FRONTIERS IN PLANT SCIENCE 2021; 12:654604. [PMID: 34054900 PMCID: PMC8150007 DOI: 10.3389/fpls.2021.654604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/25/2021] [Indexed: 05/24/2023]
Abstract
Canola exhibits an extensive genetic variation for resistance to blackleg disease, caused by the fungal pathogen Leptosphaeria maculans. Despite the identification of several Avr effectors and R (race-specific) genes, specific interactions between Avr-R genes are not yet fully understood in the Brassica napus-L. maculans pathosystem. In this study, we investigated the genetic basis of resistance in an F2 : 3 population derived from Australian canola varieties CB-Telfer (Rlm4)/ATR-Cobbler (Rlm4) using a single-spore isolate of L. maculans, PHW1223. A genetic linkage map of the CB-Telfer/ATR-Cobbler population was constructed using 7,932 genotyping-by-sequencing-based DArTseq markers and subsequently utilized for linkage and haplotype analyses. Genetic linkage between DArTseq markers and resistance to PHW1223 isolate was also validated using the B. napus 60K Illumina Infinium array. Our results revealed that a major locus for resistance, designated as Rlm13, maps on chromosome C03. To date, no R gene for resistance to blackleg has been reported on the C subgenome in B. napus. Twenty-four candidate R genes were predicted to reside within the quantitative trait locus (QTL) region. We further resequenced both the parental lines of the mapping population (CB-Telfer and ATR-Cobbler, > 80 × coverage) and identified several structural sequence variants in the form of single-nucleotide polymorphisms (SNPs), insertions/deletions (InDels), and presence/absence variations (PAVs) near Rlm13. Comparative mapping revealed that Rlm13 is located within the homoeologous A03/C03 region in ancestral karyotype block "R" of Brassicaceae. Our results provide a "target" for further understanding the Avr-Rlm13 gene interaction as well as a valuable tool for increasing resistance to blackleg in canola germplasm.
Collapse
Affiliation(s)
- Harsh Raman
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
| | - Rosy Raman
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
| | - Yu Qiu
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
| | - Yuanyuan Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | - Shengyi Liu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
4
|
Singh KP, Kumari P, Rai PK. Current Status of the Disease-Resistant Gene(s)/QTLs, and Strategies for Improvement in Brassica juncea. FRONTIERS IN PLANT SCIENCE 2021; 12:617405. [PMID: 33747001 PMCID: PMC7965955 DOI: 10.3389/fpls.2021.617405] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/08/2021] [Indexed: 05/15/2023]
Abstract
Brassica juncea is a major oilseed crop in tropical and subtropical countries, especially in south-east Asia like India, China, Bangladesh, and Pakistan. The widespread cultivation of genetically similar varieties tends to attract fungal pathogens which cause heavy yield losses in the absence of resistant sources. The conventional disease management techniques are often expensive, have limited efficacy, and cause additional harm to the environment. A substantial approach is to identify and use of resistance sources within the Brassica hosts and other non-hosts to ensure sustainable oilseed crop production. In the present review, we discuss six major fungal pathogens of B. juncea: Sclerotinia stem rot (Sclerotinia sclerotiorum), Alternaria blight (Alternaria brassicae), White rust (Albugo candida), Downy mildew (Hyaloperonospora parasitica), Powdery mildew (Erysiphe cruciferarum), and Blackleg (Leptoshaeria maculans). From discussing studies on pathogen prevalence in B. juncea, the review then focuses on highlighting the resistance sources and quantitative trait loci/gene identified so far from Brassicaceae and non-filial sources against these fungal pathogens. The problems in the identification of resistance sources for B. juncea concerning genome complexity in host subpopulation and pathotypes were addressed. Emphasis has been laid on more elaborate and coordinated research to identify and deploy R genes, robust techniques, and research materials. Examples of fully characterized genes conferring resistance have been discussed that can be transformed into B. juncea using advanced genomics tools. Lastly, effective strategies for B. juncea improvement through introgression of novel R genes, development of pre-breeding resistant lines, characterization of pathotypes, and defense-related secondary metabolites have been provided suggesting the plan for the development of resistant B. juncea.
Collapse
Affiliation(s)
- Kaushal Pratap Singh
- ICAR-Directorate of Rapeseed-Mustard Research, Bharatpur, India
- *Correspondence: Kaushal Pratap Singh,
| | - Preetesh Kumari
- Genetics Division, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | |
Collapse
|
5
|
Ferdous MJ, Hossain MR, Park JI, Robin AHK, Jesse DMI, Jung HJ, Kim HT, Nou IS. Inheritance Pattern and Molecular Markers for Resistance to Blackleg Disease in Cabbage. PLANTS (BASEL, SWITZERLAND) 2019; 8:plants8120583. [PMID: 31817976 PMCID: PMC6963615 DOI: 10.3390/plants8120583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/21/2019] [Accepted: 12/06/2019] [Indexed: 05/06/2023]
Abstract
The inheritance and causal loci for resistance to blackleg, a devastating disease of Brassicaceous crops, are yet to be known in cabbage (Brassica oleracea L.). Here, we report the pattern of inheritance and linked molecular marker for this trait. A segregating BC1 population consisting of 253 plants was raised from resistant and susceptible parents, L29 (♀) and L16 (♂), respectively. Cotyledon resistance bioassay of BC1 population, measured based on a scale of 0-9 at 12 days after inoculation with Leptosphaeria maculans isolate 03-02 s, revealed the segregation of resistance and ratio, indicative of dominant monogenic control of the trait. Investigation of potential polymorphism in the previously identified differentially expressed genes within the collinear region of 'B. napus blackleg resistant loci Rlm1' in B. oleracea identified two insertion/deletion (InDel) mutations in the intron and numerous single nucleotide polymorphisms (SNPs) throughout the LRR-RLK gene Bol040029, of which six SNPs in the first exon caused the loss of two LRR domains in the susceptible line. An InDel marker, BLR-C-InDel based on the InDel mutations, and a high resolution melting (HRM) marker, BLR-C-2808 based on the SNP C2808T in the second exon were developed, which predicated the resistance status of the BC1 population with 80.24%, and of 24 commercial inbred lines with 100% detection accuracy. This is the first report of inheritance and molecular markers linked with blackleg resistance in cabbage. This study will enhance our understanding of the trait, and will be helpful in marker assisted breeding aiming at developing resistant cabbage varieties.
Collapse
Affiliation(s)
- Mostari Jahan Ferdous
- Department of Horticulture, Sunchon National University, Suncheon, Jeonnam 57922, Korea; (M.J.F.); (M.R.H.); (J.-I.P.); (A.H.K.R.); (D.M.I.J.); (H.-J.J.); (H.-T.K.)
| | - Mohammad Rashed Hossain
- Department of Horticulture, Sunchon National University, Suncheon, Jeonnam 57922, Korea; (M.J.F.); (M.R.H.); (J.-I.P.); (A.H.K.R.); (D.M.I.J.); (H.-J.J.); (H.-T.K.)
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Jong-In Park
- Department of Horticulture, Sunchon National University, Suncheon, Jeonnam 57922, Korea; (M.J.F.); (M.R.H.); (J.-I.P.); (A.H.K.R.); (D.M.I.J.); (H.-J.J.); (H.-T.K.)
| | - Arif Hasan Khan Robin
- Department of Horticulture, Sunchon National University, Suncheon, Jeonnam 57922, Korea; (M.J.F.); (M.R.H.); (J.-I.P.); (A.H.K.R.); (D.M.I.J.); (H.-J.J.); (H.-T.K.)
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Denison Michael Immanuel Jesse
- Department of Horticulture, Sunchon National University, Suncheon, Jeonnam 57922, Korea; (M.J.F.); (M.R.H.); (J.-I.P.); (A.H.K.R.); (D.M.I.J.); (H.-J.J.); (H.-T.K.)
| | - Hee-Jeong Jung
- Department of Horticulture, Sunchon National University, Suncheon, Jeonnam 57922, Korea; (M.J.F.); (M.R.H.); (J.-I.P.); (A.H.K.R.); (D.M.I.J.); (H.-J.J.); (H.-T.K.)
| | - Hoy-Taek Kim
- Department of Horticulture, Sunchon National University, Suncheon, Jeonnam 57922, Korea; (M.J.F.); (M.R.H.); (J.-I.P.); (A.H.K.R.); (D.M.I.J.); (H.-J.J.); (H.-T.K.)
| | - Ill-Sup Nou
- Department of Horticulture, Sunchon National University, Suncheon, Jeonnam 57922, Korea; (M.J.F.); (M.R.H.); (J.-I.P.); (A.H.K.R.); (D.M.I.J.); (H.-J.J.); (H.-T.K.)
- Correspondence:
| |
Collapse
|
6
|
Mason AS, Higgins EE, Snowdon RJ, Batley J, Stein A, Werner C, Parkin IAP. A user guide to the Brassica 60K Illumina Infinium™ SNP genotyping array. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:621-633. [PMID: 28220206 DOI: 10.1007/s00122-016-2849-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/14/2016] [Indexed: 06/06/2023]
Abstract
The Brassica napus 60K Illumina Infinium™ SNP array has had huge international uptake in the rapeseed community due to the revolutionary speed of acquisition and ease of analysis of this high-throughput genotyping data, particularly when coupled with the newly available reference genome sequence. However, further utilization of this valuable resource can be optimized by better understanding the promises and pitfalls of SNP arrays. We outline how best to analyze Brassica SNP marker array data for diverse applications, including linkage and association mapping, genetic diversity and genomic introgression studies. We present data on which SNPs are locus-specific in winter, semi-winter and spring B. napus germplasm pools, rather than amplifying both an A-genome and a C-genome locus or multiple loci. Common issues that arise when analyzing array data will be discussed, particularly those unique to SNP markers and how to deal with these for practical applications in Brassica breeding applications.
Collapse
Affiliation(s)
- Annaliese S Mason
- Department of Plant Breeding, IFZ for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
| | - Erin E Higgins
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, S7N0X2, Canada
| | - Rod J Snowdon
- Department of Plant Breeding, IFZ for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Jacqueline Batley
- School of Agriculture and Food Sciences and Centre for Integrative Legume Research, The University of Queensland, Brisbane, 4072, Australia
- School of Plant Biology and The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, 6009, Perth, Australia
| | - Anna Stein
- Department of Plant Breeding, IFZ for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Christian Werner
- Department of Plant Breeding, IFZ for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Isobel A P Parkin
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, S7N0X2, Canada
| |
Collapse
|
7
|
Yan M, Liu X, Guan C, Liu L, Xiang J, Lu Y, Liu Z. Cloning of TTG1 gene and PCR identification of genomes A, B and C in Brassica species. Genetica 2014; 142:169-76. [PMID: 24752509 DOI: 10.1007/s10709-014-9764-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 04/07/2014] [Indexed: 02/05/2023]
Abstract
Arabidopsis Transparent Testa Glabra 1 (TTG1) genes were cloned from three diploid Brassica species (B. rapa, B. nigra and B. oleracea) and two amphidiploids species (B. juncea and B. carinata) by homology cloning. TTG1 homologues identified in all the accessions of the investigated species had a coding sequence of 1,014 bp. One copy was obtained from each diploid species and two copies from each amphidiploid species. Combined analysis of the TTG1 sequences cloned in this study with those obtained from public databases demonstrated that three, forty-five and seven nucleotides were specific variations in TTG1 genes from genomes A, B and C, respectively. Primers designed with genome-specific nucleotide variations were able to distinguish among TTG1 genes originating from genomes A, B and C in Brassica. Therefore, the TTG1 gene could serve as a candidate marker gene to detect the pollen flow of Brassica and provide an alternative method for the detection of pollen drift and risk assessment of gene flow in Brassica species.
Collapse
Affiliation(s)
- Mingli Yan
- School of Life Science, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China,
| | | | | | | | | | | | | |
Collapse
|
8
|
Navabi ZK, Huebert T, Sharpe AG, O’Neill CM, Bancroft I, Parkin IAP. Conserved microstructure of the Brassica B Genome of Brassica nigra in relation to homologous regions of Arabidopsis thaliana, B. rapa and B. oleracea. BMC Genomics 2013; 14:250. [PMID: 23586706 PMCID: PMC3765694 DOI: 10.1186/1471-2164-14-250] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 04/04/2013] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The Brassica B genome is known to carry several important traits, yet there has been limited analyses of its underlying genome structure, especially in comparison to the closely related A and C genomes. A bacterial artificial chromosome (BAC) library of Brassica nigra was developed and screened with 17 genes from a 222 kb region of A. thaliana that had been well characterised in both the Brassica A and C genomes. RESULTS Fingerprinting of 483 apparently non-redundant clones defined physical contigs for the corresponding regions in B. nigra. The target region is duplicated in A. thaliana and six homologous contigs were found in B. nigra resulting from the whole genome triplication event shared by the Brassiceae tribe. BACs representative of each region were sequenced to elucidate the level of microscale rearrangements across the Brassica species divide. CONCLUSIONS Although the B genome species separated from the A/C lineage some 6 Mya, comparisons between the three paleopolyploid Brassica genomes revealed extensive conservation of gene content and sequence identity. The level of fractionation or gene loss varied across genomes and genomic regions; however, the greatest loss of genes was observed to be common to all three genomes. One large-scale chromosomal rearrangement differentiated the B genome suggesting such events could contribute to the lack of recombination observed between B genome species and those of the closely related A/C lineage.
Collapse
Affiliation(s)
- Zahra-Katy Navabi
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada
| | - Terry Huebert
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada
| | - Andrew G Sharpe
- DNA Technologies Laboratory, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
| | - Carmel M O’Neill
- John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | - Ian Bancroft
- John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | - Isobel AP Parkin
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada
| |
Collapse
|
9
|
Xu L, Wang L, Gong Y, Dai W, Wang Y, Zhu X, Wen T, Liu L. Genetic linkage map construction and QTL mapping of cadmium accumulation in radish (Raphanus sativus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 125:659-70. [PMID: 22491896 DOI: 10.1007/s00122-012-1858-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 03/21/2012] [Indexed: 05/21/2023]
Abstract
Cadmium (Cd) is a widespread soil pollutant and poses a significant threat to human health via the food chain. Large phenotypic variations in Cd concentration of radish roots and shoots have been observed. However, the genetic and molecular mechanisms of Cd accumulation in radish remain to be elucidated. In this study, a genetic linkage map was constructed using an F(2) mapping population derived from a cross between a high Cd-accumulating cultivar NAU-Dysx and a low Cd-accumulating cultivar NAU-Yh. The linkage map consisted of 523 SRAP, RAPD, SSR, ISSR, RAMP, and RGA markers and had a total length of 1,678.2 cM with a mean distance of 3.4 cM between two markers. All mapped markers distributed on nine linkage groups (LGs) having sizes between 134.7 and 236.8 cM. Four quantitative trait loci (QTLs) for root Cd accumulation were mapped on LGs 1, 4, 6, and 9, which accounted for 9.86 to 48.64 % of all phenotypic variance. Two QTLs associated with shoot Cd accumulation were detected on LG1 and 3, which accounted for 17.08 and 29.53 % of phenotypic variance, respectively. A major-effect QTL, qRCd9 (QTL for root Cd accumulation on LG9), was identified on LG 9 flanked by NAUrp011_754 and EM5me6_286 markers with a high LOD value of 23.6, which accounted for 48.64 % of the total phenotypic variance in Cd accumulation of F(2) lines. The results indicated that qRCd9 is a novel QTL responsible for controlling root Cd accumulation in radish, and the identification of specific molecular markers tightly linked to the major QTL could be further applied for marker-assisted selection (MAS) in low-Cd content radish breeding program.
Collapse
Affiliation(s)
- Liang Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Hayward A, McLanders J, Campbell E, Edwards D, Batley J. Genomic advances will herald new insights into the Brassica: Leptosphaeria maculans pathosystem. PLANT BIOLOGY (STUTTGART, GERMANY) 2012; 14 Suppl 1:1-10. [PMID: 21973193 DOI: 10.1111/j.1438-8677.2011.00481.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The study of the relationship between plants and phytopathogenic fungi is one of the most rapidly moving fields in the plant sciences, the findings of which have contributed to the development of new strategies and technologies to protect crops. Plants employ sophisticated mechanisms to perceive and appropriately defend themselves against pathogens. A good example of plant and pathogen evolution is the gene-for-gene interaction between the fungal pathogen Leptosphaeria maculans, the causal agent of blackleg disease, and Brassica crops. This interaction has been studied at the genetic and physiological level due to its agro-economic importance. The newly available genome sequence for Brassica spp. and L. maculans will provide the resources to study the co-evolution of this plant and pathogen. Particularly, an understanding of the co-evolution of genes responsible for virulence and resistance will lead to improved plant protection strategies for Brassica canola and provide a model to understand plant-pathogen interactions in other major crops. This review summarises the research-to-date in the study of the Brassica-L. maculans gene-for-gene interaction, with a focus on the genetics of resistance in Brassica and the wealth of information to be gained from genome sequencing efforts.
Collapse
Affiliation(s)
- A Hayward
- ARC Centre of Excellence for Integrative Legume Research and School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
| | | | | | | | | |
Collapse
|
11
|
Wang GX, Tang Y, Yan H, Sheng XG, Hao WW, Zhang L, Lu K, Liu F. Production and characterization of interspecific somatic hybrids between Brassica oleracea var. botrytis and B. nigra and their progenies for the selection of advanced pre-breeding materials. PLANT CELL REPORTS 2011; 30:1811-21. [PMID: 21603996 DOI: 10.1007/s00299-011-1088-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 05/04/2011] [Accepted: 05/06/2011] [Indexed: 05/15/2023]
Abstract
Somatic hybridization is a potential method for gene transfer from wild relatives to cultivated crops that can overcome sexual incompatibilities of two distantly related species. In this study, interspecific asymmetric somatic hybrids of Brassica oleracea var. botrytis (cauliflower) and Brassica nigra (black mustard) were obtained by protoplast fusion and their backcrossed (BC(3)) and selfed (S(3)) offspring were analyzed. Cytological analysis showed that the B. nigra chromosomes were successively eliminated in the backcrosses with cauliflower. The fertility of the hybrid progenies was quite different due to the asynchronous and abnormal chromosome behavior of pollen mother cells (PMC) during meiosis. Analysis of sequence-related amplified polymorphism (SRAP) showed that all of these hybrids mainly had the DNA banding pattern from the two parents with some alterations. Genetically, the selfed generations were closer to B. nigra, while the backcrossed generations were closer to the cauliflower parent. Analysis of cleaved amplified polymorphic sequences (CAPS) and restriction fragment length polymorphisms (RFLP) showed that all somatic hybrids in this study contained chloroplast (cp) DNA of the donor parent black mustard, while mitochondrial (mt) DNA showed evidence of recombination and variations in the regions analyzed. Furthermore, three BC(3) plants (originated from somatic hybrids 3, 4, 10) with 2-8 B. nigra-derived chromosomes shown by genomic in situ hybridization (GISH) displayed a more cauliflower-like morphology and high resistance to black-rot. These plants were obtained as bridge materials for further analysis and breeding.
Collapse
Affiliation(s)
- Gui-xiang Wang
- Beijing Vegetable Research Center, National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Staal J, Dixelius C. RLM3, a potential adaptor between specific TIR-NB-LRR receptors and DZC proteins. Commun Integr Biol 2011; 1:59-61. [PMID: 19513199 DOI: 10.4161/cib.1.1.6394] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Accepted: 06/05/2008] [Indexed: 11/19/2022] Open
Abstract
In our recent paper, we identified a TIR encoding gene, which is required for resistance against a broad range of necrotrophic fungi. Here we present this finding in a broader perspective and discuss the unique features of this gene which might explain its role as a general regulator of resistance responses against a class of pathogens that have previously not been associated to the classical resistance (R) gene type of defense.
Collapse
Affiliation(s)
- Jens Staal
- Department of Molecular Biomedical Research; Unit for Molecular Signal Transduction in Inflammation; VIB; Ghent, Belgium
| | | |
Collapse
|
13
|
Segregation distortion detected in six rice F2 populations generated from reciprocal hybrids at three altitudes. Genet Res (Camb) 2009; 91:345-53. [PMID: 19922698 DOI: 10.1017/s0016672309990176] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
This paper presents investigations of segregation distortion of six rice F2 populations generated from reciprocal F1 hybrids grown at three locations varied at altitudes from 400 to 2200 m. The F1s were derived from reciprocal crosses between cv. XMG, which is a japonica landrace traditionally grown at 2650 m altitude, and cv. N34, which is a japonica restorer possessing a fertility restoring (Rf) gene and cytoplasm of male sterility (CMS) donated by an indica cultivar. Among nine morphological traits of the F2 populations, only one was in normal distribution, eight were distorted in all or at least one population. Out of 16 polymorphic PCR markers, 10 markers distributed on 7 chromosomes were significantly distorted. Among these markers, RMAN7 and RM257 were distorted in both of the reciprocal populations, which suggested that nuclear genes had strong effects on segregation distortion. The other makers were distorted only in the populations with cytoplasm donated by XMG or N34. The results indicated that segregation of DNA markers was affected by cytoplasm background. Segregation distribution was also affected by altitude, since segregation distortions of most of the markers were detected not in all the three populations generated from F1 grown at the three altitudes, but only in one population from F1 grown at one altitude. Marker M45461, which is located within Rf-1 locus, was severely distorted towards N34 in all the populations with cytoplasm donated by N34, but not in the populations with cytoplasm provided by XMG. The results indicated that interaction between CMS and Rf gene had strong effects on distortion. Results of this study indicated that japonica cytoplasm did not cause distortion favouring a special parent, but indica cytoplasm made distortion favouring a maternal parent. The results suggested that indica cytoplasm was not well compatible with japonica nuclear background, while japonica cytoplasm did not have such trouble with indica nuclei. This study also found that the six F2 populations were divergent into two groups due to difference of cytoplasm background.
Collapse
|
14
|
Persson M, Staal J, Oide S, Dixelius C. Layers of defense responses to Leptosphaeria maculans below the RLM1- and camalexin-dependent resistances. THE NEW PHYTOLOGIST 2009; 182:470-482. [PMID: 19220763 DOI: 10.1111/j.1469-8137.2009.02763.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Plants have evolved different defense components to counteract pathogen attacks. The resistance locus resistance to Leptosphaeria maculans 1 (RLM1) is a key factor for Arabidopsis thaliana resistance to L. maculans. The present work aimed to reveal downstream defense responses regulated by RLM1. Quantitative assessment of fungal colonization in the host was carried out using quantitative polymerase chain reaction (qPCR) and GUS expression analyses, to further characterize RLM1 resistance and the role of salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) in disease development. Additional assessments of A. thaliana mutants were performed to expand our understanding of this pathosystem. Resistance responses such as lignification and the formation of vascular plugs were found to occur in an RLM1-dependent manner, in contrast to the RLM1-independent increase in reactive oxygen species at the stomata and hydathodes. Analyses of mutants defective in hormone signaling in the camalexin-free rlm1(Ler)pad3 background revealed a significant influence of JA and ET on symptom development and pathogen colonization. The overall results indicate that the defense responses of primary importance induced by RLM1 are all associated with physical barriers, and that responses of secondary importance involve complex cross-talk among SA, JA and ET. Our observations further suggest that ET positively affects fungal colonization.
Collapse
Affiliation(s)
- Mattias Persson
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, PO Box 7080, 750 07 Uppsala, Sweden
| | - Jens Staal
- Department of Molecular Biomedical Research, Unit for Molecular Signal Transduction in Inflammation, VIB, Technologiepark 927, B-9052 Ghent (Zwijnaarde), Belgium
- Department of Molecular Biology, Ghent University, Technologiepark 927, B-9052 Ghent (Zwijnaarde), Belgium
| | - Shinichi Oide
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, PO Box 7080, 750 07 Uppsala, Sweden
| | - Christina Dixelius
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, PO Box 7080, 750 07 Uppsala, Sweden
| |
Collapse
|
15
|
Chèvre AM, Brun H, Eber F, Letanneur JC, Vallee P, Ermel M, Glais I, Li H, Sivasithamparam K, Barbetti MJ. Stabilization of Resistance to Leptosphaeria maculans in Brassica napus-B. juncea Recombinant Lines and Its Introgression into Spring-Type Brassica napus. PLANT DISEASE 2008; 92:1208-1214. [PMID: 30769494 DOI: 10.1094/pdis-92-8-1208] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The value of Katanning Early Maturing (KEM) breeding lines from Western Australia, derived from Brassica napus × B. juncea crosses, was assessed as a source of germplasm for resistance to blackleg disease (caused by Leptosphaeria maculans) in spring-type oilseed rape cultivars. The stability of blackleg resistance in these KEM lines was related to key cytological characteristics to determine why there are poor levels of introgression of this resistance into progeny. Promising recombinant KEM lines were crossed with the spring-type B. napus cv. Dunkeld, which has useful polygenic resistance to blackleg, and screened for resistance. The lines were analyzed cytologically for pairing of bivalents in each generation to aid in the selection of stable recombinant lines. KEM recombinant lines showing regular meiotic behavior and a high level of blackleg resistance were obtained for the first time. We also showed that the stable introgression of the B. juncea resistance from the KEM lines into a 'Dunkeld' background was possible. Inoculation of selfing and backcross populations with isolates of L. maculans having different AvrLm genes indicated that the B. juncea resistance gene, Rlm6, had been introgressed into a B. napus spring-type cultivar carrying polygenic resistance. The combination of both resistances would enhance the overall effectiveness of resistance against L. maculans. This is clearly needed in Australia and France where cultivars relying upon single dominant gene-based resistance for their effectiveness have proved not durable.
Collapse
Affiliation(s)
| | - H Brun
- INRA, UMR1099, F-35000 Rennes, France
| | - F Eber
- INRA, UMR118, F-35000 Rennes, France
| | | | - P Vallee
- INRA, UMR118, F-35000 Rennes, France
| | - M Ermel
- INRA, UMR1099, F-35000 Rennes, France
| | - I Glais
- INRA, UMR1099, F-35000 Rennes, France
| | - Hua Li
- School of Plant Biology, The University of Western Australia, Crawley, W.A. 6009, Australia
| | - K Sivasithamparam
- School of Earth and Geographical Sciences, The University of Western Australia, Crawley, W.A. 6009, Australia
| | - M J Barbetti
- School of Plant Biology, The University of Western Australia, Crawley, W.A. 6009, Australia and Department of Agriculture and Food Western Australia, Baron-Hay Court, South Perth, W.A. 6151, Australia
| |
Collapse
|
16
|
Staal J, Kaliff M, Dewaele E, Persson M, Dixelius C. RLM3, a TIR domain encoding gene involved in broad-range immunity of Arabidopsis to necrotrophic fungal pathogens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 55:188-200. [PMID: 18397376 DOI: 10.1111/j.1365-313x.2008.03503.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Here, we describe the rapid cloning of a plant gene, Leptosphaeria maculans 3 (RLM3(Col)), which encodes a putative Toll interleukin-1 receptor-nucleotide binding (TIR-NB) class protein, which is involved in defence against the fungal pathogen L. maculans and against three other necrotrophic fungi. We have, through microarray-based case control bulk segregant comparisons of transcriptomes in pools of Col-0 x An-1 progeny, identified the absence of a locus that causes susceptibility in An-1. The significance of this locus on chromosome 4 for L. maculans resistance was supported by PCR-based mapping, and denoted resistance to RLM3(Col). Differential susceptible phenotypes in four independent T-DNA insertion lines support the hypothesis that At4g16990 is required for RLM3(Col) function. The mutants in RLM3(Col) also exhibited an enhanced susceptibility to Botrytis cinerea, Alternaria brassicicola and Alternaria brassicae. Complementations of An-1 and T-DNA mutants using overexpression of a short transcript lacking the NB-ARC domain, or a genomic clone, restored resistance to all necrotrophic fungi. The elevated expression of RLM3(Col) on B. cinerea-susceptible mutants further suggested convergence in signalling and gene regulation between defence against B. cinerea and L. maculans. In the case of L. maculans, RLM3(Col) is required for efficient callose deposition downstream of RLM1(Col).
Collapse
Affiliation(s)
- Jens Staal
- Department of Molecular Biomedical Research, Unit for Molecular Signal Transduction in Inflammation, VIB, Ghent University, Technologiepark 927, Ghent (Zwijnaarde) B-9052, Belgium.
| | | | | | | | | |
Collapse
|
17
|
Li JJ, Pei GL, Pang HX, Bilderbeck A, Chen SS, Tao SH. A new method for RAPD primers selection based on primer bias in nucleotide sequence data. J Biotechnol 2006; 126:415-23. [PMID: 16790286 DOI: 10.1016/j.jbiotec.2006.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Revised: 04/28/2006] [Accepted: 05/09/2006] [Indexed: 11/22/2022]
Abstract
Sequence analysis has proved that decamer nucleotides, used as primers of RAPD (random amplified polymorphic DNA), differ with each other greatly in number of annealing sites in the Arabidopsis thaliana genome. It is called the 'primer bias' by the authors. The biased primers produce a highly variable number of amplicons by polymerase chain reaction (PCR). The number of amplicons is proved to correlate with the number of annealing sites. Therefore, a statistical method is proposed for selecting efficient primers based on the primer bias in the genomic sequence. The method was tested by experiment in A. thaliana genome, and the results demonstrate that the method outperforms routine methods and can substantially increase the efficiency of RAPD methodologies. We also proved that the expressed sequence tags (ESTs) show a highly coincident bias pattern with that of the whole genomic sequence, and can therefore be used to assess efficiencies of primers for species whose genomic sequence data are currently unknown.
Collapse
Affiliation(s)
- J J Li
- School of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | | | | | | | | | |
Collapse
|