1
|
Jesionek W, Bodláková M, Kubát Z, Čegan R, Vyskot B, Vrána J, Šafář J, Puterova J, Hobza R. Fundamentally different repetitive element composition of sex chromosomes in Rumex acetosa. ANNALS OF BOTANY 2021; 127:33-47. [PMID: 32902599 PMCID: PMC7750719 DOI: 10.1093/aob/mcaa160] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND AND AIMS Dioecious species with well-established sex chromosomes are rare in the plant kingdom. Most sex chromosomes increase in size but no comprehensive analysis of the kind of sequences that drive this expansion has been presented. Here we analyse sex chromosome structure in common sorrel (Rumex acetosa), a dioecious plant with XY1Y2 sex determination, and we provide the first chromosome-specific repeatome analysis for a plant species possessing sex chromosomes. METHODS We flow-sorted and separately sequenced sex chromosomes and autosomes in R. acetosa using the two-dimensional fluorescence in situ hybridization in suspension (FISHIS) method and Illumina sequencing. We identified and quantified individual repeats using RepeatExplorer, Tandem Repeat Finder and the Tandem Repeats Analysis Program. We employed fluorescence in situ hybridization (FISH) to analyse the chromosomal localization of satellites and transposons. KEY RESULTS We identified a number of novel satellites, which have, in a fashion similar to previously known satellites, significantly expanded on the Y chromosome but not as much on the X or on autosomes. Additionally, the size increase of Y chromosomes is caused by non-long terminal repeat (LTR) and LTR retrotransposons, while only the latter contribute to the enlargement of the X chromosome. However, the X chromosome is populated by different LTR retrotransposon lineages than those on Y chromosomes. CONCLUSIONS The X and Y chromosomes have significantly diverged in terms of repeat composition. The lack of recombination probably contributed to the expansion of diverse satellites and microsatellites and faster fixation of newly inserted transposable elements (TEs) on the Y chromosomes. In addition, the X and Y chromosomes, despite similar total counts of TEs, differ significantly in the representation of individual TE lineages, which indicates that transposons proliferate preferentially in either the paternal or the maternal lineage.
Collapse
Affiliation(s)
- Wojciech Jesionek
- Department of Plant Developmental Genetics, The Czech Academy of Sciences, Institute of Biophysics, Královopolská, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice, Brno, Czech Republic
- For correspondence. E-mail: or
| | - Markéta Bodláková
- Department of Plant Developmental Genetics, The Czech Academy of Sciences, Institute of Biophysics, Královopolská, Brno, Czech Republic
| | - Zdeněk Kubát
- Department of Plant Developmental Genetics, The Czech Academy of Sciences, Institute of Biophysics, Královopolská, Brno, Czech Republic
| | - Radim Čegan
- Department of Plant Developmental Genetics, The Czech Academy of Sciences, Institute of Biophysics, Královopolská, Brno, Czech Republic
| | - Boris Vyskot
- Department of Plant Developmental Genetics, The Czech Academy of Sciences, Institute of Biophysics, Královopolská, Brno, Czech Republic
| | - Jan Vrána
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů, Olomouc-Holice, Czech Republic
| | - Jan Šafář
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů, Olomouc-Holice, Czech Republic
| | - Janka Puterova
- Department of Plant Developmental Genetics, The Czech Academy of Sciences, Institute of Biophysics, Královopolská, Brno, Czech Republic
- Brno University of Technology, Faculty of Information Technology, Centre of Excellence IT4Innovations, Bozetechova, Brno, Czech Republic
| | - Roman Hobza
- Department of Plant Developmental Genetics, The Czech Academy of Sciences, Institute of Biophysics, Královopolská, Brno, Czech Republic
- For correspondence. E-mail: or
| |
Collapse
|
2
|
Harper J, De Vega J, Swain S, Heavens D, Gasior D, Thomas A, Evans C, Lovatt A, Lister S, Thorogood D, Skøt L, Hegarty M, Blackmore T, Kudrna D, Byrne S, Asp T, Powell W, Fernandez-Fuentes N, Armstead I. Integrating a newly developed BAC-based physical mapping resource for Lolium perenne with a genome-wide association study across a L. perenne European ecotype collection identifies genomic contexts associated with agriculturally important traits. ANNALS OF BOTANY 2019; 123:977-992. [PMID: 30715119 PMCID: PMC6589518 DOI: 10.1093/aob/mcy230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 11/28/2018] [Indexed: 05/27/2023]
Abstract
BACKGROUND AND AIMS Lolium perenne (perennial ryegrass) is the most widely cultivated forage and amenity grass species in temperate areas worldwide and there is a need to understand the genetic architectures of key agricultural traits and crop characteristics that deliver wider environmental services. Our aim was to identify genomic regions associated with agriculturally important traits by integrating a bacterial artificial chromosome (BAC)-based physical map with a genome-wide association study (GWAS). METHODS BAC-based physical maps for L. perenne were constructed from ~212 000 high-information-content fingerprints using Fingerprint Contig and Linear Topology Contig software. BAC clones were associated with both BAC-end sequences and a partial minimum tiling path sequence. A panel of 716 L. perenne diploid genotypes from 90 European accessions was assessed in the field over 2 years, and genotyped using a Lolium Infinium SNP array. The GWAS was carried out using a linear mixed model implemented in TASSEL, and extended genomic regions associated with significant markers were identified through integration with the physical map. KEY RESULTS Between ~3600 and 7500 physical map contigs were derived, depending on the software and probability thresholds used, and integrated with ~35 k sequenced BAC clones to develop a resource predicted to span the majority of the L. perenne genome. From the GWAS, eight different loci were significantly associated with heading date, plant width, plant biomass and water-soluble carbohydrate accumulation, seven of which could be associated with physical map contigs. This allowed the identification of a number of candidate genes. CONCLUSIONS Combining the physical mapping resource with the GWAS has allowed us to extend the search for candidate genes across larger regions of the L. perenne genome and identified a number of interesting gene model annotations. These physical maps will aid in validating future sequence-based assemblies of the L. perenne genome.
Collapse
Affiliation(s)
- J Harper
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - J De Vega
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - S Swain
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - D Heavens
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - D Gasior
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - A Thomas
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - C Evans
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - A Lovatt
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - S Lister
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - D Thorogood
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - L Skøt
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - M Hegarty
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - T Blackmore
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - D Kudrna
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - S Byrne
- Teagasc, Department of Crop Science, Carlow, Ireland
| | - T Asp
- Department of Molecular Biology and Genetics, Crop Genetics and Biotechnology, Aarhus University, Slagelse, Denmark
| | - W Powell
- Scotland’s Rural College, Edinburgh, UK
| | - N Fernandez-Fuentes
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - I Armstead
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| |
Collapse
|
3
|
Genus-wide sequencing supports a two-locus model for sex-determination in Phoenix. Nat Commun 2018; 9:3969. [PMID: 30266991 PMCID: PMC6162277 DOI: 10.1038/s41467-018-06375-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 09/03/2018] [Indexed: 11/09/2022] Open
Abstract
The date palm tree is a commercially important member of the genus Phoenix whose 14 species are dioecious with separate male and female individuals. To identify sex determining genes we sequenced the genomes of 15 female and 13 male Phoenix trees representing all 14 species. We identified male-specific sequences and extended them using phased single-molecule sequencing or BAC clones. We observed that only four genes contained sequences conserved in all analyzed Phoenix males. Most of these sequences showed similarity to a single genomic locus in the closely related monoecious oil palm. CYP703 and GPAT3, two single copy genes present in males and critical for male flower development in other monocots, were absent in females. A LOG-like gene appears translocated into the Y-linked region and is suggested to play a role in suppressing female flowers. Our data are consistent with a two-mutation model for the evolution of dioecy in Phoenix. The origin and evolution of separate sexes in plants are long-standing questions. Here, the authors use genus-wide sequencing to identify sex determining candidate genes in the genus Phoenix and demonstrate the consistence with the previously proposed two-mutation model.
Collapse
|
4
|
Pascual-Anaya J, Sato I, Sugahara F, Higuchi S, Paps J, Ren Y, Takagi W, Ruiz-Villalba A, Ota KG, Wang W, Kuratani S. Hagfish and lamprey Hox genes reveal conservation of temporal colinearity in vertebrates. Nat Ecol Evol 2018; 2:859-866. [PMID: 29610468 DOI: 10.1038/s41559-018-0526-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 03/01/2018] [Indexed: 11/09/2022]
Abstract
Hox genes exert fundamental roles for proper regional specification along the main rostro-caudal axis of animal embryos. They are generally expressed in restricted spatial domains according to their position in the cluster (spatial colinearity)-a feature that is conserved across bilaterians. In jawed vertebrates (gnathostomes), the position in the cluster also determines the onset of expression of Hox genes (a feature known as whole-cluster temporal colinearity (WTC)), while in invertebrates this phenomenon is displayed as a subcluster-level temporal colinearity. However, little is known about the expression profile of Hox genes in jawless vertebrates (cyclostomes); therefore, the evolutionary origin of WTC, as seen in gnathostomes, remains a mystery. Here, we show that Hox genes in cyclostomes are expressed according to WTC during development. We investigated the Hox repertoire and Hox gene expression profiles in three different species-a hagfish, a lamprey and a shark-encompassing the two major groups of vertebrates, and found that these are expressed following a whole-cluster, temporally staggered pattern, indicating that WTC has been conserved during the past 500 million years despite drastically different genome evolution and morphological outputs between jawless and jawed vertebrates.
Collapse
Affiliation(s)
| | - Iori Sato
- Evolutionary Morphology Laboratory, RIKEN, Kobe, Japan.,Evolutionary Morphology Research Team, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Fumiaki Sugahara
- Evolutionary Morphology Laboratory, RIKEN, Kobe, Japan.,Division of Biology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Shinnosuke Higuchi
- Evolutionary Morphology Laboratory, RIKEN, Kobe, Japan.,Evolutionary Morphology Research Team, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Jordi Paps
- School of Biological Sciences, University of Essex, Colchester, UK
| | - Yandong Ren
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wataru Takagi
- Evolutionary Morphology Laboratory, RIKEN, Kobe, Japan.,Physiology Laboratory, Atmosphere Ocean Research Institute, The University of Tokyo, Chiba, Japan
| | - Adrián Ruiz-Villalba
- Centro de Investigación Médica Aplicada (CIMA), Área de Terapia Celular, Universidad de Navarra, Pamplona, Spain.,Instituto de Salud Pública de Navarra, IdiSNA, Pamplona, Spain
| | - Kinya G Ota
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, Taiwan
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Shigeru Kuratani
- Evolutionary Morphology Laboratory, RIKEN, Kobe, Japan.,Evolutionary Morphology Research Team, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| |
Collapse
|
5
|
Ma FF, Wu M, Liu YN, Feng XY, Wu XZ, Chen JQ, Wang B. Molecular characterization of NBS-LRR genes in the soybean Rsv3 locus reveals several divergent alleles that likely confer resistance to the soybean mosaic virus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:253-265. [PMID: 29038948 DOI: 10.1007/s00122-017-2999-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/06/2017] [Indexed: 06/07/2023]
Abstract
KEY MESSAGE The divergence patterns of NBS - LRR genes in soybean Rsv3 locus were deciphered and several divergent alleles ( NBS_C, NBS_D and Columbia NBS_E ) were identified as the likely functional candidates of Rsv3. The soybean Rsv3 locus, which confers resistance to the soybean mosaic virus (SMV), has been previously mapped to a region containing five nucleotide binding site-leucine-rich repeats (NBS-LRR) genes (referred to as nbs_A-E) in Williams 82. In resistant cultivars, however, the number of NBS-LRR genes in this region and their divergence from susceptible alleles remain unclear. In the present study, we constructed and screened a bacterial artificial chromosome (BAC) library for an Rsv3-possessing cultivar, Zaoshu 18. Sequencing two positive BAC inserts on the Rsv3 locus revealed that Zaoshu 18 possesses the same gene content and order as Williams 82, but two of the NBS-LRR genes, NBS_C and NBS_D, exhibit distinct features that were not observed in the Williams 82 alleles. Obtaining these NBS-LRR genes from eight additional cultivars demonstrated that the NBS_A-D genes diverged into two different alleles: the nbs_A-D alleles were associated with the rsv3-type cultivars, whereas the NBS_A-D alleles were associated with the Rsv3-possessing cultivars. For the NBS_E gene, the cultivar Columbia possesses an allele (NBS_E) that differed from that in Zaoshu 18 and rsv3-type cultivars (nbs_E). Exchanged fragments were further detected on alleles of the NBS_C-E genes, suggesting that recombination is a major force responsible for allele divergence. Also, the LRR domains of the NBS_C-E genes exhibited extremely strong signals of positive selection. Overall, the divergence patterns of the NBS-LRR genes in Rsv3 locus elucidated by this study indicate that not only NBS_C but also NBS_D and Columbia NBS_E are likely functional alleles that confer resistance to SMV.
Collapse
Affiliation(s)
- Fang-Fang Ma
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, 163 XianLin Avenue, Nanjing, 210023, China
| | - Mian Wu
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, 163 XianLin Avenue, Nanjing, 210023, China
| | - Ying-Na Liu
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, 163 XianLin Avenue, Nanjing, 210023, China
| | - Xue-Ying Feng
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, 163 XianLin Avenue, Nanjing, 210023, China
| | - Xun-Zong Wu
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, 163 XianLin Avenue, Nanjing, 210023, China
| | - Jian-Qun Chen
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, 163 XianLin Avenue, Nanjing, 210023, China.
| | - Bin Wang
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, 163 XianLin Avenue, Nanjing, 210023, China.
| |
Collapse
|
6
|
Dong G, Shen J, Zhang Q, Wang J, Yu Q, Ming R, Wang K, Zhang J. Development and Applications of Chromosome-Specific Cytogenetic BAC-FISH Probes in S. spontaneum. FRONTIERS IN PLANT SCIENCE 2018; 9:218. [PMID: 29535742 PMCID: PMC5834487 DOI: 10.3389/fpls.2018.00218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Saccharum spontaneum is a major Saccharum species that contributed to the origin of modern sugarcane cultivars, and due to a high degree of polyploidy is considered to be a plant species with one of the most complex genetics. Fluorescence in situ hybridization (FISH) is a powerful and widely used tool in genome studies. Here, we demonstrated that FISH based on bacterial artificial chromosome (BAC) clones can be used as a specific cytological marker to identify S. spontaneum individual chromosomes and study the relationship between S. spontaneum and other related species. We screened low-copy BACs as probes from the sequences of a high coverage of S. spontaneum BAC library based on BLAST search of the sorghum genome. In total, we isolated 49 positive BAC clones, and identified 27 BAC clones that can give specific signals on the S. spontaneum chromosomes. Of the 27 BAC probes, 18 were confirmed to be able to discriminate the eight basic chromosomes of S. spontaneum. Moreover, BAC-24, BAC-66, BAC-78, BAC-69, BAC-71, BAC-73, and BAC-77 probes were used to construct physical maps of chromosome 1 and chromosome 2 of S. spontaneum, which indicated synteny in Sb01 between S. spontaneum and sorghum. Furthermore, we found that BAC-14 and BAC-19 probes, corresponding to the sorghum chromosomes 2 and 8, respectively, localized to different arms of the same S. spontaneum chromosome, suggesting that there was an inter-chromosomal rearrangement event between S. spontaneum and sorghum. Our study provides the first set of chromosome-specific cytogenetic markers in Saccharum and is critical for future advances in cytogenetics and genome sequencing studies in Saccharum.
Collapse
Affiliation(s)
- Guangrui Dong
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiao Shen
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Qing Zhang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jianping Wang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Agronomy Department, University of Florida, Gainesville, FL, United States
| | - Qingyi Yu
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Ray Ming
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Texas A&M AgriLife Research Center, Department of Plant Pathology and Microbiology, Texas A&M University System, Dallas, TX, United States
| | - Kai Wang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jisen Zhang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Normal University, Fuzhou, China
- *Correspondence: Jisen Zhang,
| |
Collapse
|
7
|
Nakamoto M, Takeuchi Y, Akita K, Kumagai R, Suzuki J, Koyama T, Noda T, Yoshida K, Ozaki A, Araki K, Sakamoto T. A novel C-type lectin gene is a strong candidate gene for Benedenia disease resistance in Japanese yellowtail, Seriola quinqueradiata. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 76:361-369. [PMID: 28705457 DOI: 10.1016/j.dci.2017.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/08/2017] [Accepted: 07/08/2017] [Indexed: 06/07/2023]
Abstract
Little is known about mechanisms of resistance to parasitic diseases in marine finfish. Benedenia disease is caused by infection by the monogenean parasite Benedenia seriolae. Previous quantitative trait locus (QTL) analyses have identified a major QTL associated with resistance to Benedenia disease in linkage group Squ2 of the Japanese yellowtail/amberjack Seriola quinqueradiata. To uncover the bioregulatory mechanism of Benedenia disease resistance, complete Illumina sequencing of BAC clones carrying genomic DNA for the QTL region in linkage group Squ2 was performed to reveal a novel C-type lectin in this region. Expression of the mRNA of this C-type lectin was detected in skin tissue parasitized by B. seriolae. Scanning for single nucleotide polymorphisms (SNPs) uncovered a SNP in the C-type lectin/C-type lectin-like domain that was significantly associated with B. seriolae infection levels. These results strongly suggest that the novel C-type lectin gene controls resistance to Benedenia disease in Japanese yellowtails.
Collapse
Affiliation(s)
- Masatoshi Nakamoto
- Department of Aquatic Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| | - Yusuke Takeuchi
- Department of Aquatic Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| | - Kazuki Akita
- Department of Aquatic Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| | - Ryo Kumagai
- Department of Aquatic Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| | - Junpei Suzuki
- Department of Aquatic Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| | - Takashi Koyama
- Department of Aquatic Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| | - Tsutomu Noda
- Goto Laboratory of the Seikai National Fisheries Research Institute, Japan Fisheries Research and Education Agency, Nagasaki 853-0508, Japan
| | - Kazunori Yoshida
- Goto Laboratory of the Seikai National Fisheries Research Institute, Japan Fisheries Research and Education Agency, Nagasaki 853-0508, Japan
| | - Akiyuki Ozaki
- National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, Mie 516-0193, Japan
| | - Kazuo Araki
- National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, Mie 516-0193, Japan
| | - Takashi Sakamoto
- Department of Aquatic Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan.
| |
Collapse
|
8
|
Ma GJ, Markell SG, Song QJ, Qi LL. Genotyping-by-sequencing targeting of a novel downy mildew resistance gene Pl 20 from wild Helianthus argophyllus for sunflower (Helianthus annuus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:1519-1529. [PMID: 28432412 DOI: 10.1007/s00122-017-2906-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/07/2017] [Indexed: 05/20/2023]
Abstract
Genotyping-by-sequencing revealed a new downy mildew resistance gene, Pl 20 , from wild Helianthus argophyllus located on linkage group 8 of the sunflower genome and closely linked to SNP markers that facilitate the marker-assisted selection of resistance genes. Downy mildew (DM), caused by Plasmopara halstedii, is one of the most devastating and yield-limiting diseases of sunflower. Downy mildew resistance identified in wild Helianthus argophyllus accession PI 494578 was determined to be effective against the predominant and virulent races of P. halstedii occurring in the United States. The evaluation of 114 BC1F2:3 families derived from the cross between HA 89 and PI 494578 against P. halstedii race 734 revealed that single dominant gene controls downy mildew resistance in the population. Genotyping-by-sequencing analysis conducted in the BC1F2 population indicated that the DM resistance gene derived from wild H. argophyllus PI 494578 is located on the upper end of the linkage group (LG) 8 of the sunflower genome, as was determined single nucleotide polymorphism (SNP) markers associated with DM resistance. Analysis of 11 additional SNP markers previously mapped to this region revealed that the resistance gene, named Pl 20 , co-segregated with four markers, SFW02745, SFW09076, S8_11272025, and S8_11272046, and is flanked by SFW04358 and S8_100385559 at an interval of 1.8 cM. The newly discovered P. halstedii resistance gene has been introgressed from wild species into cultivated sunflower to provide a novel gene with DM resistance. The homozygous resistant individuals were selected from BC2F2 progenies with the use of markers linked to the Pl 20 gene, and these lines should benefit the sunflower community for Helianthus improvement.
Collapse
Affiliation(s)
- G J Ma
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA
| | - S G Markell
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA
| | - Q J Song
- Soybean Genomics and Improvement Lab, USDA-Agricultural Research Service, Beltsville, MD, 20705-2350, USA
| | - L L Qi
- Red River Valley Agricultural Research Center, USDA-Agricultural Research Service, 1605 Albrecht Blvd N, Fargo, ND, 58102-2765, USA.
| |
Collapse
|
9
|
Cviková K, Cattonaro F, Alaux M, Stein N, Mayer KF, Doležel J, Bartoš J. High-throughput physical map anchoring via BAC-pool sequencing. BMC PLANT BIOLOGY 2015; 15:99. [PMID: 25887276 PMCID: PMC4407875 DOI: 10.1186/s12870-015-0429-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/20/2015] [Indexed: 05/08/2023]
Abstract
BACKGROUND Physical maps created from large insert DNA libraries, typically cloned in BAC vector, are valuable resources for map-based cloning and de novo genome sequencing. The maps are most useful if contigs of overlapping DNA clones are anchored to chromosome(s), and ordered along them using molecular markers. Here we present a novel approach for anchoring physical maps, based on sequencing three-dimensional pools of BAC clones from minimum tilling path. RESULTS We used physical map of wheat chromosome arm 3DS to validate the method with two different DNA sequence datasets. The first comprised 567 genes ordered along the chromosome arm based on syntenic relationship of wheat with the sequenced genomes of Brachypodium, rice and sorghum. The second dataset consisted of 7,136 SNP-containing sequences, which were mapped genetically in Aegilops tauschii, the donor of the wheat D genome. Mapping of sequence reads from individual BAC pools to the first and the second datasets enabled unambiguous anchoring 447 and 311 3DS-specific sequences, respectively, or 758 in total. CONCLUSIONS We demonstrate the utility of the novel approach for BAC contig anchoring based on mass parallel sequencing of three-dimensional pools prepared from minimum tilling path of physical map. The existing genetic markers as well as any other DNA sequence could be mapped to BAC clones in a single in silico experiment. The approach reduces significantly the cost and time needed for anchoring and is applicable to any genomic project involving the construction of anchored physical map.
Collapse
Affiliation(s)
- Kateřina Cviková
- Institute of Experimental Botany, Centre of Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc-Holice, Czech Republic.
| | - Federica Cattonaro
- Istituto di Genomica Applicata, Via J. Linussio 51, 33100, Udine, Italy.
| | - Michael Alaux
- INRA, UR1164 URGI - Research Unit in Genomics-Info, INRA de Versailles, Route de Saint-Cyr, 78026, Versailles, France.
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, 06466, Stadt Seeland, OT Gatersleben, Germany.
| | - Klaus Fx Mayer
- Plant Genome and Systems Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany.
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc-Holice, Czech Republic.
| | - Jan Bartoš
- Institute of Experimental Botany, Centre of Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc-Holice, Czech Republic.
| |
Collapse
|
10
|
An Y, Toyoda A, Zhao C, Fujiyama A, Agata K. A colony multiplex quantitative PCR-Based 3S3DBC method and variations of it for screening DNA libraries. PLoS One 2015; 10:e0116997. [PMID: 25646755 PMCID: PMC4315571 DOI: 10.1371/journal.pone.0116997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 12/18/2014] [Indexed: 11/18/2022] Open
Abstract
A DNA library is a collection of DNA fragments cloned into vectors and stored individually in host cells, and is a valuable resource for molecular cloning, gene physical mapping, and genome sequencing projects. To take the best advantage of a DNA library, a good screening method is needed. After describing pooling strategies and issues that should be considered in DNA library screening, here we report an efficient colony multiplex quantitative PCR-based 3-step, 3-dimension, and binary-code (3S3DBC) method we used to screen genes from a planarian genomic DNA fosmid library. This method requires only 3 rounds of PCR reactions and only around 6 hours to distinguish one or more desired clones from a large DNA library. According to the particular situations in different research labs, this method can be further modified and simplified to suit their requirements.
Collapse
Affiliation(s)
- Yang An
- Department of Biophysics, Kyoto University, Kyoto, Kyoto, Japan
- * E-mail: (KA); (YA)
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Chen Zhao
- School of Pharmacy, Fudan University, Shanghai, China
| | - Asao Fujiyama
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Kiyokazu Agata
- Department of Biophysics, Kyoto University, Kyoto, Kyoto, Japan
- * E-mail: (KA); (YA)
| |
Collapse
|
11
|
Elliott AG, Delay C, Liu H, Phua Z, Rosengren KJ, Benfield AH, Panero JL, Colgrave ML, Jayasena AS, Dunse KM, Anderson MA, Schilling EE, Ortiz-Barrientos D, Craik DJ, Mylne JS. Evolutionary origins of a bioactive peptide buried within Preproalbumin. THE PLANT CELL 2014; 26:981-95. [PMID: 24681618 PMCID: PMC4001405 DOI: 10.1105/tpc.114.123620] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 01/27/2014] [Accepted: 03/04/2014] [Indexed: 05/25/2023]
Abstract
The de novo evolution of proteins is now considered a frequented route for biological innovation, but the genetic and biochemical processes that lead to each newly created protein are often poorly documented. The common sunflower (Helianthus annuus) contains the unusual gene PawS1 (Preproalbumin with SFTI-1) that encodes a precursor for seed storage albumin; however, in a region usually discarded during albumin maturation, its sequence is matured into SFTI-1, a protease-inhibiting cyclic peptide with a motif homologous to unrelated inhibitors from legumes, cereals, and frogs. To understand how PawS1 acquired this additional peptide with novel biochemical functionality, we cloned PawS1 genes and showed that this dual destiny is over 18 million years old. This new family of mostly backbone-cyclic peptides is structurally diverse, but the protease-inhibitory motif was restricted to peptides from sunflower and close relatives from its subtribe. We describe a widely distributed, potential evolutionary intermediate PawS-Like1 (PawL1), which is matured into storage albumin, but makes no stable peptide despite possessing residues essential for processing and cyclization from within PawS1. Using sequences we cloned, we retrodict the likely stepwise creation of PawS1's additional destiny within a simple albumin precursor. We propose that relaxed selection enabled SFTI-1 to evolve its inhibitor function by converging upon a successful sequence and structure.
Collapse
Affiliation(s)
- Alysha G. Elliott
- The University of Queensland, Institute for Molecular Bioscience, Brisbane 4072, Australia
| | - Christina Delay
- The University of Queensland, Institute for Molecular Bioscience, Brisbane 4072, Australia
| | - Huanle Liu
- School of Biological Sciences, The University of Queensland, Brisbane 4072, Australia
| | - Zaiyang Phua
- The University of Queensland, Institute for Molecular Bioscience, Brisbane 4072, Australia
| | - K. Johan Rosengren
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia
| | - Aurélie H. Benfield
- The University of Queensland, Institute for Molecular Bioscience, Brisbane 4072, Australia
| | - Jose L. Panero
- Section of Integrative Biology, University of Texas, Austin, Texas 78712
| | | | - Achala S. Jayasena
- The University of Western Australia, School of Chemistry and Biochemistry and ARC Centre of Excellence in Plant Energy Biology, Crawley, Perth 6009, Australia
| | - Kerry M. Dunse
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Australia
| | - Marilyn A. Anderson
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Australia
| | - Edward E. Schilling
- University of Tennessee, Department of Ecology and Evolutionary Biology, Knoxville, Tennessee 37996
| | | | - David J. Craik
- The University of Queensland, Institute for Molecular Bioscience, Brisbane 4072, Australia
| | - Joshua S. Mylne
- The University of Queensland, Institute for Molecular Bioscience, Brisbane 4072, Australia
- The University of Western Australia, School of Chemistry and Biochemistry and ARC Centre of Excellence in Plant Energy Biology, Crawley, Perth 6009, Australia
| |
Collapse
|
12
|
Chou ML, Shih MC, Chan MT, Liao SY, Hsu CT, Haung YT, Chen JJW, Liao DC, Wu FH, Lin CS. Global transcriptome analysis and identification of a CONSTANS-like gene family in the orchid Erycina pusilla. PLANTA 2013; 237:1425-41. [PMID: 23417646 DOI: 10.1007/s00425-013-1850-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 01/17/2013] [Indexed: 05/09/2023]
Abstract
The high chromosome numbers, polyploid genomes, and long juvenile phases of most ornamental orchid species render functional genomics difficult and limit the discovery of genes influencing horticultural traits. The orchid Erycina pusilla has a low chromosome number (2n = 12) and flowers in vitro within 1 year, making it a standout candidate for use as a model orchid. However, transcriptomic and genomic information from E. pusilla remains limited. In this study, next-generation sequencing (NGS) technology was used to identify 90,668 unigenes by de novo assembly. These unigenes were annotated functionally and analyzed with regard to their gene ontology (GO), clusters of orthologous groups (COG), and KEGG pathways. To validate the discovery methods, a homolog of CONSTANS (CO), one of the key genes in the flowering pathway, was further analyzed. The Arabidopsis CO-Like (COL) amino acid sequences were used to screen for homologs in the E. pusilla transcriptome database. Specific primers to the homologous unigenes were then used to isolate BAC clones, which were sequenced to identify 12 E. pusilla CO-like (EpCOL) full-length genes. Based on sequence homology, domain structure, and phylogenetic analysis, these EpCOL genes were divided into four groups. Four EpCOLs fused with GFP were localized in the nucleus. Some EpCOL genes were regulated by light. These results demonstrate that nascent E. pusilla resources (transcriptome and BAC library) can be used to investigate the E. pusilla photoperiod-dependent flowering genes. In future, this strategy can be applied to other biological processes, marketable traits, and molecular breeding in this model orchid.
Collapse
Affiliation(s)
- Ming-Lun Chou
- Department of Life Sciences, Tzu Chi University, Hualien, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Franchel J, Bouzidi MF, Bronner G, Vear F, Nicolas P, Mouzeyar S. Positional cloning of a candidate gene for resistance to the sunflower downy mildew, Plasmopara halstedii race 300. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:359-367. [PMID: 23052021 DOI: 10.1007/s00122-012-1984-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 09/15/2012] [Indexed: 06/01/2023]
Abstract
The resistance of sunflower to Plasmopara halstedii is conferred by major resistance genes denoted Pl. Previous genetic studies indicated that the majority of these genes are clustered on linkage groups 8 and 13. The Pl6 locus is one of the main clusters to have been identified, and confers resistance to several P. halstedii races. In this study, a map-based cloning strategy was implemented using a large segregating F2 population to establish a fine physical map of this cluster. A marker derived from a bacterial artificial chromosome (BAC) clone was found to be very tightly linked to the gene conferring resistance to race 300, and the corresponding BAC clone was sequenced and annotated. It contains several putative genes including three toll-interleukin receptor-nucleotide binding site-leucine rich repeats (TIR-NBS-LRR) genes. However, only one TIR-NBS-LRR appeared to be expressed, and thus constitutes a candidate gene for resistance to P. halstedii race 300.
Collapse
Affiliation(s)
- Jérôme Franchel
- Clermont Université, Université Blaise Pascal, UMR INRA-UBP 1095 GDEC, BP 10448, 63000 Clermont-Ferrand, France
| | | | | | | | | | | |
Collapse
|
14
|
Utilization of super BAC pools and Fluidigm access array platform for high-throughput BAC clone identification: proof of concept. J Biomed Biotechnol 2012; 2012:405940. [PMID: 22910714 PMCID: PMC3403795 DOI: 10.1155/2012/405940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 05/20/2012] [Indexed: 11/17/2022] Open
Abstract
Bacterial artificial chromosome (BAC) libraries are critical for identifying full-length genomic sequences, correlating genetic and physical maps, and comparative genomics. Here we describe the utilization of the Fluidigm access array genotyping system in conjunction with KASPar genotyping technology to identify individual BAC clones corresponding to specific single-nucleotide polymorphisms (SNPs) from an Amplicon Express seven-plate super pooled Amaranthus hypochondriacus BAC library. Ninety-six SNP loci, spanning the length of A. hypochondriacus linkage groups 1, 2, and 15, were simultaneously tested for clone identification from four BAC super pools, corresponding to 28 384-well plates, using a single Fluidigm integrated fluidic chip (IFC). Forty-six percent of the SNPs were associated with a single unambiguous identified BAC clone. PCR amplification and next-generation sequencing of individual BAC clones confirmed the IFC clone identification. Utilization of the Fluidigm Dynamic array platform allowed for the simultaneous PCR screening of 10,752 BAC pools for 96 SNP tag sites in less than three hours at a cost of ~$0.05 per reaction.
Collapse
|
15
|
Comparative analysis of a plant pseudoautosomal region (PAR) in Silene latifolia with the corresponding S. vulgaris autosome. BMC Genomics 2012; 13:226. [PMID: 22681719 PMCID: PMC3431222 DOI: 10.1186/1471-2164-13-226] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 06/08/2012] [Indexed: 11/10/2022] Open
Abstract
Background The sex chromosomes of Silene latifolia are heteromorphic as in mammals, with females being homogametic (XX) and males heterogametic (XY). While recombination occurs along the entire X chromosome in females, recombination between the X and Y chromosomes in males is restricted to the pseudoautosomal region (PAR). In the few mammals so far studied, PARs are often characterized by elevated recombination and mutation rates and high GC content compared with the rest of the genome. However, PARs have not been studied in plants until now. In this paper we report the construction of a BAC library for S. latifolia and the first analysis of a > 100 kb fragment of a S. latifolia PAR that we compare to the homologous autosomal region in the closely related gynodioecious species S. vulgaris. Results Six new sex-linked genes were identified in the S. latifolia PAR, together with numerous transposable elements. The same genes were found on the S. vulgaris autosomal segment, with no enlargement of the predicted coding sequences in S. latifolia. Intergenic regions were on average 1.6 times longer in S. latifolia than in S. vulgaris, mainly as a consequence of the insertion of transposable elements. The GC content did not differ significantly between the PAR region in S. latifolia and the corresponding autosomal region in S. vulgaris. Conclusions Our results demonstrate the usefulness of the BAC library developed here for the analysis of plant sex chromosomes and indicate that the PAR in the evolutionarily young S. latifolia sex chromosomes has diverged from the corresponding autosomal region in the gynodioecious S. vulgaris mainly with respect to the insertion of transposable elements. Gene order between the PAR and autosomal region investigated is conserved, and the PAR does not have the high GC content observed in evolutionarily much older mammalian sex chromosomes.
Collapse
|
16
|
Liu Z, Gulya TJ, Seiler GJ, Vick BA, Jan CC. Molecular mapping of the Pl(16) downy mildew resistance gene from HA-R4 to facilitate marker-assisted selection in sunflower. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 125:121-31. [PMID: 22350177 DOI: 10.1007/s00122-012-1820-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 02/04/2012] [Indexed: 05/20/2023]
Abstract
The major genes controlling sunflower downy mildew resistance have been designated as Pl genes. Ten of the more than 20 Pl genes reported have been mapped. In this study, we report the molecular mapping of gene Pl(16) in a sunflower downy mildew differential line, HA-R4. It was mapped on the lower end of linkage group (LG) 1 of the sunflower reference map, with 12 markers covering a distance of 78.9 cM. One dominant simple sequence repeat (SSR) marker, ORS1008, co-segregated with Pl(16), and another co-dominant expressed sequence tag (EST)-SSR marker, HT636, was located 0.3 cM proximal to the Pl(16) gene. The HT636 marker was also closely linked to the Pl(13) gene in another sunflower differential line, HA-R5. Thus the Pl(16) and Pl(13) genes were mapped to a similar position on LG 1 that is different from the previously reported Pl(14) gene. When the co-segregating and tightly linked markers for the Pl(16) gene were applied to other germplasms or hybrids, a unique band pattern for the ORS1008 marker was detected in HA-R4 and HA-R5 and their F(1) hybrids. This is the first report to provide two tightly linked markers for both the Pl(16) and Pl(13) genes, which will facilitate marker-assisted selection in sunflower resistance breeding, and provide a basis for the cloning of these genes.
Collapse
Affiliation(s)
- Zhao Liu
- Department of plant sciences, North Dakota State University, Fargo, ND 58102, USA
| | | | | | | | | |
Collapse
|
17
|
Cegan R, Vyskot B, Kejnovsky E, Kubat Z, Blavet H, Šafář J, Doležel J, Blavet N, Hobza R. Genomic diversity in two related plant species with and without sex chromosomes--Silene latifolia and S. vulgaris. PLoS One 2012; 7:e31898. [PMID: 22393373 PMCID: PMC3290532 DOI: 10.1371/journal.pone.0031898] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 01/16/2012] [Indexed: 01/25/2023] Open
Abstract
Background Genome size evolution is a complex process influenced by polyploidization, satellite DNA accumulation, and expansion of retroelements. How this process could be affected by different reproductive strategies is still poorly understood. Methodology/Principal Findings We analyzed differences in the number and distribution of major repetitive DNA elements in two closely related species, Silene latifolia and S. vulgaris. Both species are diploid and possess the same chromosome number (2n = 24), but differ in their genome size and mode of reproduction. The dioecious S. latifolia (1C = 2.70 pg DNA) possesses sex chromosomes and its genome is 2.5× larger than that of the gynodioecious S. vulgaris (1C = 1.13 pg DNA), which does not possess sex chromosomes. We discovered that the genome of S. latifolia is larger mainly due to the expansion of Ogre retrotransposons. Surprisingly, the centromeric STAR-C and TR1 tandem repeats were found to be more abundant in S. vulgaris, the species with the smaller genome. We further examined the distribution of major repetitive sequences in related species in the Caryophyllaceae family. The results of FISH (fluorescence in situ hybridization) on mitotic chromosomes with the Retand element indicate that large rearrangements occurred during the evolution of the Caryophyllaceae family. Conclusions/Significance Our data demonstrate that the evolution of genome size in the genus Silene is accompanied by the expansion of different repetitive elements with specific patterns in the dioecious species possessing the sex chromosomes.
Collapse
Affiliation(s)
- Radim Cegan
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Brno, Czech Republic
- Department of Plant Biology, Faculty of Agronomy, Mendel University in Brno, Brno, Czech Republic
| | - Boris Vyskot
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Brno, Czech Republic
| | - Eduard Kejnovsky
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Brno, Czech Republic
| | - Zdenek Kubat
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Brno, Czech Republic
| | - Hana Blavet
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Brno, Czech Republic
| | - Jan Šafář
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech Republic
| | - Jaroslav Doležel
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech Republic
| | - Nicolas Blavet
- Institute of Integrative Biology, Plant Ecological Genetics, ETH Zurich, Zurich, Switzerland
| | - Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Brno, Czech Republic
- * E-mail:
| |
Collapse
|
18
|
Advances in BAC-based physical mapping and map integration strategies in plants. J Biomed Biotechnol 2012; 2012:184854. [PMID: 22500080 PMCID: PMC3303678 DOI: 10.1155/2012/184854] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 10/26/2011] [Accepted: 11/11/2011] [Indexed: 12/29/2022] Open
Abstract
In the advent of next-generation sequencing (NGS) platforms, map-based sequencing strategy has been recently suppressed being too expensive and laborious. The detailed studies on NGS drafts alone indicated these assemblies remain far from gold standard reference quality, especially when applied on complex genomes. In this context the conventional BAC-based physical mapping has been identified as an important intermediate layer in current hybrid sequencing strategy. BAC-based physical map construction and its integration with high-density genetic maps have benefited from NGS and high-throughput array platforms. This paper addresses the current advancements of BAC-based physical mapping and high-throughput map integration strategies to obtain densely anchored well-ordered physical maps. The resulted maps are of immediate utility while providing a template to harness the maximum benefits of the current NGS platforms.
Collapse
|
19
|
Hsu CT, Liao DC, Wu FH, Liu NT, Shen SC, Chou SJ, Tung SY, Yang CH, Chan MT, Lin CS. Integration of molecular biology tools for identifying promoters and genes abundantly expressed in flowers of Oncidium Gower Ramsey. BMC PLANT BIOLOGY 2011; 11:60. [PMID: 21473751 PMCID: PMC3079641 DOI: 10.1186/1471-2229-11-60] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Accepted: 04/07/2011] [Indexed: 05/20/2023]
Abstract
BACKGROUND Orchids comprise one of the largest families of flowering plants and generate commercially important flowers. However, model plants, such as Arabidopsis thaliana do not contain all plant genes, and agronomic and horticulturally important genera and species must be individually studied. RESULTS Several molecular biology tools were used to isolate flower-specific gene promoters from Oncidium 'Gower Ramsey' (Onc. GR). A cDNA library of reproductive tissues was used to construct a microarray in order to compare gene expression in flowers and leaves. Five genes were highly expressed in flower tissues, and the subcellular locations of the corresponding proteins were identified using lip transient transformation with fluorescent protein-fusion constructs. BAC clones of the 5 genes, together with 7 previously published flower- and reproductive growth-specific genes in Onc. GR, were identified for cloning of their promoter regions. Interestingly, 3 of the 5 novel flower-abundant genes were putative trypsin inhibitor (TI) genes (OnTI1, OnTI2 and OnTI3), which were tandemly duplicated in the same BAC clone. Their promoters were identified using transient GUS reporter gene transformation and stable A. thaliana transformation analyses. CONCLUSIONS By combining cDNA microarray, BAC library, and bombardment assay techniques, we successfully identified flower-directed orchid genes and promoters.
Collapse
Affiliation(s)
- Chen-Tran Hsu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - De-Chih Liao
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Fu-Hui Wu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Nien-Tze Liu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Shu-Chen Shen
- Scientific Instrument Center, Academia Sinica, Taipei, Taiwan
| | - Shu-Jen Chou
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Shu-Yun Tung
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chang-Hsien Yang
- Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Ming-Tsair Chan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan, Taiwan
| | - Choun-Sea Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
20
|
A Comparative BAC map for the gilthead sea bream (Sparus aurata L.). J Biomed Biotechnol 2010; 2011:329025. [PMID: 21049003 PMCID: PMC2964914 DOI: 10.1155/2011/329025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 09/10/2010] [Accepted: 09/23/2010] [Indexed: 12/18/2022] Open
Abstract
This study presents the first comparative BAC map of the gilthead sea bream (Sparus aurata), a highly valuated marine aquaculture fish species in the Mediterranean. High-throughput end sequencing of a BAC library yielded 92,468 reads (60.6 Mbp). Comparative mapping was achieved by anchoring BAC end sequences to the three-spined stickleback (Gasterosteus aculeatus) genome. BACs that were consistently ordered along the stickleback chromosomes accounted for 14,265 clones. A fraction of 5,249 BACs constituted a minimal tiling path that covers 73.5% of the stickleback chromosomes and 70.2% of the genes that have been annotated. The N50 size of 1,485 “BACtigs” consisting of redundant BACs is 337,253 bp. The largest BACtig covers 2.15 Mbp in the stickleback genome. According to the insert size distribution of mapped BACs the sea bream genome is 1.71-fold larger than the stickleback genome. These results represent a valuable tool to researchers in the field and may support future projects to elucidate the whole sea bream genome.
Collapse
|
21
|
Cegan R, Marais GAB, Kubekova H, Blavet N, Widmer A, Vyskot B, Doležel J, Šafář J, Hobza R. Structure and evolution of Apetala3, a sex-linked gene in Silene latifolia. BMC PLANT BIOLOGY 2010; 10:180. [PMID: 20718967 PMCID: PMC3095310 DOI: 10.1186/1471-2229-10-180] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 08/18/2010] [Indexed: 05/10/2023]
Abstract
BACKGROUND The evolution of sex chromosomes is often accompanied by gene or chromosome rearrangements. Recently, the gene AP3 was characterized in the dioecious plant species Silene latifolia. It was suggested that this gene had been transferred from an autosome to the Y chromosome. RESULTS In the present study we provide evidence for the existence of an X linked copy of the AP3 gene. We further show that the Y copy is probably located in a chromosomal region where recombination restriction occurred during the first steps of sex chromosome evolution. A comparison of X and Y copies did not reveal any clear signs of degenerative processes in exon regions. Instead, both X and Y copies show evidence for relaxed selection compared to the autosomal orthologues in S. vulgaris and S. conica. We further found that promoter sequences differ significantly. Comparison of the genic region of AP3 between the X and Y alleles and the corresponding autosomal copies in the gynodioecious species S. vulgaris revealed a massive accumulation of retrotransposons within one intron of the Y copy of AP3. Analysis of the genomic distribution of these repetitive elements does not indicate that these elements played an important role in the size increase characteristic of the Y chromosome. However, in silico expression analysis shows biased expression of individual domains of the identified retroelements in male plants. CONCLUSIONS We characterized the structure and evolution of AP3, a sex linked gene with copies on the X and Y chromosomes in the dioecious plant S. latifolia. These copies showed complementary expression patterns and relaxed evolution at protein level compared to autosomal orthologues, which suggests subfunctionalization. One intron of the Y-linked allele was invaded by retrotransposons that display sex-specific expression patterns that are similar to the expression pattern of the corresponding allele, which suggests that these transposable elements may have influenced evolution of expression patterns of the Y copy. These data could help researchers decipher the role of transposable elements in degenerative processes during sex chromosome evolution.
Collapse
Affiliation(s)
- Radim Cegan
- Laboratory of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i.Kralovopolska 135, CZ-612 65 Brno, Czech Republic
- Department of Plant Biology, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Gabriel AB Marais
- Laboratoire de Biométrie et Biologie Evolutive (UMR 5558); CNRS University Lyon 1, Bat. Gregor Mendel, 16 rue Raphaël Dubois, 69622, Villeurbanne Cedex, France
| | - Hana Kubekova
- Laboratory of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i.Kralovopolska 135, CZ-612 65 Brno, Czech Republic
| | - Nicolas Blavet
- Institute of Integrative Biology, Plant Ecological Genetics, ETH Zurich, Universitaetstrasse 16, 8092 Zurich, Switzerland
| | - Alex Widmer
- Institute of Integrative Biology, Plant Ecological Genetics, ETH Zurich, Universitaetstrasse 16, 8092 Zurich, Switzerland
| | - Boris Vyskot
- Laboratory of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i.Kralovopolska 135, CZ-612 65 Brno, Czech Republic
| | - Jaroslav Doležel
- Laboratory of Molecular Cytogenetics and Cytometry, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, v.v.i. Sokolovska 6, 772-00, Olomouc, Czech Republic
| | - Jan Šafář
- Laboratory of Molecular Cytogenetics and Cytometry, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, v.v.i. Sokolovska 6, 772-00, Olomouc, Czech Republic
| | - Roman Hobza
- Laboratory of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i.Kralovopolska 135, CZ-612 65 Brno, Czech Republic
| |
Collapse
|
22
|
Gonthier L, Bellec A, Blassiau C, Prat E, Helmstetter N, Rambaud C, Huss B, Hendriks T, Bergès H, Quillet MC. Construction and characterization of two BAC libraries representing a deep-coverage of the genome of chicory (Cichorium intybus L., Asteraceae). BMC Res Notes 2010; 3:225. [PMID: 20701751 PMCID: PMC2933585 DOI: 10.1186/1756-0500-3-225] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 08/11/2010] [Indexed: 11/19/2022] Open
Abstract
Background The Asteraceae represents an important plant family with respect to the numbers of species present in the wild and used by man. Nonetheless, genomic resources for Asteraceae species are relatively underdeveloped, hampering within species genetic studies as well as comparative genomics studies at the family level. So far, six BAC libraries have been described for the main crops of the family, i.e. lettuce and sunflower. Here we present the characterization of BAC libraries of chicory (Cichorium intybus L.) constructed from two genotypes differing in traits related to sexual and vegetative reproduction. Resolving the molecular mechanisms underlying traits controlling the reproductive system of chicory is a key determinant for hybrid development, and more generally will provide new insights into these traits, which are poorly investigated so far at the molecular level in Asteraceae. Findings Two bacterial artificial chromosome (BAC) libraries, CinS2S2 and CinS1S4, were constructed from HindIII-digested high molecular weight DNA of the contrasting genotypes C15 and C30.01, respectively. C15 was hermaphrodite, non-embryogenic, and S2S2 for the S-locus implicated in self-incompatibility, whereas C30.01 was male sterile, embryogenic, and S1S4. The CinS2S2 and CinS1S4 libraries contain 89,088 and 81,408 clones. Mean insert sizes of the CinS2S2 and CinS1S4 clones are 90 and 120 kb, respectively, and provide together a coverage of 12.3 haploid genome equivalents. Contamination with mitochondrial and chloroplast DNA sequences was evaluated with four mitochondrial and four chloroplast specific probes, and was estimated to be 0.024% and 1.00% for the CinS2S2 library, and 0.028% and 2.35% for the CinS1S4 library. Using two single copy genes putatively implicated in somatic embryogenesis, screening of both libraries resulted in detection of 12 and 13 positive clones for each gene, in accordance with expected numbers. Conclusions This indicated that both BAC libraries are valuable tools for molecular studies in chicory, one goal being the positional cloning of the S-locus in this Asteraceae species.
Collapse
Affiliation(s)
- Lucy Gonthier
- Univ Lille Nord de France, F-59000 Lille, France, Stress Abiotiques et Différenciation des Végétaux Cultivés (SADV), UMR INRA-USTL 1281, Bât, SN2, F-59655 Villeneuve d'Ascq, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
González VM, Garcia-Mas J, Arús P, Puigdomènech P. Generation of a BAC-based physical map of the melon genome. BMC Genomics 2010; 11:339. [PMID: 20509895 PMCID: PMC2894041 DOI: 10.1186/1471-2164-11-339] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 05/28/2010] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Cucumis melo (melon) belongs to the Cucurbitaceae family, whose economic importance among horticulture crops is second only to Solanaceae. Melon has high intra-specific genetic variation, morphologic diversity and a small genome size (450 Mb), which make this species suitable for a great variety of molecular and genetic studies that can lead to the development of tools for breeding varieties of the species. A number of genetic and genomic resources have already been developed, such as several genetic maps and BAC genomic libraries. These tools are essential for the construction of a physical map, a valuable resource for map-based cloning, comparative genomics and assembly of whole genome sequencing data. However, no physical map of any Cucurbitaceae has yet been developed. A project has recently been started to sequence the complete melon genome following a whole-genome shotgun strategy, which makes use of massive sequencing data. A BAC-based melon physical map will be a useful tool to help assemble and refine the draft genome data that is being produced. RESULTS A melon physical map was constructed using a 5.7 x BAC library and a genetic map previously developed in our laboratories. High-information-content fingerprinting (HICF) was carried out on 23,040 BAC clones, digesting with five restriction enzymes and SNaPshot labeling, followed by contig assembly with FPC software. The physical map has 1,355 contigs and 441 singletons, with an estimated physical length of 407 Mb (0.9 x coverage of the genome) and the longest contig being 3.2 Mb. The anchoring of 845 BAC clones to 178 genetic markers (100 RFLPs, 76 SNPs and 2 SSRs) also allowed the genetic positioning of 183 physical map contigs/singletons, representing 55 Mb (12%) of the melon genome, to individual chromosomal loci. The melon FPC database is available for download at http://melonomics.upv.es/static/files/public/physical_map/. CONCLUSIONS Here we report the construction of the first physical map of a Cucurbitaceae species described so far. The physical map was integrated with the genetic map so that a number of physical contigs, representing 12% of the melon genome, could be anchored to known genetic positions. The data presented is already helping to improve the quality of the melon genomic sequence available as a result of a project currently being carried out in Spain, adopting a whole genome shotgun approach based on 454 sequencing data.
Collapse
Affiliation(s)
- Víctor M González
- Molecular Genetics Department, Center for Research in Agricultural Genomics CRAG (CSIC-IRTA-UAB), Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - Jordi Garcia-Mas
- Plant Genetics Department, IRTA, Center for Research in Agricultural Genomics CRAG (CSIC-IRTA-UAB), Carretera de Cabrils Km 2, 08348 Barcelona, Spain
| | - Pere Arús
- Plant Genetics Department, IRTA, Center for Research in Agricultural Genomics CRAG (CSIC-IRTA-UAB), Carretera de Cabrils Km 2, 08348 Barcelona, Spain
| | - Pere Puigdomènech
- Molecular Genetics Department, Center for Research in Agricultural Genomics CRAG (CSIC-IRTA-UAB), Jordi Girona, 18-26, 08034 Barcelona, Spain
| |
Collapse
|
24
|
Mulpuri S, Liu Z, Feng J, Gulya TJ, Jan CC. Inheritance and molecular mapping of a downy mildew resistance gene, Pl (13) in cultivated sunflower (Helianthus annuus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 119:795-803. [PMID: 19557383 DOI: 10.1007/s00122-009-1089-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Accepted: 05/30/2009] [Indexed: 05/20/2023]
Abstract
The inheritance of resistance to sunflower downy mildew (SDM) derived from HA-R5 conferring resistance to nine races of the pathogen has been determined and the new source has been designated as Pl ( 13 ) . The F(2) individuals and F(3) families of the cross HA-R5 (resistant) x HA 821 (susceptible) were screened against the four predominant SDM races 300, 700, 730, and 770 in separate tests which indicated dominant control by a single locus or a cluster of tightly linked genes. Bulked segregant analysis (BSA) was carried out on 116 F(2) individuals with 500 SSR primer pairs that resulted in the identification of 10 SSR markers of linkage groups 1 (9 markers) and 10 (1 marker) of the genetic map (Tang et al. in Theor Appl Genet 105:1124-1136, 2002) that distinguished the bulks. Of these, the SSR marker ORS 1008 of linkage group 10 was tightly linked (0.9 cM) to the Pl (13) gene. Genotyping the F(2) population and linkage analysis with 20 polymorphic primer pairs located on linkage group 10 failed to show linkage of the markers with downy mildew resistance and the ORS 1008 marker. Nevertheless, validation of polymorphic SSR markers of linkage group 1 along with six RFLP-based STS markers of linkage group 12 of the RFLP map of Jan et al. (Theor Appl Genet 96:15-22, 1998) corresponding to linkage group 1 of the SSR map, mapped seven SSR markers (ORS 965-1, ORS 965-2, ORS 959, ORS 371, ORS 716, and ORS 605) including ORS 1008 and one STS marker (STS10D6) to linkage group 1 covering a genetic distance of 65.0 cM. The Pl (13) gene, as a different source with its location on linkage group 1, was flanked by ORS 1008 on one side at a distance of 0.9 cM and ORS 965-1 on another side at a distance of 5.8 cM. These closely linked markers to the Pl (13) gene provide a valuable basis for marker-assisted selection in sunflower breeding programs.
Collapse
Affiliation(s)
- Sujatha Mulpuri
- Directorate of Oilseeds Research, Rajendranagar, Hyderabad 500030, India
| | | | | | | | | |
Collapse
|
25
|
Wu X, Zhong G, Findley SD, Cregan P, Stacey G, Nguyen HT. Genetic marker anchoring by six-dimensional pools for development of a soybean physical map. BMC Genomics 2008; 9:28. [PMID: 18211698 PMCID: PMC2259328 DOI: 10.1186/1471-2164-9-28] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Accepted: 01/22/2008] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Integrated genetic and physical maps are extremely valuable for genomic studies and as important references for assembling whole genome shotgun sequences. Screening of a BAC library using molecular markers is an indispensable procedure for integration of both physical and genetic maps of a genome. Molecular markers provide anchor points for integration of genetic and physical maps and also validate BAC contigs assembled based solely on BAC fingerprints. We employed a six-dimensional BAC pooling strategy and an in silico approach to anchor molecular markers onto the soybean physical map. RESULTS A total of 1,470 markers (580 SSRs and 890 STSs) were anchored by PCR on a subset of a Williams 82 BstY I BAC library pooled into 208 pools in six dimensions. This resulted in 7,463 clones (approximately 1x genome equivalent) associated with 1470 markers, of which the majority of clones (6,157, 82.5%) were anchored by one marker and 1106 (17.5%) individual clones contained two or more markers. This contributed to 1184 contigs having anchor points through this 6-D pool screening effort. In parallel, the 21,700 soybean Unigene set from NCBI was used to perform in silico mapping on 80,700 Williams 82 BAC end sequences (BES). This in silico analysis yielded 9,835 positive results anchored by 4152 unigenes that contributed to 1305 contigs and 1624 singletons. Among the 1305 contigs, 305 have not been previously anchored by PCR. Therefore, 1489 (78.8%) of 1893 contigs are anchored with molecular markers. These results are being integrated with BAC fingerprints to assemble the BAC contigs. Ultimately, these efforts will lead to an integrated physical and genetic map resource. CONCLUSION We demonstrated that the six-dimensional soybean BAC pools can be efficiently used to anchor markers to soybean BACs despite the complexity of the soybean genome. In addition to anchoring markers, the 6-D pooling method was also effective for targeting BAC clones for investigating gene families and duplicated regions in the genome, as well as for extending physical map contigs.
Collapse
Affiliation(s)
- Xiaolei Wu
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Guohua Zhong
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Seth D Findley
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Perry Cregan
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD 20705, USA
| | - Gary Stacey
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211, USA
- Department of Biochemistry; Department of Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Henry T Nguyen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211, USA
| |
Collapse
|