1
|
Debnath A, Sumpi H, Lap B, Bhutia KL, Behera A, Tyagi W, Rai M. Multi-Population Analysis for Leaf and Neck Blast Reveals Novel Source of Neck Blast Resistance in Rice. PLANTS (BASEL, SWITZERLAND) 2024; 13:2475. [PMID: 39273959 PMCID: PMC11397284 DOI: 10.3390/plants13172475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Rice blast is one of the most devastating biotic stresses that limits rice productivity. The North Eastern Hill (NEH) region of India is considered to be one of the primary centres of diversity for both rice and pathotypes of Magnaporthe grisea. Therefore, the present study was carried out to elucidate the genetic basis of leaf and neck blast resistance under Meghalaya conditions. A set of 80 diverse genotypes (natural population) and 2 F2 populations involving resistant parent, a wildtype landrace, LR 5 (Lal Jangali) and susceptible genotypes Sambha Mahsuri SUB 1 (SMS) and LR 26 (Chakhao Poireiton) were used for association analysis of reported major gene-linked markers with leaf and neck blast resistance to identify major effective genes under local conditions. Genotyping using twenty-five gene-specific markers across diverse genotypes and F2 progenies revealed genes Pi5 and Pi54 to be associated with leaf blast resistance in all three populations. Genes Pib and qPbm showed an association with neck blast resistance in both natural and LR 5 × SMS populations. Additionally, a set of 184 genome-wide polymorphic markers (SSRs and SNPs), when applied to F2-resistant and F2-susceptible DNA bulks derived from LR 5 × LR 26, suggested that Pi20(t) on chromosome 12 is one of the major genes imparting disease resistance. Markers snpOS318, RM1337 and RM7102 and RM247 and snpOS316 were associated with leaf blast and neck blast resistance, respectively. The genotypes, markers and genes will help in marker-assisted selection and development of varieties with durable resistance.
Collapse
Affiliation(s)
- Ashim Debnath
- School of Crop Improvement, College of Post Graduate Studies in Agricultural Sciences (CPGSAS), Central Agricultural University (Imphal), Umiam 793103, Meghalaya, India
- Department of Genetics and Plant Breeding, Faculty of Agricultural Sciences, Rajiv Gandhi University, Rono Hills, Doimukh 791112, Arunachal Pradesh, India
| | - Hage Sumpi
- School of Crop Improvement, College of Post Graduate Studies in Agricultural Sciences (CPGSAS), Central Agricultural University (Imphal), Umiam 793103, Meghalaya, India
| | - Bharati Lap
- School of Crop Improvement, College of Post Graduate Studies in Agricultural Sciences (CPGSAS), Central Agricultural University (Imphal), Umiam 793103, Meghalaya, India
- Department of Genetics and Plant Breeding, Faculty of Agricultural Sciences, Rajiv Gandhi University, Rono Hills, Doimukh 791112, Arunachal Pradesh, India
| | - Karma L Bhutia
- School of Crop Improvement, College of Post Graduate Studies in Agricultural Sciences (CPGSAS), Central Agricultural University (Imphal), Umiam 793103, Meghalaya, India
- Post Graduate College of Agriculture, Dr. Rajendra Prasad Central Agricultural University (RPCAU), Samastipur 848125, Bihar, India
| | - Abhilash Behera
- School of Crop Improvement, College of Post Graduate Studies in Agricultural Sciences (CPGSAS), Central Agricultural University (Imphal), Umiam 793103, Meghalaya, India
| | - Wricha Tyagi
- School of Crop Improvement, College of Post Graduate Studies in Agricultural Sciences (CPGSAS), Central Agricultural University (Imphal), Umiam 793103, Meghalaya, India
- Research Program-Accelerated Crop Improvement (ACI), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Telangana, India
| | - Mayank Rai
- School of Crop Improvement, College of Post Graduate Studies in Agricultural Sciences (CPGSAS), Central Agricultural University (Imphal), Umiam 793103, Meghalaya, India
- Post Graduate College of Agriculture, Dr. Rajendra Prasad Central Agricultural University (RPCAU), Samastipur 848125, Bihar, India
| |
Collapse
|
2
|
Tam NT, Nhan DK. Identification of Insertion/Deletion Markers for Photoperiod Sensitivity in Rice ( Oryza sativa L.). BIOLOGY 2024; 13:358. [PMID: 38785840 PMCID: PMC11117668 DOI: 10.3390/biology13050358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/06/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
The current study aims to identify candidate insertion/deletion (INDEL) markers associated with photoperiod sensitivity (PS) in rice landraces from the Vietnamese Mekong Delta. The whole-genome sequencing of 20 accessions was conducted to analyze INDEL variations between two photoperiod-sensitivity groups. A total of 2240 INDELs were identified between the two photoperiod-sensitivity groups. The selection criteria included INDELs with insertions or deletions of at least 20 base pairs within the improved rice group. Six INDELs were discovered on chromosomes 01 (5 INDELs) and 6 (1 INDEL), and two genes were identified: LOC_Os01g23780 and LOC_Os01g36500. The gene LOC_Os01g23780, which may be involved in rice flowering, was identified in a 20 bp deletion on chromosome 01 from the improved rice accession group. A marker was devised for this gene, indicating a polymorphism rate of 20%. Remarkably, 20% of the materials comprised improved rice accessions. This INDEL marker could explain 100% of the observed distinctions. Further analysis of the mapping population demonstrated that an INDEL marker associated with the MADS-box gene on chromosome 01 was linked to photoperiod sensitivity. The F1 population displayed two bands across all hybrid individuals. The marker demonstrates efficacy in distinguishing improved rice accessions within the indica accessions. This study underscores the potential applicability of the INDEL marker in breeding strategies.
Collapse
Affiliation(s)
- Nguyen Thanh Tam
- Mekong Delta Development Research Institute, Can Tho University, Campus 2, 3-2 Street, Can Tho 94115, Vietnam
| | - Dang Kieu Nhan
- Mekong Delta Development Research Institute, Can Tho University, Campus 2, 3-2 Street, Can Tho 94115, Vietnam
| |
Collapse
|
3
|
Zampieri E, Volante A, Marè C, Orasen G, Desiderio F, Biselli C, Canella M, Carmagnola L, Milazzo J, Adreit H, Tharreau D, Poncelet N, Vaccino P, Valè G. Marker-Assisted Pyramiding of Blast-Resistance Genes in a japonica Elite Rice Cultivar through Forward and Background Selection. PLANTS (BASEL, SWITZERLAND) 2023; 12:757. [PMID: 36840105 PMCID: PMC9963729 DOI: 10.3390/plants12040757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Rice blast, caused by Pyricularia oryzae, is one of the main rice diseases worldwide. The pyramiding of blast-resistance (Pi) genes, coupled to Marker-Assisted BackCrossing (MABC), provides broad-spectrum and potentially durable resistance while limiting the donor genome in the background of an elite cultivar. In this work, MABC coupled to foreground and background selections based on KASP marker assays has been applied to introgress four Pi genes (Piz, Pib, Pita, and Pik) in a renowned japonica Italian rice variety, highly susceptible to blast. Molecular analyses on the backcross (BC) lines highlighted the presence of an additional blast-resistance gene, the Pita-linked Pita2/Ptr gene, therefore increasing the number of blast-resistance introgressed genes to five. The recurrent genome was recovered up to 95.65%. Several lines carrying four (including Pita2) Pi genes with high recovery percentage levels were also obtained. Phenotypic evaluations confirmed the effectiveness of the pyramided lines against multivirulent strains, which also had broad patterns of resistance in comparison to those expected based on the pyramided Pi genes. The developed blast-resistant japonica lines represent useful donors of multiple blast-resistance genes for future rice-breeding programs related to the japonica group.
Collapse
Affiliation(s)
- Elisa Zampieri
- Council for Agricultural Research and Economics—Research Centre for Cereal and Industrial Crops, s.s. 11 to Torino, km 2.5, 13100 Vercelli, VC, Italy
- Institute for Sustainable Plant Protection, National Research Council, Strada Delle Cacce 73, 10135 Turin, TO, Italy
| | - Andrea Volante
- Council for Agricultural Research and Economics—Research Centre for Cereal and Industrial Crops, s.s. 11 to Torino, km 2.5, 13100 Vercelli, VC, Italy
- Council for Agricultural Research and Economics—Research Centre for Vegetable and Ornamental Crops, Corso Inglesi 508, 18038 Sanremo, IM, Italy
| | - Caterina Marè
- Council for Agricultural Research and Economics—Research Centre for Genomics and Bioinformatics, Via S. Protaso 302, 29017 Fiorenzuola d’Arda, PC, Italy
| | - Gabriele Orasen
- Bertone Sementi S.P.A., Strada Cacciolo, 15030 Terruggia, AL, Italy
| | - Francesca Desiderio
- Council for Agricultural Research and Economics—Research Centre for Genomics and Bioinformatics, Via S. Protaso 302, 29017 Fiorenzuola d’Arda, PC, Italy
| | - Chiara Biselli
- Council for Agricultural Research and Economics—Viticulture and Oenology, Viale Santa Margherita 80, 52100 Arezzo, AR, Italy
| | - Marco Canella
- Council for Agricultural Research and Economics—Research Centre for Cereal and Industrial Crops, s.s. 11 to Torino, km 2.5, 13100 Vercelli, VC, Italy
| | - Lorena Carmagnola
- Council for Agricultural Research and Economics—Research Centre for Cereal and Industrial Crops, s.s. 11 to Torino, km 2.5, 13100 Vercelli, VC, Italy
| | - Joëlle Milazzo
- CIRAD, UMR PHIM TA A 120/K, Campus de Baillarguet, 34, CEDEX 5, 34398 Montpellier, France
- Plant Health Institute of Montpellier (PHIM), University of Montpellier, CIRAD, INRAE, IRD, Montpellier SupAgro, 34, 34398 Montpellier, France
| | - Henri Adreit
- CIRAD, UMR PHIM TA A 120/K, Campus de Baillarguet, 34, CEDEX 5, 34398 Montpellier, France
- Plant Health Institute of Montpellier (PHIM), University of Montpellier, CIRAD, INRAE, IRD, Montpellier SupAgro, 34, 34398 Montpellier, France
| | - Didier Tharreau
- CIRAD, UMR PHIM TA A 120/K, Campus de Baillarguet, 34, CEDEX 5, 34398 Montpellier, France
- Plant Health Institute of Montpellier (PHIM), University of Montpellier, CIRAD, INRAE, IRD, Montpellier SupAgro, 34, 34398 Montpellier, France
| | - Nicolas Poncelet
- CIRAD, UMR PHIM TA A 120/K, Campus de Baillarguet, 34, CEDEX 5, 34398 Montpellier, France
- Plant Health Institute of Montpellier (PHIM), University of Montpellier, CIRAD, INRAE, IRD, Montpellier SupAgro, 34, 34398 Montpellier, France
| | - Patrizia Vaccino
- Council for Agricultural Research and Economics—Research Centre for Cereal and Industrial Crops, s.s. 11 to Torino, km 2.5, 13100 Vercelli, VC, Italy
| | - Giampiero Valè
- Council for Agricultural Research and Economics—Research Centre for Cereal and Industrial Crops, s.s. 11 to Torino, km 2.5, 13100 Vercelli, VC, Italy
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, Università del Piemonte Orientale, Piazza San Eusebio 5, 13100 Vercelli, VC, Italy
| |
Collapse
|
4
|
B J, Hosahatti R, Koti PS, Devappa VH, Ngangkham U, Devanna P, Yadav MK, Mishra KK, Aditya JP, Boraiah PK, Gaber A, Hossain A. Phenotypic and Genotypic screening of fifty-two rice (Oryza sativa L.) genotypes for desirable cultivars against blast disease. PLoS One 2023; 18:e0280762. [PMID: 36897889 PMCID: PMC10004593 DOI: 10.1371/journal.pone.0280762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 01/08/2023] [Indexed: 03/11/2023] Open
Abstract
Magnaporthe oryzae, the rice blast fungus, is one of the most dangerous rice pathogens, causing considerable crop losses around the world. In order to explore the rice blast-resistant sources, initially performed a large-scale screening of 277 rice accessions. In parallel with field evaluations, fifty-two rice accessions were genotyped for 25 major blast resistance genes utilizing functional/gene-based markers based on their reactivity against rice blast disease. According to the phenotypic examination, 29 (58%) and 22 (42%) entries were found to be highly resistant, 18 (36%) and 29 (57%) showed moderate resistance, and 05 (6%) and 01 (1%), respectively, were highly susceptible to leaf and neck blast. The genetic frequency of 25 major blast resistance genes ranged from 32 to 60%, with two genotypes having a maximum of 16 R-genes each. The 52 rice accessions were divided into two groups based on cluster and population structure analysis. The highly resistant and moderately resistant accessions are divided into different groups using the principal coordinate analysis. According to the analysis of molecular variance, the maximum diversity was found within the population, while the minimum diversity was found between the populations. Two markers (RM5647 and K39512), which correspond to the blast-resistant genes Pi36 and Pik, respectively, showed a significant association to the neck blast disease, whereas three markers (Pi2-i, Pita3, and k2167), which correspond to the blast-resistant genes Pi2, Pita/Pita2, and Pikm, respectively, showed a significant association to the leaf blast disease. The associated R-genes might be utilized in rice breeding programmes through marker-assisted breeding, and the identified resistant rice accessions could be used as prospective donors for the production of new resistant varieties in India and around the world.
Collapse
Affiliation(s)
- Jeevan B
- ICAR-Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, Uttarakhand, India
| | | | - Prasanna S Koti
- The University of Trans-Disciplinary Health Sciences and Technology, Jarakabande Kaval, Bengaluru, Karnataka, India
| | | | - Umakanta Ngangkham
- ICAR- Research Complex for North- Eastern Hill Region, Manipur centre, Imphal, Manipur, India
| | - Pramesh Devanna
- Rice Pathology Laboratory, AICRIP, Gangavathi, University of Agricultural Sciences, Raichur, Karnataka, India
| | - Manoj Kumar Yadav
- ICAR-Indian Agricultural Research Institute, Regional Station, Karnal, Haryana, India
| | - Krishna Kant Mishra
- ICAR-Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, Uttarakhand, India
| | - Jay Prakash Aditya
- ICAR-Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, Uttarakhand, India
| | - Palanna Kaki Boraiah
- Project Coordinating Unit, ICAR-AICRP on Small Millets, UAS, GKVK, Bengaluru, Karnataka, India
| | - Ahmed Gaber
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Akbar Hossain
- Department of Agronomy, Bangladesh Wheat and Maize Research Institute, Dinajpur, Bangladesh
| |
Collapse
|
5
|
Long W, Li Y, Yuan Z, Luo L, Luo L, Xu W, Cai Y, Xie H. Development of InDel markers for Oryza sativa ssp. javanica based on whole-genome resequencing. PLoS One 2022; 17:e0274418. [PMID: 36215240 PMCID: PMC9550083 DOI: 10.1371/journal.pone.0274418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 08/30/2022] [Indexed: 11/07/2022] Open
Abstract
Oryza sativa ssp. javanica rice varieties exhibit a wide variation in the phenotypes of several important agronomic traits, including grain quality, grain shape, plant architecture, disease resistance, and high adaption to an unfavorable environment, indicating a great potential for rice improvement. DNA molecular markers are basic and critical tools in genetic analysis and gene mining. However, only a few whole-genome variation analyses have been performed in Oryza sativa ssp. Javanica (tropical japonica rice), and this has hampered the utilization of such an important resource. In this study, the length of insertions/deletions variation greater larger than 10 bp from 10 Oryza sativa ssp. indica rice and 10 Oryza sativa ssp. tropical japonica rice were extracted by using the Nipponbare genome as a reference. A total of 118 primer pairs which were almost evenly distributed on each chromosome corresponding to the loci of InDels were designed by the Primer 5 program. We confirmed 85 InDel markers from 60 rice varieties, including indica and tropical japonica, by running polyacrylamide gels. The InDel markers function like SSRs in identifying hybrids, calculating genetic distance, constructing the genetic linkage map, and gene mining. The InDel markers developed in this study might help in genetic studies and to investigate the tropical japonica rice varieties.
Collapse
Affiliation(s)
- Weixiong Long
- Jiangxi Super-rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, National Engineering Laboratory for Rice, Nanchang, China
| | - Yonghui Li
- Jiangxi Super-rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, National Engineering Laboratory for Rice, Nanchang, China
| | - Zhengqing Yuan
- State key Laboratory of Hybrid Rice, Wuhan University, Wuhan, China
| | - Lihua Luo
- Jiangxi Super-rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, National Engineering Laboratory for Rice, Nanchang, China
| | - Laiyang Luo
- Jiangxi Super-rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, National Engineering Laboratory for Rice, Nanchang, China
| | - Weibiao Xu
- Jiangxi Super-rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, National Engineering Laboratory for Rice, Nanchang, China
| | - Yaohui Cai
- Jiangxi Super-rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, National Engineering Laboratory for Rice, Nanchang, China
| | - Hongwei Xie
- Jiangxi Super-rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, National Engineering Laboratory for Rice, Nanchang, China,* E-mail:
| |
Collapse
|
6
|
Sahu PK, Sao R, Choudhary DK, Thada A, Kumar V, Mondal S, Das BK, Jankuloski L, Sharma D. Advancement in the Breeding, Biotechnological and Genomic Tools towards Development of Durable Genetic Resistance against the Rice Blast Disease. PLANTS 2022; 11:plants11182386. [PMID: 36145787 PMCID: PMC9504543 DOI: 10.3390/plants11182386] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 01/02/2023]
Abstract
Rice production needs to be sustained in the coming decades, as the changeable climatic conditions are becoming more conducive to disease outbreaks. The majority of rice diseases cause enormous economic damage and yield instability. Among them, rice blast caused by Magnaportheoryzae is a serious fungal disease and is considered one of the major threats to world rice production. This pathogen can infect the above-ground tissues of rice plants at any growth stage and causes complete crop failure under favorable conditions. Therefore, management of blast disease is essentially required to sustain global food production. When looking at the drawback of chemical management strategy, the development of durable, resistant varieties is one of the most sustainable, economic, and environment-friendly approaches to counter the outbreaks of rice blasts. Interestingly, several blast-resistant rice cultivars have been developed with the help of breeding and biotechnological methods. In addition, 146 R genes have been identified, and 37 among them have been molecularly characterized to date. Further, more than 500 loci have been identified for blast resistance which enhances the resources for developing blast resistance through marker-assisted selection (MAS), marker-assisted backcross breeding (MABB), and genome editing tools. Apart from these, a better understanding of rice blast pathogens, the infection process of the pathogen, and the genetics of the immune response of the host plant are very important for the effective management of the blast disease. Further, high throughput phenotyping and disease screening protocols have played significant roles in easy comprehension of the mechanism of disease spread. The present review critically emphasizes the pathogenesis, pathogenomics, screening techniques, traditional and molecular breeding approaches, and transgenic and genome editing tools to develop a broad spectrum and durable resistance against blast disease in rice. The updated and comprehensive information presented in this review would be definitely helpful for the researchers, breeders, and students in the planning and execution of a resistance breeding program in rice against this pathogen.
Collapse
Affiliation(s)
- Parmeshwar K. Sahu
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India
| | - Richa Sao
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India
| | | | - Antra Thada
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India
| | - Vinay Kumar
- ICAR-National Institute of Biotic Stress Management, Baronda, Raipur 493225, Chhattisgarh, India
| | - Suvendu Mondal
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India
| | - Bikram K. Das
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India
| | - Ljupcho Jankuloski
- Plant Breeding and Genetics Section, Joint FAO/IAEA Centre, International Atomic Energy Agency, 1400 Vienna, Austria
- Correspondence: (L.J.); (D.S.); Tel.: +91-7000591137 (D.S.)
| | - Deepak Sharma
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India
- Correspondence: (L.J.); (D.S.); Tel.: +91-7000591137 (D.S.)
| |
Collapse
|
7
|
Zhao Y, Ma X, Zhou M, Wang J, Wang G, Su C. Validating a Major Quantitative Trait Locus and Predicting Candidate Genes Associated With Kernel Width Through QTL Mapping and RNA-Sequencing Technology Using Near-Isogenic Lines in Maize. FRONTIERS IN PLANT SCIENCE 2022; 13:935654. [PMID: 35845666 PMCID: PMC9280665 DOI: 10.3389/fpls.2022.935654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Kernel size is an important agronomic trait for grain yield in maize. The purpose of this study was to validate a major quantitative trait locus (QTL), qKW-1, which was identified in the F2 and F2:3 populations from a cross between the maize inbred lines SG5/SG7 and to predict candidate genes for kernel width (KW) in maize. A major QTL, qKW-1, was mapped in multiple environments in our previous study. To validate and fine map qKW-1, near-isogenic lines (NILs) with 469 individuals were developed by continuous backcrossing between SG5 as the donor parent and SG7 as the recurrent parent. Marker-assisted selection was conducted from the BC2F1 generation with simple sequence repeat (SSR) markers near qKW-1. A secondary linkage map with four markers, PLK12, PLK13, PLK15, and PLK17, was developed and used for mapping the qKW-1 locus. Finally, qKW-1 was mapped between the PLK12 and PLK13 intervals, with a distance of 2.23 cM to PLK12 and 0.04 cM to PLK13, a confidence interval of 5.3 cM and a phenotypic contribution rate of 23.8%. The QTL mapping result obtained was further validated by using selected overlapping recombinant chromosomes on the target segment of maize chromosome 3. Transcriptome analysis showed that a total of 12 out of 45 protein-coding genes differentially expressed between the two parents were detected in the identified qKW-1 physical interval by blasting with the Zea_Mays_B73 v4 genome. GRMZM2G083176 encodes the Niemann-Pick disease type C, and GRMZM2G081719 encodes the nitrate transporter 1 (NRT1) protein. The two genes GRMZM2G083176 and GRMZM2G081719 were predicted to be candidate genes of qKW-1. Reverse transcription-polymerase chain reaction (RT-qPCR) validation was conducted, and the results provide further proof of the two candidate genes most likely responsible for qKW-1. The work will not only help to understand the genetic mechanisms of KW in maize but also lay a foundation for further cloning of promising loci.
Collapse
Affiliation(s)
- Yanming Zhao
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- Shandong Provincial Key Laboratory of Dryland Farming Technology, Qingdao Agricultural University, Qingdao, China
| | - Xiaojie Ma
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Miaomiao Zhou
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Junyan Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Guiying Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Chengfu Su
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- Shandong Provincial Key Laboratory of Dryland Farming Technology, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
8
|
Understanding the Dynamics of Blast Resistance in Rice-Magnaporthe oryzae Interactions. J Fungi (Basel) 2022; 8:jof8060584. [PMID: 35736067 PMCID: PMC9224618 DOI: 10.3390/jof8060584] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/03/2022] [Accepted: 05/10/2022] [Indexed: 01/09/2023] Open
Abstract
Rice is a global food grain crop for more than one-third of the human population and a source for food and nutritional security. Rice production is subjected to various stresses; blast disease caused by Magnaporthe oryzae is one of the major biotic stresses that has the potential to destroy total crop under severe conditions. In the present review, we discuss the importance of rice and blast disease in the present and future global context, genomics and molecular biology of blast pathogen and rice, and the molecular interplay between rice–M. oryzae interaction governed by different gene interaction models. We also elaborated in detail on M. oryzae effector and Avr genes, and the role of noncoding RNAs in disease development. Further, rice blast resistance QTLs; resistance (R) genes; and alleles identified, cloned, and characterized are discussed. We also discuss the utilization of QTLs and R genes for blast resistance through conventional breeding and transgenic approaches. Finally, we review the demonstrated examples and potential applications of the latest genome-editing tools in understanding and managing blast disease in rice.
Collapse
|
9
|
Dash M, Somvanshi VS, Godwin J, Budhwar R, Sreevathsa R, Rao U. Exploring Genomic Variations in Nematode-Resistant Mutant Rice Lines. FRONTIERS IN PLANT SCIENCE 2022; 13:823372. [PMID: 35401589 PMCID: PMC8988285 DOI: 10.3389/fpls.2022.823372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Rice (Oryza sativa) production is seriously affected by the root-knot nematode Meloidogyne graminicola, which has emerged as a menace in upland and irrigated rice cultivation systems. Previously, activation tagging in rice was utilized to identify candidate gene(s) conferring resistance against M. graminicola. T-DNA insertional mutants were developed in a rice landrace (acc. JBT 36/14), and four mutant lines showed nematode resistance. Whole-genome sequencing of JBT 36/14 was done along with the four nematode resistance mutant lines to identify the structural genetic variations that might be contributing to M. graminicola resistance. Sequencing on Illumina NovaSeq 6000 platform identified 482,234 genetic variations in JBT 36/14 including 448,989 SNPs and 33,245 InDels compared to reference indica genome. In addition, 293,238-553,648 unique SNPs and 32,395-65,572 unique InDels were found in the four mutant lines compared to their JBT 36/14 background, of which 93,224 SNPs and 8,170 InDels were common between all the mutant lines. Functional annotation of genes containing these structural variations showed that the majority of them were involved in metabolism and growth. Trait analysis revealed that most of these genes were involved in morphological traits, physiological traits and stress resistance. Additionally, several families of transcription factors, such as FAR1, bHLH, and NAC, and putative susceptibility (S) genes, showed the presence of SNPs and InDels. Our results indicate that subject to further genetic validations, these structural genetic variations may be involved in conferring nematode resistance to the rice mutant lines.
Collapse
Affiliation(s)
- Manoranjan Dash
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | | - Roli Budhwar
- Bionivid Technology Private Limited, Bangalore, India
| | | | - Uma Rao
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
10
|
Nihad SAI, Hasan MK, Kabir A, Hasan MAI, Bhuiyan MR, Yusop MR, Latif MA. Linkage of SSR markers with rice blast resistance and development of partial resistant advanced lines of rice ( Oryza sativa) through marker-assisted selection. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:153-169. [PMID: 35221577 PMCID: PMC8847655 DOI: 10.1007/s12298-022-01141-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
UNLABELLED Rice blast disease is one of the major bottlenecks of rice production in the world including Bangladesh. To develop blast resistant lines, a cross was made between a high yielding but blast susceptible variety MR263 and a blast resistant variety Pongsu seribu 2. Marker-assisted backcross breeding was followed to develop F1, BC1F1, BC2F1, BC2F2, BC2F3, BC2F4 and BC2F5 population. DNA markers i.e., RM206, RM1359 and RM8225 closely linked to Pb1, pi21 and Piz blast resistant genes, respectively and marker RM276 linked to panicle blast resistant QTL (qPbj-6.1) were used in foreground selection. Calculated chi-square (χ2) value of phenotypic and genotypic segregation data of BC2F1 population followed goodness of fit to the expected ratio (1:1) (phenotypic data χ2 = 1.08, p = 0.701; genotypic data χ2 = range from 0.33 to 3.00, p = 0.08-0.56) and it indicates that the inheritance pattern of blast resistance was followed by a single gene model. Eighty-nine advanced lines of BC2F5 population were developed and out of them, 58 lines contained Piz, Pb1, pi21, and qPbj-6.1 while 31 lines contained Piz, Pb1, and QTL qPbj-6.1. Marker-trait association analysis revealed that molecular markers i.e., RM206, RM276, and RM8225 were tightly linked with blast resistance, and each marker was explained by 33.33% phenotypic variation (resistance reaction). Morphological and pathogenicity performance of advanced lines was better compared to the recurrent parent. Developed blast resistance advanced lines could be used as donors or blast resistant variety for the management of devastating rice blast disease. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-022-01141-3.
Collapse
Affiliation(s)
| | - Mohammad Kamrul Hasan
- Plant Pathology Division, Bangladesh Rice Research Institute, Gazipur, 1701 Bangladesh
| | - Amirul Kabir
- Plant Pathology Division, Bangladesh Rice Research Institute, Gazipur, 1701 Bangladesh
| | - Md. Al-Imran Hasan
- Plant Pathology Division, Bangladesh Rice Research Institute, Gazipur, 1701 Bangladesh
| | - Md. Rejwan Bhuiyan
- Plant Pathology Division, Bangladesh Rice Research Institute, Gazipur, 1701 Bangladesh
| | - Mohd Rafii Yusop
- Institute of Tropical Agriculture and Food Security (ITAFoS), University of Putra Malaysia, Serdang, Malaysia
| | - Mohammad Abdul Latif
- Plant Pathology Division, Bangladesh Rice Research Institute, Gazipur, 1701 Bangladesh
| |
Collapse
|
11
|
Chen YC, Hu CC, Chang FY, Chen CY, Chen WL, Tung CW, Shen WC, Wu CW, Cheng AH, Liao DJ, Liao CY, Liu LYD, Chung CL. Marker-Assisted Development and Evaluation of Monogenic Lines of Rice cv. Kaohsiung 145 Carrying Blast Resistance Genes. PLANT DISEASE 2021; 105:3858-3868. [PMID: 34181437 DOI: 10.1094/pdis-01-21-0142-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Rice blast is a serious threat to global rice production. Large-scale and long-term cultivation of rice varieties with a single blast resistance gene usually leads to breakdown of resistance. To effectively control rice blast in Taiwan, marker-assisted backcrossing was conducted to develop monogenic lines carrying different blast resistance genes in the genetic background of an elite japonica rice cultivar, Kaohsiung 145 (KH145). Eleven International Rice Research Institute (IRRI)-bred blast-resistant lines (IRBLs) showing broad-spectrum resistance to local Pyricularia oryzae isolates were used as resistance donors. Sequencing analysis revealed that the recurrent parent, KH145, does not carry known resistance alleles at the target Pi2/9, Pik, Pita, and Ptr loci. For each IRBL × KH145 cross, we screened 21 to 370 (average of 108) plants per generation from the BC1F1 to BC3F1/BC4F1 generation. A total of 1,499 BC3F2/BC4F2 lines carrying homozygous resistance alleles were selected and self-crossed for four to six successive generations. The derived lines were also evaluated for background genotype using genotyping by sequencing, for blast resistance under artificial inoculation and natural infection conditions, and for agronomic performance in multiple field trials. In Chiayi and Taitung blast nurseries in 2018 to 2020, Pi2, Pi9, and Ptr conferred high resistance, Pi20 and Pik-h moderate resistance, and Pi1, Pi7, Pik-p, and Pik susceptibility to leaf blast; only Pi2, Pi9, and Ptr conferred effective resistance against panicle blast. The monogenic lines showed agronomic traits, yield, and grain quality similar to those of KH145, suggesting the potential of growing a mixture of lines to achieve durable resistance in the field.
Collapse
Affiliation(s)
- Yi-Chia Chen
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Chih-Chieh Hu
- Kaohsiung District Agricultural Research and Extension Station, Council of Agriculture, No. 26, Dehe Rd., Pingtung County 90846, Taiwan
| | - Fang-Yu Chang
- Kaohsiung District Agricultural Research and Extension Station, Council of Agriculture, No. 26, Dehe Rd., Pingtung County 90846, Taiwan
| | - Chieh-Yi Chen
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Wei-Lun Chen
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Chih-Wei Tung
- Department of Agronomy, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Wei-Chiang Shen
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Chih-Wen Wu
- Kaohsiung District Agricultural Research and Extension Station, Council of Agriculture, No. 26, Dehe Rd., Pingtung County 90846, Taiwan
| | - An-Hsiu Cheng
- Tainan District Agricultural Research and Extension Station, No. 70, Muchang Rd., Hsinhua District, Council of Agriculture, Tainan 71246, Taiwan
| | - Dah-Jing Liao
- Department of Agronomy, Chiayi Agricultural Experiment Branch, Taiwan Agricultural Research Institute, Council of Agriculture, No. 2, Minquan Rd., Chiayi City 600015, Taiwan
| | - Ching-Ying Liao
- Taitung District Agricultural Research and Extension Station, Council of Agriculture, No. 675, Chunghua Rd., Sec. 1, Taitung City 95055, Taiwan
| | - Li-Yu D Liu
- Department of Agronomy, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Chia-Lin Chung
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| |
Collapse
|
12
|
Mutiga SK, Rotich F, Were VM, Kimani JM, Mwongera DT, Mgonja E, Onaga G, Konaté K, Razanaboahirana C, Bigirimana J, Ndayiragije A, Gichuhi E, Yanoria MJ, Otipa M, Wasilwa L, Ouedraogo I, Mitchell T, Wang GL, Correll JC, Talbot NJ. Integrated Strategies for Durable Rice Blast Resistance in Sub-Saharan Africa. PLANT DISEASE 2021; 105:2749-2770. [PMID: 34253045 DOI: 10.1094/pdis-03-21-0593-fe] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Rice is a key food security crop in Africa. The importance of rice has led to increasing country-specific, regional, and multinational efforts to develop germplasm and policy initiatives to boost production for a more food-secure continent. Currently, this critically important cereal crop is predominantly cultivated by small-scale farmers under suboptimal conditions in most parts of sub-Saharan Africa (SSA). Rice blast disease, caused by the fungus Magnaporthe oryzae, represents one of the major biotic constraints to rice production under small-scale farming systems of Africa, and developing durable disease resistance is therefore of critical importance. In this review, we provide an overview of the major advances by a multinational collaborative research effort to enhance sustainable rice production across SSA and how it is affected by advances in regional policy. As part of the multinational effort, we highlight the importance of joint international partnerships in tackling multiple crop production constraints through integrated research and outreach programs. More specifically, we highlight recent progress in establishing international networks for rice blast disease surveillance, farmer engagement, monitoring pathogen virulence spectra, and the establishment of regionally based blast resistance breeding programs. To develop blast-resistant, high yielding rice varieties for Africa, we have established a breeding pipeline that utilizes real-time data of pathogen diversity and virulence spectra, to identify major and minor blast resistance genes for introgression into locally adapted rice cultivars. In addition, the project has developed a package to support sustainable rice production through regular stakeholder engagement, training of agricultural extension officers, and establishment of plant clinics.
Collapse
Affiliation(s)
- Samuel K Mutiga
- Biosciences eastern and central Africa - International Livestock Research Institute (BecA-ILRI), Nairobi, Kenya
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, U.S.A
| | - Felix Rotich
- Department of Agricultural Resource Management, University of Embu, Embu, Kenya
| | - Vincent M Were
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, U.K
| | - John M Kimani
- Kenya Agricultural and Livestock Research Organization (KALRO), Nairobi, Kenya
| | - David T Mwongera
- Kenya Agricultural and Livestock Research Organization (KALRO), Nairobi, Kenya
| | | | - Geoffrey Onaga
- National Agricultural Research Organization, Kampala, Uganda
| | - Kadougoudiou Konaté
- Institute of Environment and Agricultural Research, Bobo-Dioulasso, Burkina Faso
| | | | | | | | - Emily Gichuhi
- Kenya Agricultural and Livestock Research Organization (KALRO), Nairobi, Kenya
| | | | - Miriam Otipa
- Kenya Agricultural and Livestock Research Organization (KALRO), Nairobi, Kenya
| | - Lusike Wasilwa
- Kenya Agricultural and Livestock Research Organization (KALRO), Nairobi, Kenya
| | - Ibrahima Ouedraogo
- Institute of Environment and Agricultural Research, Bobo-Dioulasso, Burkina Faso
| | - Thomas Mitchell
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, U.S.A
| | - Guo-Liang Wang
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, U.S.A
| | - James C Correll
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, U.S.A
| | - Nicholas J Talbot
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, U.K
| |
Collapse
|
13
|
Identification and Validation of Marketing Weight-Related SNP Markers Using SLAF Sequencing in Male Yangzhou Geese. Genes (Basel) 2021; 12:genes12081203. [PMID: 34440377 PMCID: PMC8393582 DOI: 10.3390/genes12081203] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 11/17/2022] Open
Abstract
Growth performance is a complex economic trait for avian production. The swan goose (Anser cygnoides) has never been exploited genetically like chickens or other waterfowl species such as ducks. Traditional phenotypic selection is still the main method for genetic improvement of geese body weight. In this study, specific locus amplified fragment sequencing (SLAF-seq) with bulked segregant analysis (BSA) was conducted for discovering and genotyping single nucleotide polymorphisms (SNPs) associated with marketing weight trait in male geese. A total of 149,045 SNPs were obtained from 427,093 SLAF tags with an average sequencing depth of 44.97-fold and a Q30 value of 93.26%. After SNPs' filtering, a total of 12,917 SNPs were included in the study. The 31 highest significant SNPs-which had different allelic frequencies-were further validated by individual-based AS-PCR genotyping in two populations. The association between 10 novel SNPs and the marketing weight of male geese was confirmed. The 10 significant SNPs were involved in linear regression model analysis, which confirmed single-SNP associations and revealed three types of SNP networks for marketing weight. The 10 significant SNPs were located within or close to 10 novel genes, which were identified. The qPCR analysis showed significant difference between genotypes of each SNP in seven genes. Developed SLAF-seq and identified genes will enrich growth performance studies, promoting molecular breeding applications to boost the marketing weight of Chinese geese.
Collapse
|
14
|
Evaluation of indigenous aromatic rice cultivars from sub-Himalayan Terai region of India for nutritional attributes and blast resistance. Sci Rep 2021; 11:4786. [PMID: 33637778 PMCID: PMC7910543 DOI: 10.1038/s41598-021-83921-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/03/2021] [Indexed: 01/12/2023] Open
Abstract
Indigenous folk rice cultivars often possess remarkable but unrevealed potential in terms of nutritional attributes and biotic stress tolerance. The unique cooking qualities and blissful aroma of many of these landraces make it an attractive low-cost alternative to high priced Basmati rice. Sub-Himalayan Terai region is bestowed with great agrobiodiversity in traditional heirloom rice cultivars. In the present study, ninety-nine folk rice cultivars from these regions were collected, purified and characterized for morphological and yield traits. Based on traditional importance and presence of aroma, thirty-five genotypes were selected and analyzed for genetic diversity using micro-satellite marker system. The genotypes were found to be genetically distinct and of high nutritive value. The resistant starch content, amylose content, glycemic index and antioxidant potential of these genotypes represented wide variability and 'Kataribhog', 'Sadanunia', 'Chakhao' etc. were identified as promising genotypes in terms of different nutritional attributes. These cultivars were screened further for resistance against blast disease in field trials and cultivars like 'Sadanunia', 'T4M-3-5', 'Chakhao Sampark' were found to be highly resistant to the blast disease whereas 'Kalonunia', 'Gobindabhog', 'Konkanijoha' were found to be highly susceptible. Principal Component analysis divided the genotypes in distinct groups for nutritional potential and blast tolerance. The resistant and susceptible genotypes were screened for the presence of the blast resistant pi genes and association analysis was performed with disease tolerance. Finally, a logistic model based on phenotypic traits for prediction of the blast susceptibility of the genotypes is proposed with more than 80% accuracy.
Collapse
|
15
|
Mao T, Zhu M, Ahmad S, Ye G, Sheng Z, Hu S, Jiao G, Xie L, Tang S, Wei X, Hu P, Shao G. Superior japonica rice variety YJ144 with improved rice blast resistance, yield, and quality achieved using molecular design and multiple breeding strategies. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:65. [PMID: 34642568 PMCID: PMC8498087 DOI: 10.1007/s11032-021-01259-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 09/30/2021] [Indexed: 05/06/2023]
Abstract
UNLABELLED Yanfeng 47 (YF47) is an elite japonica rice variety cultivated in China on nearly 2 million hectares over the past 20 years. However, YF47 is highly susceptible to rice blast (Magnaporthe oryzae), one of the most destructive rice diseases. In this study, we developed novel TPAP (tetra-primer ARMS-PCR) functional markers for the genes Pita, Pib, and Pid2, all of which afford broad-spectrum resistance to blast. A collection of 91 japonica rice germplasms with similar ecological characteristics to YF47 were screened, and Wuyunjing 27 (WYJ27) with Pita and Pib alleles and P135 with the Pid2 allele were identified. Furthermore, the corresponding positive Pita, Pib, and Pid2 alleles were transferred into YF47 using single, mutual, and backcrosses, together with molecular marker-assisted selection (MAS) and anther culture technology. These genetic materials, carrying one, two, or three functional alleles, were generated within 3 years, and compared to YF47, they all showed improved resistance to naturally inoculated rice blast. Further improved lines (IL) 1 to 5 (all containing Pita, Pib, and Pid2 alleles) were evaluated for yield performance, and when no fungicide was applied, all lines except IL-4 showed increased traits compared with those of YF47. IL-5, renamed Yanjing 144 (YJ144), showed yield increases in the Liaoning province regional variety comparison test and superior appearance quality compared to YF47. Our work provides a molecular design strategy for pyramiding multiple beneficial genes to rapidly improve rice blast resistance, yield, and quality using multiple breeding strategies. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11032-021-01259-4.
Collapse
Affiliation(s)
- Ting Mao
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006 China
- Liaoning Institute of Saline-Alkali and Utilization, Panjin, 124010 China
| | - Mingdong Zhu
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006 China
- Hunan Rice Research Institute, Changsha, 410125 China
| | - Shakeel Ahmad
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006 China
- Maize Research Station, Ayub Agricultural Research Institute, Faisalabad, 38850 Pakistan
| | - Guoyou Ye
- Rice Breeding Innovations Platform, International Rice Research Institute, 1301 Metro Manila, Philippines
| | - Zhonghua Sheng
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006 China
| | - Shikai Hu
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006 China
| | - Guiai Jiao
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006 China
| | - Lihong Xie
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006 China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006 China
| | - Xiangjin Wei
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006 China
| | - Peisong Hu
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006 China
| | - Gaoneng Shao
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006 China
| |
Collapse
|
16
|
Sharma SK, Sharma D, Meena RP, Yadav MK, Hosahatti R, Dubey AK, Sharma P, Kumar S, Pramesh D, Nabi SU, Bhuvaneshwari S, Anand YR, Dubey SK, Singh TS. Recent Insights in Rice Blast Disease Resistance. Fungal Biol 2021. [DOI: 10.1007/978-3-030-60585-8_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
17
|
Chen W, Li Y, Zhu S, Fang S, Zhao L, Guo Y, Wang J, Yuan L, Lu Y, Liu F, Yao J, Zhang Y. A Retrotransposon Insertion in GhMML3_D12 Is Likely Responsible for the Lintless Locus li3 of Tetraploid Cotton. FRONTIERS IN PLANT SCIENCE 2020; 11:593679. [PMID: 33324436 PMCID: PMC7725795 DOI: 10.3389/fpls.2020.593679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/09/2020] [Indexed: 05/31/2023]
Abstract
Cotton (Gossypium) seed fibers can be divided into lint (long) or fuzz (very short). Using fiberless (fuzzless-lintless) mutants, the lint initiation gene Li3 was identified by map-based cloning. The gene is an R2R3-MYB transcription factor located on chromosome D12 (GhMML3_D12). Sequence analysis revealed that li3 is a loss-of-function allele containing a retrotransposon insertion in the second exon that completely blocks the gene’s expression. The genetic loci n2 and n3 underlying the recessive fuzzless phenotype in Gossypium hirsutum were also mapped. The genomic location of n3 overlapped with that of the dominant fuzzless locus N1, and n3 appeared to be a loss-of-function allele caused by a single nucleotide polymorphism (SNP) mutation in the coding region of GhMML3_A12. The n2 allele was found to be co-located with li3 and originated from G. babardense. n2 and li3 are possibly the multiple alleles of the GhMML3_D12 gene. Genetic analysis showed that Li3 and N3 are a pair of homologs with additive effects for the initiation of fibers (fuzz or lint). In addition, the presence of another locus was speculated, and it appeared to show an inhibitory effect on the expression of GhMML3. These findings provide new information about the genetic factors affecting the initiation of fibers in cotton.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yan Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shouhong Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shengtao Fang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Lanjie Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yan Guo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Junyi Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Li Yuan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Youjun Lu
- School of Biological Science and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Fang Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jinbo Yao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yongshan Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| |
Collapse
|
18
|
Tian D, Lin Y, Chen Z, Chen Z, Yang F, Wang F, Wang Z, Wang M. Exploring the Distribution of Blast Resistance Alleles at the Pi2/9 Locus in Major Rice-Producing Areas of China by a Novel Indel Marker. PLANT DISEASE 2020; 104:1932-1938. [PMID: 32432983 DOI: 10.1094/pdis-10-19-2187-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Rice blast disease caused by the fungus Magnaporthe oryzae damages cereal crops and poses a high risk to rice production around the world. Currently, planting cultivars with resistance (R) genes is still the most environment-friendly approach to control this disease. Effective identification of R genes existing in diverse rice cultivars is important for understanding the distribution of R genes and predicting their contribution to resistance against blast isolates in regional breeding. Here, we developed a new insertion/deletion (InDel) marker, Pigm/2/9InDel, that can differentiate the cloned R genes (Pigm, Pi9, and Pi2/Piz-t) at the Pi2/9 locus. Pigm/2/9InDel combined with the marker Pi2-LRR for Pi2 was applied to determine the distribution of these four R genes among 905 rice varieties, most of which were collected from the major rice-producing regions in China. In brief, nine Pigm-containing varieties from Fujian and Guangdong provinces were identified. All of the 62 Pi2-containing varieties were collected from Guangdong, and 60 varieties containing Piz-t were from seven provinces. However, Pi9 was not found in any of the Chinese varieties. The newly identified varieties carrying the Pi2/9 alleles were further subjected to inoculation tests with regional blast isolates and field trials. Our results indicate that Pigm and Pi2 alleles have been introgressed for blast resistance breeding mainly in the Fujian and Guangdong region, and Pi9 is a valuable blast resistance resource to be introduced into China.
Collapse
Affiliation(s)
- Dagang Tian
- Biotechnology Research Institute, Fujian Key Laboratory of Genetic Engineering for Agriculture, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yan Lin
- Biotechnology Research Institute, Fujian Key Laboratory of Genetic Engineering for Agriculture, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, China
| | - Ziqiang Chen
- Biotechnology Research Institute, Fujian Key Laboratory of Genetic Engineering for Agriculture, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, China
| | - Zaijie Chen
- Biotechnology Research Institute, Fujian Key Laboratory of Genetic Engineering for Agriculture, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, China
| | - Fang Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Feng Wang
- Biotechnology Research Institute, Fujian Key Laboratory of Genetic Engineering for Agriculture, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, China
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Institute of Oceanography, Minjiang University, Fuzhou, Fujian 350108, China
| | - Mo Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
19
|
Molecular profiling of blast resistance genes and evaluation of leaf and neck blast disease reaction in rice. J Genet 2020. [DOI: 10.1007/s12041-020-01212-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Whankaew S, Kaewmanee S, Ruttajorn K, Phongdara A. Indel marker analysis of putative stress-related genes reveals genetic diversity and differentiation of rice landraces in peninsular Thailand. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:1237-1247. [PMID: 32549686 PMCID: PMC7266884 DOI: 10.1007/s12298-020-00816-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 01/06/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Genetic assessment of rice landraces is important for germplasm evaluation and genetic resource utilization. Rice landraces in peninsular Thailand have adapted to unique environmental stresses over time and have great significance as a genetic resource for crop improvement. In this study, rice landraces derived from rice research centers and farmers from different areas of peninsular Thailand were genetically assessed using 16 polymorphic InDel markers from putative stress-related genes. A total of 36 alleles were obtained. The average PIC value was 0.27/marker. The FST varied from 0.46 to 1.00. Genetic diversity was observed both within and between populations. AMOVA indicated that genetic variations occurred mainly between populations (70%) rather than within populations (30%). The dendrogram, population structure, and PCoA scatter plot clearly demonstrated the differentiation of the two major groups, i.e., landraces from upland and lowland rice ecosystems. The unique alleles of Indel1922, -2543, -6746, -7447 and -8538, which lie in genes encoding putative WAX2, heavy metal-associated domain-containing protein, GA20ox2, PTF1, and PLETHORA2, respectively, were only found in rice from upland ecosystems. Putative WAX2, GA20ox2, and PLETHORA2 are likely related to drought and salt stress. Our findings demonstrate the diversity of landraces in peninsular Thailand. The preservation of these landraces should be facilitated with effective markers to maintain all variant alleles and to protect the genetic diversity. Indel1922, -2543, -6746, -7447 and -8538 have the potential to differentiate upland rice from lowland rice. Furthermore, Indel1922, -6746 and -8538 might be effective markers for drought and salt tolerance.
Collapse
Affiliation(s)
- Sukhuman Whankaew
- Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Songkhla, 90110 Thailand
| | - Siriluk Kaewmanee
- Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Songkhla, 90110 Thailand
| | - Kedsirin Ruttajorn
- Department of Biology, Faculty of Science, Thaksin University, Phatthalung, 93210 Thailand
| | - Amornrat Phongdara
- Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Songkhla, 90110 Thailand
- Center for Genomics and Bioinformatics Research, Faculty of Science, Prince of Songkla University, Songkhla, 90110 Thailand
| |
Collapse
|
21
|
Zhang Z, Jia Y, Wang Y, Sun G. A Rapid Survey of Avirulence Genes in Field Isolates of Magnaporthe oryzae. PLANT DISEASE 2020; 104:717-723. [PMID: 31935345 DOI: 10.1094/pdis-08-19-1688-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Magnaporthe oryzae is the causal agent for the devastating disease rice blast. The avirulence (AVR) genes in M. oryzae are required to initiate robust disease resistance mediated by the corresponding resistance (R) genes in rice. Therefore, monitoring pathogen AVR genes is important to predict the stability of R gene-mediated blast resistance. In the present study, we analyzed the DNA sequence dynamics of five AVR genes, namely, AVR-Pita1, AVR-Pik, AVR-Pizt, AVR-Pia, and AVR-Pii, in field isolates of M. oryzae in order to understand the effectiveness of the R genes, Pi-ta, Pi-k, Pi-zt, Pia, and Pii in the Southern U.S. rice growing region. Genomic DNA of 258 blast isolates collected from commercial fields of the Southern UNITED STATES during 1975-2009 were subjected to PCR amplification with AVR gene-specific PCR markers. PCR products were obtained from 232 isolates. The absence of PCR products in the remaining 26 isolates suggests that these isolates do not contain the tested AVR genes. Amplified PCR products were subsequently gel purified and sequenced. Based on the presence or absence of the five AVR genes, 232 field isolates were classified into 10 haplotype groups. The results revealed that 174 isolates of M. oryzae carried AVR-Pita1, 225 isolates carried AVR-Pizt, 44 isolates carried AVR-Pik, 3 isolates carried AVR-Pia, and one isolate carried AVR-Pii. AVR-Pita1 was highly variable, and 40 AVR-Pita1 haplotypes were identified in avirulent isolates. AVR-Pik had four nucleotide sequence site changes resulting in amino acid substitutions, whereas three other AVR genes, AVR-Pizt, AVR-Pia, and AVR-Pii, were relatively stable. Two AVR genes, AVR-Pik and AVR-Pizt, were found to exist in relatively larger proportions of the tested field isolates, which suggested that their corresponding R genes Pi-k and Pi-zt can be deployed in preventing blast disease in the Southern UNITED STATES in addition to Pi-ta. This study demonstrates that continued AVR gene monitoring in the pathogen population is critical for ensuring the effectiveness of deployed blast R genes in commercial rice fields.
Collapse
Affiliation(s)
- Zhen Zhang
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yulin Jia
- USDA-ARS Dale Bumpers National Rice Research Center, Stuttgart, AR 72160, U.S.A
| | - Yanli Wang
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Guochang Sun
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
22
|
Mizuno H, Katagiri S, Kanamori H, Mukai Y, Sasaki T, Matsumoto T, Wu J. Evolutionary dynamics and impacts of chromosome regions carrying R-gene clusters in rice. Sci Rep 2020; 10:872. [PMID: 31964985 PMCID: PMC6972905 DOI: 10.1038/s41598-020-57729-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/06/2020] [Indexed: 11/17/2022] Open
Abstract
To elucidate R-gene evolution, we compared the genomic compositions and structures of chromosome regions carrying R-gene clusters among cultivated and wild rice species. Map-based sequencing and gene annotation of orthologous genomic regions (1.2 to 1.9 Mb) close to the terminal end of the long arm of rice chromosome 11 revealed R-gene clusters within six cultivated and ancestral wild rice accessions. NBS-LRR R-genes were much more abundant in Asian cultivated rice (O. sativa L.) than in its ancestors, indicating that homologs of functional genes involved in the same pathway likely increase in number because of tandem duplication of chromosomal segments and were selected during cultivation. Phylogenetic analysis using amino acid sequences indicated that homologs of paired Pikm1–Pikm2 (NBS-LRR) genes conferring rice-blast resistance were likely conserved among all cultivated and wild rice species we examined, and the homolog of Xa3/Xa26 (LRR-RLK) conferring bacterial blight resistance was lacking only in Kasalath.
Collapse
Affiliation(s)
- Hiroshi Mizuno
- Institute of Crop Science (NICS), National Agriculture and Food Research Organization, 1-2, Ohwashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Satoshi Katagiri
- Institute of Crop Science (NICS), National Agriculture and Food Research Organization, 1-2, Ohwashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Hiroyuki Kanamori
- Institute of Crop Science (NICS), National Agriculture and Food Research Organization, 1-2, Ohwashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Yoshiyuki Mukai
- Institute of Crop Science (NICS), National Agriculture and Food Research Organization, 1-2, Ohwashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Takuji Sasaki
- Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-0054, Japan
| | - Takashi Matsumoto
- Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-0054, Japan
| | - Jianzhong Wu
- Institute of Crop Science (NICS), National Agriculture and Food Research Organization, 1-2, Ohwashi, Tsukuba, Ibaraki, 305-8634, Japan.
| |
Collapse
|
23
|
Development and utilization of an InDel marker linked to the fertility restorer genes of CMS-D8 and CMS-D2 in cotton. Mol Biol Rep 2020; 47:1275-1282. [PMID: 31894465 DOI: 10.1007/s11033-019-05240-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/17/2019] [Indexed: 01/12/2023]
Abstract
The cytoplasmic male sterility (CMS) system is a useful tool for commercial hybrid cotton seed production. Two main CMS systems, CMS-D8 and CMS-D2, have been recognized with Rf2 and Rf1 as the restorer genes, respectively. The development of molecular markers tightly linked with restorer genes can facilitate the breeding of restorer lines. In this study, the InDel-1892 marker was developed to distinguish Rf2 and Rf1 simultaneously. Sequence alignment implied that CMS-D8-Rf2 has a 32 bp insertion and that CMS-D2-Rf1 has a 186 bp insertion at the InDel-1892 locus. The codominant marker was co-segregated with Rf1 and Rf2. Hence, this marker can be used for tracing Rf1 and Rf2 simultaneously and identifying the allele status at the restorer gene locus. The results of this study will facilitate efficient marker-assisted selection for restorer lines and hybrids of CMS systems.
Collapse
|
24
|
|
25
|
Kalia S, Rathour R. Current status on mapping of genes for resistance to leaf- and neck-blast disease in rice. 3 Biotech 2019; 9:209. [PMID: 31093479 PMCID: PMC6509304 DOI: 10.1007/s13205-019-1738-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 04/29/2019] [Indexed: 12/15/2022] Open
Abstract
Blast disease caused by fungal pathogen Pyricularia oryzae is a major threat to rice productivity worldwide. The rice-blast pathogen can infect both leaves and panicle neck nodes. Nearly, 118 genes for resistance to leaf blast have been identified and 25 of these have been molecularly characterized. A great majority of these genes encode nucleotide-binding site-leucine-rich repeat (NBS-LRR) proteins and are organized into clusters as allelic or tightly linked genes. Compared to ever expanding list of leaf-blast-resistance genes, a few major genes mediating protection to neck blast have been identified. A great majority of the genetic studies conducted with the genotypes differing in the degree of susceptibility/resistance to neck blast have suggested quantitative inheritance for the trait. Several reports on co-localization of gene/QTLs for leaf- and neck-blast resistance in rice genome have suggested the existence of common genes for resistance to both phases of the disease albeit inconsistencies in the genomic positions leaf- and neck-blast-resistance genes in some instances have presented the contrasting scenario. There is a strong evidence to suggest that developmentally regulated expression of many blast-resistance genes is a key determinant deciding their effectiveness against leaf or neck blast. Testing of currently characterized leaf-blast-resistance genes for their reaction to neck blast is required to expand the existing repertoire resistance genes against neck blast. Current developments in the understanding of molecular basis of host-pathogen interactions in rice-blast pathosystem offer novel possibilities for achieving durable resistance to blast through exploitation of natural or genetically engineered loss-of-function alleles of host susceptibility genes.
Collapse
Affiliation(s)
- S. Kalia
- Department of Agricultural Biotechnology, CSK Himachal Pradesh Agricultural University, Palampur, Himachal Pradesh 176062 India
| | - R. Rathour
- Department of Agricultural Biotechnology, CSK Himachal Pradesh Agricultural University, Palampur, Himachal Pradesh 176062 India
| |
Collapse
|
26
|
Yadav MK, Aravindan S, Ngangkham U, Raghu S, Prabhukarthikeyan SR, Keerthana U, Marndi BC, Adak T, Munda S, Deshmukh R, Pramesh D, Samantaray S, Rath PC. Blast resistance in Indian rice landraces: Genetic dissection by gene specific markers. PLoS One 2019; 14:e0211061. [PMID: 30673751 PMCID: PMC6343911 DOI: 10.1371/journal.pone.0211061] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 01/07/2019] [Indexed: 11/18/2022] Open
Abstract
Understanding of genetic diversity is important to explore existing gene in any crop breeding program. Most of the diversity preserved in the landraces which are well–known reservoirs of important traits for biotic and abiotic stresses. In the present study, the genetic diversity at twenty-four most significant blast resistance gene loci using twenty-eight gene specific markers were investigated in landraces originated from nine diverse rice ecologies of India. Based on phenotypic evaluation, landraces were classified into three distinct groups: highly resistant (21), moderately resistant (70) and susceptible (70). The landraces harbour a range of five to nineteen genes representing blast resistance allele with the frequency varied from 4.96% to 100%. The cluster analysis grouped entire 161 landraces into two major groups. Population structure along with other parameters was also analyzed to understand the evolution of blast resistance gene in rice. The population structure analysis and principal coordinate analysis classified the landraces into two sub–populations. Analysis of molecular variance showed maximum (93%) diversity within the population and least (7%) between populations. Five markers viz; K3957, Pikh, Pi2–i, RM212and RM302 were strongly associated with blast disease with the phenotypic variance of 1.4% to 7.6%. These resistant landraces will serve as a valuable genetic resource for future genomic studies, host–pathogen interaction, identification of novel R genes and rice improvement strategies.
Collapse
Affiliation(s)
| | - S. Aravindan
- ICAR-National Rice Research Institute, Odisha, India
| | | | - S. Raghu
- ICAR-National Rice Research Institute, Odisha, India
| | | | - U. Keerthana
- ICAR-National Rice Research Institute, Odisha, India
| | - B. C. Marndi
- ICAR-National Rice Research Institute, Odisha, India
| | - Totan Adak
- ICAR-National Rice Research Institute, Odisha, India
| | - Susmita Munda
- ICAR-National Rice Research Institute, Odisha, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali Punjab, India
| | - D. Pramesh
- Rice Pathology Laboratory, AICRIP, Gangavathi, University of Agricultural Sciences, Raichur, India
| | | | - P. C. Rath
- ICAR-National Rice Research Institute, Odisha, India
| |
Collapse
|
27
|
Platten JD, Cobb JN, Zantua RE. Criteria for evaluating molecular markers: Comprehensive quality metrics to improve marker-assisted selection. PLoS One 2019; 14:e0210529. [PMID: 30645632 PMCID: PMC6333336 DOI: 10.1371/journal.pone.0210529] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 12/26/2018] [Indexed: 11/18/2022] Open
Abstract
Despite strong interest over many years, the usage of quantitative trait loci in plant breeding has often failed to live up to expectations. A key weak point in the utilisation of QTLs is the “quality” of markers used during marker-assisted selection (MAS): unreliable markers result in variable outcomes, leading to a perception that MAS products fail to achieve reliable improvement. Most reports of markers used for MAS focus on markers derived from the mapping population. There are very few studies that examine the reliability of these markers in other genetic backgrounds, and critically, no metrics exist to describe and quantify this reliability. To improve the MAS process, this work proposes five core metrics that fully describe the reliability of a marker. These metrics give a comprehensive and quantitative measure of the ability of a marker to correctly classify germplasm as QTL[+]/[–], particularly against a background of high allelic diversity. Markers that score well on these metrics will have far higher reliability in breeding, and deficiencies in specific metrics give information on circumstances under which a marker may not be reliable. The metrics are applicable across different marker types and platforms, allowing an objective comparison of the performance of different markers irrespective of the platform. Evaluating markers using these metrics demonstrates that trait-specific markers consistently out-perform markers designed for other purposes. These metrics also provide a superb set of criteria for designing superior marker systems for a target QTL, enabling the selection of an optimal marker set before committing to design.
Collapse
|
28
|
Yu H, Shahid MQ, Li R, Li W, Liu W, Ghouri F, Liu X. Genome-Wide Analysis of Genetic Variations and the Detection of Rich Variants of NBS-LRR Encoding Genes in Common Wild Rice Lines. PLANT MOLECULAR BIOLOGY REPORTER 2018; 36:618-630. [PMID: 30363818 PMCID: PMC6182389 DOI: 10.1007/s11105-018-1103-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Common wild rice (Oryza rufipogon Griff.) is invaluable genetic resource for rice resistance breeding. Whole-genome re-sequencing was conducted to systematically analyze the variations in two new inbred lines (Huaye 3 and Huaye 4) developed from a common wild rice. A total of 4,841,127 SNPs, 1,170,479 InDels, 24,080 structural variations (SVs), and 298 copy number variations (CNVs) were identified in three materials. Approximately 16.24 and 5.64% of the total SNPs and InDels of Huaye 3 and Huaye 4 were located in genic regions, respectively. Together, 12,486 and 15,925 large-effect SNPs, and 12,417 and 14,513 large-effect InDels, which affect the integrity of the encoded protein, were identified in Huaye 3 and Huaye 4, respectively. The distribution map of 194 and 245 NBS-LRR encoding homologs was constructed across 12 rice chromosomes. Further, GO enrichment analysis of the homologs with identical genotype variations in Huaye 3 and Huaye 4 revealed 67, 82, and 58 homologs involved in cell death, response to stress, and both terms, respectively. Comparative analysis displayed that 550 out of 652 SNPs and 129 out of 147 InDels were present in a widely used blast-susceptible rice variety (LTH). Protein-protein interaction analysis revealed a strong interaction between NBS-LRR candidates and several known R genes. One homolog of disease resistance protein (RPM1) was involved in the plant-pathogen interaction pathway. Artificial inoculation of disease/insect displayed resistance phenotypes against rice blast and brown planthopper in two lines. The results will provide allele-specific markers for rice molecular breeding.
Collapse
Affiliation(s)
- Hang Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
| | - Rongbai Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004 China
| | - Wei Li
- College of Agronomy, Guangdong Ocean University, Zhanjiang, 524000 China
| | - Wen Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Department of Tropical Crops, Guangdong Agriculture Industry Business Polytechnic College, Guangzhou, 510507 China
| | - Fozia Ghouri
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
29
|
Singh PK, Nag A, Arya P, Kapoor R, Singh A, Jaswal R, Sharma TR. Prospects of Understanding the Molecular Biology of Disease Resistance in Rice. Int J Mol Sci 2018; 19:E1141. [PMID: 29642631 PMCID: PMC5979409 DOI: 10.3390/ijms19041141] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/03/2018] [Accepted: 03/05/2018] [Indexed: 12/11/2022] Open
Abstract
Rice is one of the important crops grown worldwide and is considered as an important crop for global food security. Rice is being affected by various fungal, bacterial and viral diseases resulting in huge yield losses every year. Deployment of resistance genes in various crops is one of the important methods of disease management. However, identification, cloning and characterization of disease resistance genes is a very tedious effort. To increase the life span of resistant cultivars, it is important to understand the molecular basis of plant host-pathogen interaction. With the advancement in rice genetics and genomics, several rice varieties resistant to fungal, bacterial and viral pathogens have been developed. However, resistance response of these varieties break down very frequently because of the emergence of more virulent races of the pathogen in nature. To increase the durability of resistance genes under field conditions, understanding the mechanismof resistance response and its molecular basis should be well understood. Some emerging concepts like interspecies transfer of pattern recognition receptors (PRRs) and transgenerational plant immunitycan be employed to develop sustainable broad spectrum resistant varieties of rice.
Collapse
Affiliation(s)
- Pankaj Kumar Singh
- National Agri-Food Biotechnology Institute, Mohali 140 306, Punjab, India.
| | - Akshay Nag
- National Agri-Food Biotechnology Institute, Mohali 140 306, Punjab, India.
| | - Preeti Arya
- National Agri-Food Biotechnology Institute, Mohali 140 306, Punjab, India.
| | - Ritu Kapoor
- National Agri-Food Biotechnology Institute, Mohali 140 306, Punjab, India.
| | - Akshay Singh
- National Agri-Food Biotechnology Institute, Mohali 140 306, Punjab, India.
| | - Rajdeep Jaswal
- National Agri-Food Biotechnology Institute, Mohali 140 306, Punjab, India.
| | - Tilak Raj Sharma
- National Agri-Food Biotechnology Institute, Mohali 140 306, Punjab, India.
| |
Collapse
|
30
|
Šebela D, Quiñones C, Cruz CV, Ona I, Olejnícková J, Jagadish KSV. Chlorophyll Fluorescence and Reflectance-Based Non-Invasive Quantification of Blast, Bacterial Blight and Drought Stresses in Rice. PLANT & CELL PHYSIOLOGY 2018; 59:30-43. [PMID: 29370434 DOI: 10.1093/pcp/pcx144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 09/06/2017] [Indexed: 06/07/2023]
Abstract
Response of rice (Oryza sativa) exposed to both biotic and abiotic stresses can be quantified by employing fast and accurate optical methods. In this study, the overall stress responses of (i) 12 near-isogenic lines (NILs) in the genetic background of the rice blast-susceptible cultivar Lijiangxintuanheigu (LTH) and (ii) four NILs in the genetic background of the bacterial blight-susceptible cultivar IR24, were inspected by means of Chl fluorescence (Chl-F) imaging. The distribution of the maximum and effective quantum yield of PSII (Fv/FM and QY) and steady-state Chl-F (Ft) were found to be effective in differentiating symptomatic leaf tissue for both rice blast and bacterial blight, which correlated well with 30 cycles of rice blast and six cycles of bacterial blight previously screened using classical (manual) approaches. Subsequently, identified Chl-F parameters allowing detection under ambient light (QY and Ft) were tested across both biotic and abiotic (drought) stress experiments, for rice cultivars contrasting for drought stress response (N22, IR64 and NSIC Rc 222). Their applicability has been proven for both rice blast and bacterial blight; however, QY failed to detect the effect of drought. In addition to Chl-F, the usefulness of 11 selected vegetation indices (Vis) was tested on these three cultivars exposed to particular stresses: (i) rice blast was detectable by Vis calculated from the visible spectrum; (ii) bacterial blight by near-infrared-related Vis; and (iii) drought by Vis calculated from the visible spectrum. The key Chl-F parameters and/or Vis have been summarized and discussed.
Collapse
Affiliation(s)
- David Šebela
- Global Change Research Institute CAS, 603 00, Brno, Czech Republic
- Faculty of Science, University of South Bohemia, 37005, České Budějovice, Czech Republic
- International Rice Research Institute, DAPO BOX 7777, Metro Manila, Philippines
| | - Cherryl Quiñones
- International Rice Research Institute, DAPO BOX 7777, Metro Manila, Philippines
| | - Casiana V Cruz
- International Rice Research Institute, DAPO BOX 7777, Metro Manila, Philippines
| | - Isabelita Ona
- International Rice Research Institute, DAPO BOX 7777, Metro Manila, Philippines
| | | | - Krishna S V Jagadish
- International Rice Research Institute, DAPO BOX 7777, Metro Manila, Philippines
- Department of Agronomy, 2004 Throckmorton Plant Science Center, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
31
|
Xiao G, Borja FN, Mauleon R, Padilla J, Telebanco-Yanoria MJ, Yang J, Lu G, Dionisio-Sese M, Zhou B. Identification of resistant germplasm containing novel resistance genes at or tightly linked to the Pi2/9 locus conferring broad-spectrum resistance against rice blast. RICE (NEW YORK, N.Y.) 2017; 10:37. [PMID: 28779340 PMCID: PMC5544663 DOI: 10.1186/s12284-017-0176-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/31/2017] [Indexed: 05/04/2023]
Abstract
BACKGROUND The rice Pi2/9 locus harbors multiple resistance (R) genes each controlling broad-spectrum resistance against diverse isolates of Magnaporthe oryzae, a fungal pathogen causing devastating blast disease to rice. Identification of more resistance germplasm containing novel R genes at or tightly linked to the Pi2/9 locus would promote breeding of resistance rice cultivars. RESULTS In this study, we aim to identify resistant germplasm containing novel R genes at or tightly linked to the Pi2/9 locus using a molecular marker, designated as Pi2/9-RH (Pi2/9 resistant haplotype), developed from the 5' portion of the Pi2 sequence which was conserved only in the rice lines containing functional Pi2/9 alleles. DNA analysis using Pi2/9-RH identified 24 positive lines in 55 shortlisted landraces which showed resistance to 4 rice blast isolates. Analysis of partial sequences of the full-length cDNAs of Pi2/9 homologues resulted in the clustering of these 24 lines into 5 haplotypes each containing different Pi2/9 homologues which were designated as Pi2/9-A5, -A15, -A42, -A53, and -A54. Interestingly, Pi2/9-A5 and Pi2/9-A54 are identical to Piz-t and Pi2, respectively. To validate the association of other three novel Pi2/9 homologues with the blast resistance, monogenic lines at BC3F3 generation were generated by marker assisted backcrossing (MABC). Resistance assessment of the derived monogenic lines in both the greenhouse and the field hotspot indicated that they all controlled broad-spectrum resistance against rice blast. Moreover, genetic analysis revealed that the blast resistance of these three monogenic lines was co-segregated with Pi2/9-RH, suggesting that the Pi2/9 locus or tightly linked loci could be responsible for the resistance. CONCLUSION The newly developed marker Pi2/9-RH could be used as a potentially diagnostic marker for the quick identification of resistant donors containing functional Pi2/9 alleles or unknown linked R genes. The three new monogenic lines containing the Pi2/9 introgression segment could be used as valuable materials for disease assessment and resistance donors in breeding program.
Collapse
Affiliation(s)
- Gui Xiao
- Genetics and Biotechnology Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
- Institute of Biological Sciences, University of the Philippines Los Baños, 4031 Laguna, Philippines
| | - Frances Nikki Borja
- Genetics and Biotechnology Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Ramil Mauleon
- Genetics and Biotechnology Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Jonas Padilla
- Genetics and Biotechnology Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Mary Jeanie Telebanco-Yanoria
- Genetics and Biotechnology Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Jianxia Yang
- Fujian Agriculture and Forest University, Fuzhou, 350002 China
| | - Guodong Lu
- Fujian Agriculture and Forest University, Fuzhou, 350002 China
| | - Maribel Dionisio-Sese
- Institute of Biological Sciences, University of the Philippines Los Baños, 4031 Laguna, Philippines
| | - Bo Zhou
- Genetics and Biotechnology Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| |
Collapse
|
32
|
Sahu PK, Mondal S, Sharma D, Vishwakarma G, Kumar V, Das BK. InDel marker based genetic differentiation and genetic diversity in traditional rice (Oryza sativa L.) landraces of Chhattisgarh, India. PLoS One 2017; 12:e0188864. [PMID: 29190790 PMCID: PMC5708757 DOI: 10.1371/journal.pone.0188864] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 11/14/2017] [Indexed: 11/28/2022] Open
Abstract
Rice has been cultivating and utilizing by humans for thousands of years under diverse environmental conditions. Therefore, tremendous genetic differentiation and diversity has occurred at various agro-ecosystems. The significant indica–japonica differentiation in rice provides great opportunities for its genetic improvement. In the present investigation, a total of 42 polymorphic InDel markers were used for differentiating 188 rice landraces and two local varieties of Chhattisgarh, India into indica and japonica related genotypes based on ‘InDel molecular index’. Frequency of japonica alleles varied from 0.11 to 0.89 among landraces. Results revealed that 104 rice landraces have indica type genetic architecture along with three tested indica cultivars Swarna, Mahamaya and Rajeshwari. Another 60 landraces were placed under ‘close to indica’ type. It was found that three rice landraces i.e. Kalajeera, Kapri, Tulsimala were ‘close to japonica’ type and 21 landraces were ‘intermediate’ type. The result from the calculation of ‘InDel molecular index’ was further verified with STRUCTURE, AMOVA, PCA and cluster analysis. Population structure analysis revealed two genetically distinct populations within the 190 rice landraces/genotypes. Based on AMOVA, ‘intermediate’ type, ‘close to japonica’ type and Dongjinbyeo (a japonica cultivar from Republic of Korea) displayed significant genetic differentiation (ɸPT = 0.642, P = 0.000) from ‘indica’ and ‘close to indica’ groups. The PCA scatter plot and dendrogram demonstrated a clear pattern of two major group differentiations. ‘Close to japonica’ type and ‘intermediate’ type landraces/genotypes were grouped with Dongjinbyeo and formed a separate cluster at 30% Jaccard’s similarity level from rest of the landraces/genotypes which were ‘close to indica’ or ‘indica’ type. Such a significant genetic differentiation among the locally adapted landraces could be exploited for the development of rice varieties introgressing higher yield potential and better plant types of japonica type as per the need of consumers and rice traders.
Collapse
Affiliation(s)
- Parmeshwar Kumar Sahu
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh, India
| | - Suvendu Mondal
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- * E-mail: (SM); (DS)
| | - Deepak Sharma
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh, India
- * E-mail: (SM); (DS)
| | - Gautam Vishwakarma
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Vikash Kumar
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Bikram Kishore Das
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| |
Collapse
|
33
|
Mgonja EM, Park CH, Kang H, Balimponya EG, Opiyo S, Bellizzi M, Mutiga SK, Rotich F, Ganeshan VD, Mabagala R, Sneller C, Correll J, Zhou B, Talbot NJ, Mitchell TK, Wang GL. Genotyping-by-Sequencing-Based Genetic Analysis of African Rice Cultivars and Association Mapping of Blast Resistance Genes Against Magnaporthe oryzae Populations in Africa. PHYTOPATHOLOGY 2017; 107:1039-1046. [PMID: 28719243 DOI: 10.1094/phyto-12-16-0421-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Understanding the genetic diversity of rice germplasm is important for the sustainable use of genetic materials in rice breeding and production. Africa is rich in rice genetic resources that can be utilized to boost rice productivity on the continent. A major constraint to rice production in Africa is rice blast, caused by the hemibiotrophic fungal pathogen Magnaporthe oryzae. In this report, we present the results of a genotyping-by-sequencing (GBS)-based diversity analysis of 190 African rice cultivars and an association mapping of blast resistance (R) genes and quantitative trait loci (QTLs). The 190 African cultivars were clustered into three groups based on the 184K single nucleotide polymorphisms generated by GBS. We inoculated the rice cultivars with six African M. oryzae isolates. Association mapping identified 25 genomic regions associated with blast resistance (RABRs) in the rice genome. Moreover, PCR analysis indicated that RABR_23 is associated with the Pi-ta gene on chromosome 12. Our study demonstrates that the combination of GBS-based genetic diversity population analysis and association mapping is effective in identifying rice blast R genes/QTLs that contribute to resistance against African populations of M. oryzae. The identified markers linked to the RABRs and 14 highly resistant cultivars in this study will be useful for rice breeding in Africa.
Collapse
Affiliation(s)
- Emmanuel M Mgonja
- First, second, fifth, sixth, ninth, fifteenth, and sixteenth authors: Department of Plant Pathology, The Ohio State University, Columbus; fourth and eleventh authors: Department of Horticulture and Crop science, The Ohio State University, Columbus; third author: State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China; tenth author: Department of Crop Science and Production, Sokoine University of Agriculture, Morogoro, Tanzania; seventh, eighth, and twelfth author: Department of Plant Pathology, University of Arkansas, Fayetteville; seventh author: Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, ILRI Complex, Nairobi, Kenya; thirteenth author: International Rice Research Institute, Los Banos, Philippines; and fourteenth author, School of Biosciences, University of Exeter, UK
| | - Chan Ho Park
- First, second, fifth, sixth, ninth, fifteenth, and sixteenth authors: Department of Plant Pathology, The Ohio State University, Columbus; fourth and eleventh authors: Department of Horticulture and Crop science, The Ohio State University, Columbus; third author: State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China; tenth author: Department of Crop Science and Production, Sokoine University of Agriculture, Morogoro, Tanzania; seventh, eighth, and twelfth author: Department of Plant Pathology, University of Arkansas, Fayetteville; seventh author: Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, ILRI Complex, Nairobi, Kenya; thirteenth author: International Rice Research Institute, Los Banos, Philippines; and fourteenth author, School of Biosciences, University of Exeter, UK
| | - Houxiang Kang
- First, second, fifth, sixth, ninth, fifteenth, and sixteenth authors: Department of Plant Pathology, The Ohio State University, Columbus; fourth and eleventh authors: Department of Horticulture and Crop science, The Ohio State University, Columbus; third author: State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China; tenth author: Department of Crop Science and Production, Sokoine University of Agriculture, Morogoro, Tanzania; seventh, eighth, and twelfth author: Department of Plant Pathology, University of Arkansas, Fayetteville; seventh author: Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, ILRI Complex, Nairobi, Kenya; thirteenth author: International Rice Research Institute, Los Banos, Philippines; and fourteenth author, School of Biosciences, University of Exeter, UK
| | - Elias G Balimponya
- First, second, fifth, sixth, ninth, fifteenth, and sixteenth authors: Department of Plant Pathology, The Ohio State University, Columbus; fourth and eleventh authors: Department of Horticulture and Crop science, The Ohio State University, Columbus; third author: State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China; tenth author: Department of Crop Science and Production, Sokoine University of Agriculture, Morogoro, Tanzania; seventh, eighth, and twelfth author: Department of Plant Pathology, University of Arkansas, Fayetteville; seventh author: Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, ILRI Complex, Nairobi, Kenya; thirteenth author: International Rice Research Institute, Los Banos, Philippines; and fourteenth author, School of Biosciences, University of Exeter, UK
| | - Stephen Opiyo
- First, second, fifth, sixth, ninth, fifteenth, and sixteenth authors: Department of Plant Pathology, The Ohio State University, Columbus; fourth and eleventh authors: Department of Horticulture and Crop science, The Ohio State University, Columbus; third author: State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China; tenth author: Department of Crop Science and Production, Sokoine University of Agriculture, Morogoro, Tanzania; seventh, eighth, and twelfth author: Department of Plant Pathology, University of Arkansas, Fayetteville; seventh author: Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, ILRI Complex, Nairobi, Kenya; thirteenth author: International Rice Research Institute, Los Banos, Philippines; and fourteenth author, School of Biosciences, University of Exeter, UK
| | - Maria Bellizzi
- First, second, fifth, sixth, ninth, fifteenth, and sixteenth authors: Department of Plant Pathology, The Ohio State University, Columbus; fourth and eleventh authors: Department of Horticulture and Crop science, The Ohio State University, Columbus; third author: State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China; tenth author: Department of Crop Science and Production, Sokoine University of Agriculture, Morogoro, Tanzania; seventh, eighth, and twelfth author: Department of Plant Pathology, University of Arkansas, Fayetteville; seventh author: Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, ILRI Complex, Nairobi, Kenya; thirteenth author: International Rice Research Institute, Los Banos, Philippines; and fourteenth author, School of Biosciences, University of Exeter, UK
| | - Samuel K Mutiga
- First, second, fifth, sixth, ninth, fifteenth, and sixteenth authors: Department of Plant Pathology, The Ohio State University, Columbus; fourth and eleventh authors: Department of Horticulture and Crop science, The Ohio State University, Columbus; third author: State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China; tenth author: Department of Crop Science and Production, Sokoine University of Agriculture, Morogoro, Tanzania; seventh, eighth, and twelfth author: Department of Plant Pathology, University of Arkansas, Fayetteville; seventh author: Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, ILRI Complex, Nairobi, Kenya; thirteenth author: International Rice Research Institute, Los Banos, Philippines; and fourteenth author, School of Biosciences, University of Exeter, UK
| | - Felix Rotich
- First, second, fifth, sixth, ninth, fifteenth, and sixteenth authors: Department of Plant Pathology, The Ohio State University, Columbus; fourth and eleventh authors: Department of Horticulture and Crop science, The Ohio State University, Columbus; third author: State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China; tenth author: Department of Crop Science and Production, Sokoine University of Agriculture, Morogoro, Tanzania; seventh, eighth, and twelfth author: Department of Plant Pathology, University of Arkansas, Fayetteville; seventh author: Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, ILRI Complex, Nairobi, Kenya; thirteenth author: International Rice Research Institute, Los Banos, Philippines; and fourteenth author, School of Biosciences, University of Exeter, UK
| | - Veena Devi Ganeshan
- First, second, fifth, sixth, ninth, fifteenth, and sixteenth authors: Department of Plant Pathology, The Ohio State University, Columbus; fourth and eleventh authors: Department of Horticulture and Crop science, The Ohio State University, Columbus; third author: State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China; tenth author: Department of Crop Science and Production, Sokoine University of Agriculture, Morogoro, Tanzania; seventh, eighth, and twelfth author: Department of Plant Pathology, University of Arkansas, Fayetteville; seventh author: Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, ILRI Complex, Nairobi, Kenya; thirteenth author: International Rice Research Institute, Los Banos, Philippines; and fourteenth author, School of Biosciences, University of Exeter, UK
| | - Robert Mabagala
- First, second, fifth, sixth, ninth, fifteenth, and sixteenth authors: Department of Plant Pathology, The Ohio State University, Columbus; fourth and eleventh authors: Department of Horticulture and Crop science, The Ohio State University, Columbus; third author: State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China; tenth author: Department of Crop Science and Production, Sokoine University of Agriculture, Morogoro, Tanzania; seventh, eighth, and twelfth author: Department of Plant Pathology, University of Arkansas, Fayetteville; seventh author: Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, ILRI Complex, Nairobi, Kenya; thirteenth author: International Rice Research Institute, Los Banos, Philippines; and fourteenth author, School of Biosciences, University of Exeter, UK
| | - Clay Sneller
- First, second, fifth, sixth, ninth, fifteenth, and sixteenth authors: Department of Plant Pathology, The Ohio State University, Columbus; fourth and eleventh authors: Department of Horticulture and Crop science, The Ohio State University, Columbus; third author: State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China; tenth author: Department of Crop Science and Production, Sokoine University of Agriculture, Morogoro, Tanzania; seventh, eighth, and twelfth author: Department of Plant Pathology, University of Arkansas, Fayetteville; seventh author: Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, ILRI Complex, Nairobi, Kenya; thirteenth author: International Rice Research Institute, Los Banos, Philippines; and fourteenth author, School of Biosciences, University of Exeter, UK
| | - Jim Correll
- First, second, fifth, sixth, ninth, fifteenth, and sixteenth authors: Department of Plant Pathology, The Ohio State University, Columbus; fourth and eleventh authors: Department of Horticulture and Crop science, The Ohio State University, Columbus; third author: State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China; tenth author: Department of Crop Science and Production, Sokoine University of Agriculture, Morogoro, Tanzania; seventh, eighth, and twelfth author: Department of Plant Pathology, University of Arkansas, Fayetteville; seventh author: Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, ILRI Complex, Nairobi, Kenya; thirteenth author: International Rice Research Institute, Los Banos, Philippines; and fourteenth author, School of Biosciences, University of Exeter, UK
| | - Bo Zhou
- First, second, fifth, sixth, ninth, fifteenth, and sixteenth authors: Department of Plant Pathology, The Ohio State University, Columbus; fourth and eleventh authors: Department of Horticulture and Crop science, The Ohio State University, Columbus; third author: State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China; tenth author: Department of Crop Science and Production, Sokoine University of Agriculture, Morogoro, Tanzania; seventh, eighth, and twelfth author: Department of Plant Pathology, University of Arkansas, Fayetteville; seventh author: Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, ILRI Complex, Nairobi, Kenya; thirteenth author: International Rice Research Institute, Los Banos, Philippines; and fourteenth author, School of Biosciences, University of Exeter, UK
| | - Nicholas J Talbot
- First, second, fifth, sixth, ninth, fifteenth, and sixteenth authors: Department of Plant Pathology, The Ohio State University, Columbus; fourth and eleventh authors: Department of Horticulture and Crop science, The Ohio State University, Columbus; third author: State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China; tenth author: Department of Crop Science and Production, Sokoine University of Agriculture, Morogoro, Tanzania; seventh, eighth, and twelfth author: Department of Plant Pathology, University of Arkansas, Fayetteville; seventh author: Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, ILRI Complex, Nairobi, Kenya; thirteenth author: International Rice Research Institute, Los Banos, Philippines; and fourteenth author, School of Biosciences, University of Exeter, UK
| | - Thomas K Mitchell
- First, second, fifth, sixth, ninth, fifteenth, and sixteenth authors: Department of Plant Pathology, The Ohio State University, Columbus; fourth and eleventh authors: Department of Horticulture and Crop science, The Ohio State University, Columbus; third author: State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China; tenth author: Department of Crop Science and Production, Sokoine University of Agriculture, Morogoro, Tanzania; seventh, eighth, and twelfth author: Department of Plant Pathology, University of Arkansas, Fayetteville; seventh author: Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, ILRI Complex, Nairobi, Kenya; thirteenth author: International Rice Research Institute, Los Banos, Philippines; and fourteenth author, School of Biosciences, University of Exeter, UK
| | - Guo-Liang Wang
- First, second, fifth, sixth, ninth, fifteenth, and sixteenth authors: Department of Plant Pathology, The Ohio State University, Columbus; fourth and eleventh authors: Department of Horticulture and Crop science, The Ohio State University, Columbus; third author: State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China; tenth author: Department of Crop Science and Production, Sokoine University of Agriculture, Morogoro, Tanzania; seventh, eighth, and twelfth author: Department of Plant Pathology, University of Arkansas, Fayetteville; seventh author: Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, ILRI Complex, Nairobi, Kenya; thirteenth author: International Rice Research Institute, Los Banos, Philippines; and fourteenth author, School of Biosciences, University of Exeter, UK
| |
Collapse
|
34
|
Umakanth B, Vishalakshi B, Sathish Kumar P, Rama Devi SJS, Bhadana VP, Senguttuvel P, Kumar S, Sharma SK, Sharma PK, Prasad MS, Madhav MS. Diverse Rice Landraces of North-East India Enables the Identification of Novel Genetic Resources for Magnaporthe Resistance. FRONTIERS IN PLANT SCIENCE 2017; 8:1500. [PMID: 28912793 PMCID: PMC5583601 DOI: 10.3389/fpls.2017.01500] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 08/14/2017] [Indexed: 05/30/2023]
Abstract
North-East (NE) India, the probable origin of rice has diverse genetic resources. Many rice landraces of NE India were not yet characterized for blast resistance. A set of 232 landraces of NE India, were screened for field resistance at two different hotspots of rice blast, viz., IIRR-UBN, Hyderabad and ICAR-NEH, Manipur in two consecutive seasons. The phenotypic evaluation as well as gene profiling for 12 major blast resistance genes (Pitp, Pi33, Pi54, Pib, Pi20, Pi38, Pita2, Pi1, Piz, Pi9, Pizt, and Pi40) with linked as well as gene-specific markers, identified 84 resistant landraces possessing different gene(s) either in singly or in combinations and also identified seven resistant landraces which do not have the tested genes, indicating the valuable genetic resources for blast resistance. To understand the molecular diversity existing in the population, distance and model based analysis were performed using 120 SSR markers. Results of both analyses are highly correlated by forming two distinct subgroups and the existence of high diversity (24.9% among the subgroups; 75.1% among individuals of each subgroup) was observed. To practically utilize the diversity in the breeding program, a robust core set having an efficiency index of 0.82 which consists of 33 landraces were identified through data of molecular, blast phenotyping, and important agro-morphological traits. The association of eight novel SSR markers for important agronomic traits which includes leaf and neck blast resistance was determined using genome-wide association analysis. The current study focuses on identifying novel resources having field resistance to blast as well as markers which can be explored in rice improvement programs. It also entails the development of a core set which can aid in representing the entire diversity for efficiently harnessing its properties to broaden the gene pool of rice.
Collapse
Affiliation(s)
- Bangale Umakanth
- Biotechnology Division, ICAR-Indian Institute of Rice ResearchHyderabad, India
| | - Balija Vishalakshi
- Biotechnology Division, ICAR-Indian Institute of Rice ResearchHyderabad, India
| | - P. Sathish Kumar
- Biotechnology Division, ICAR-Indian Institute of Rice ResearchHyderabad, India
| | - S. J. S. Rama Devi
- Biotechnology Division, ICAR-Indian Institute of Rice ResearchHyderabad, India
| | - Vijay Pal Bhadana
- Plant Breeding, ICAR-Indian Institute of Rice ResearchHyderabad, India
| | - P. Senguttuvel
- Hybrid Rice Division, ICAR-Indian Institute of Rice ResearchHyderabad, India
| | - Sudhir Kumar
- Plant Breeding Section, ICAR Research Complex for NEH Region, Manipur CentreImphal, India
| | - Susheel Kumar Sharma
- Plant Pathology Section, ICAR Research Complex for NEH Region, Manipur CentreImphal, India
| | - Pawan Kumar Sharma
- Plant Pathology Section, ICAR Research Complex for NEH Region, Manipur CentreImphal, India
| | - M. S. Prasad
- Plant Pathology Division, ICAR-Indian Institute of Rice ResearchHyderabad, India
| | - Maganti S. Madhav
- Biotechnology Division, ICAR-Indian Institute of Rice ResearchHyderabad, India
| |
Collapse
|
35
|
Miah G, Rafii MY, Ismail MR, Puteh AB, Rahim HA, Latif MA. Marker-assisted introgression of broad-spectrum blast resistance genes into the cultivated MR219 rice variety. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:2810-2818. [PMID: 27778337 DOI: 10.1002/jsfa.8109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 08/30/2016] [Accepted: 10/20/2016] [Indexed: 05/12/2023]
Abstract
BACKGROUND The rice cultivar MR219 is famous for its better yield and long and fine grain quality; however, it is susceptible to blast disease. The main objective of this study was to introgress blast resistance genes into MR219 through marker-assisted selection (MAS). The rice cultivar MR219 was used as the recurrent parent, and Pongsu Seribu 1 was used as the donor. RESULTS Marker-assisted foreground selection was performed using RM6836 and RM8225 to identify plants possessing blast resistance genes. Seventy microsatellite markers were used to estimate recurrent parent genome (RPG) recovery. Our analysis led to the development of 13 improved blast resistant lines with Piz, Pi2 and Pi9 broad-spectrum blast resistance genes and an MR219 genetic background. The RPG recovery of the selected improved lines was up to 97.70% with an average value of 95.98%. Selected improved lines showed a resistance response against the most virulent blast pathogen pathotype, P7.2. The selected improved lines did not express any negative effect on agronomic traits in comparison with MR219. CONCLUSION The research findings of this study will be a conducive approach for the application of different molecular techniques that may result in accelerating the development of new disease-resistant rice varieties, which in turn will match rising demand and food security worldwide. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Gous Miah
- Laboratory of Food Crops, Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Mohd Y Rafii
- Laboratory of Food Crops, Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Mohd R Ismail
- Laboratory of Food Crops, Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Adam B Puteh
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Harun A Rahim
- Agrotechnology and Bioscience Division, Malaysian Nuclear Agency, 43000, Kajang, Selangor, Malaysia
| | | |
Collapse
|
36
|
Use of molecular markers in identification and characterization of resistance to rice blast in India. PLoS One 2017; 12:e0176236. [PMID: 28445532 PMCID: PMC5405977 DOI: 10.1371/journal.pone.0176236] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 04/08/2017] [Indexed: 11/25/2022] Open
Abstract
Rice blast disease caused by Magnaporthe oryzae is one of the most destructive disease causing huge losses to rice yield in different parts of the world. Therefore, an attempt has been made to find out the resistance by screening and studying the genetic diversity of eighty released rice varieties by National Rice Research Institute, Cuttack (NRVs) using molecular markers linked to twelve major blast resistance (R) genes viz Pib, Piz, Piz-t, Pik, Pik-p, Pikm Pik-h, Pita/Pita-2, Pi2, Pi9, Pi1 and Pi5. Out of which, nineteen varieties (23.75%) showed resistance, twenty one were moderately resistant (26.25%) while remaining forty varieties (50%) showed susceptible in uniform blast nursery. Rice varieties possessing blast resistance genes varied from four to twelve and the frequencies of the resistance genes ranged from 0 to 100%. The cluster analysis grouped the eighty NRVs into two major clusters at 63% level of genetic similarity coefficient. The PIC value for seventeen markers varied from 0 to 0.37 at an average of 0.20. Out of seventeen markers, only five markers, 195R-1, Pi9-i, Pita3, YL155/YL87 and 40N23r corresponded to three broad spectrum R genes viz. Pi9, Pita/Pita2 and Pi5 were found to be significantly associated with the blast disease with explaining phenotypic variance from 3.5% to 7.7%. The population structure analysis and PCoA divided the entire 80 NRVs into two sub-groups. The outcome of this study would help to formulate strategies for improving rice blast resistance through genetic studies, plant-pathogen interaction, identification of novel R genes, development of new resistant varieties through marker-assisted breeding for improving rice blast resistance in India and worldwide.
Collapse
|
37
|
Zhou Y, Tao Y, Tang D, Wang J, Zhong J, Wang Y, Yuan Q, Yu X, Zhang Y, Wang Y, Liang G, Dong G. Identification of QTL Associated with Nitrogen Uptake and Nitrogen Use Efficiency Using High Throughput Genotyped CSSLs in Rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2017; 8:1166. [PMID: 28744289 PMCID: PMC5504168 DOI: 10.3389/fpls.2017.01166] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/19/2017] [Indexed: 05/19/2023]
Abstract
Nitrogen (N) availability is a major factor limiting crop growth and development. Identification of quantitative trait loci (QTL) for N uptake (NUP) and N use efficiency (NUE) can provide useful information regarding the genetic basis of these traits and their associated effects on yield production. In this study, a set of high throughput genotyped chromosome segment substitution lines (CSSLs) derived from a cross between recipient 9311 and donor Nipponbare were used to identify QTL for rice NUP and NUE. Using high throughput sequencing, each CSSL were genotyped and an ultra-high-quality physical map was constructed. A total of 13 QTL, seven for NUP and six for NUE, were identified in plants under hydroponic culture with all nutrients supplied in sufficient quantities. The proportion of phenotypic variation explained by these QTL for NUP and NUE ranged from 3.16-13.99% and 3.76-12.34%, respectively. We also identified several QTL for biomass yield (BY) and grain yield (GY), which were responsible for 3.21-45.54% and 6.28-7.31%, respectively, of observed phenotypic variation. GY were significantly positively correlated with NUP and NUE, with NUP more closely correlated than NUE. Our results contribute information to NUP and NUE improvement in rice.
Collapse
Affiliation(s)
- Yong Zhou
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou UniversityYangzhou, China
| | - Yajun Tao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou UniversityYangzhou, China
| | - Dongnan Tang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou UniversityYangzhou, China
| | - Jun Wang
- Institute of Food Crops, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Jun Zhong
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou UniversityYangzhou, China
| | - Yi Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou UniversityYangzhou, China
| | - Qiumei Yuan
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou UniversityYangzhou, China
| | - Xiaofeng Yu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou UniversityYangzhou, China
| | - Yan Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou UniversityYangzhou, China
| | - Yulong Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou UniversityYangzhou, China
| | - Guohua Liang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou UniversityYangzhou, China
- *Correspondence: Guichun Dong, Guohua Liang,
| | - Guichun Dong
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou UniversityYangzhou, China
- *Correspondence: Guichun Dong, Guohua Liang,
| |
Collapse
|
38
|
Tian D, Chen Z, Chen Z, Zhou Y, Wang Z, Wang F, Chen S. Allele-specific marker-based assessment revealed that the rice blast resistance genes Pi2 and Pi9 have not been widely deployed in Chinese indica rice cultivars. RICE (NEW YORK, N.Y.) 2016; 9:19. [PMID: 27142801 PMCID: PMC4854853 DOI: 10.1186/s12284-016-0091-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/14/2016] [Indexed: 05/03/2023]
Abstract
BACKGROUND The most sustainable approach to control rice blast disease is to develop durably resistant cultivars. In molecular breeding for rice blast resistance, markers developed based on polymorphisms between functional and non-functional alleles of resistance genes, can provide precise and accurate selection of resistant genotypes without the need for difficult, laborious and time-consuming phenotyping. The Pi2 and Pi9 genes confer broad-spectrum resistance against diverse blast isolates. Development of allele-specific markers for Pi2 and Pi9 would facilitate breeding of blast resistant rice by using the two blast resistance genes. RESULT In this work, we developed two new markers, named Pi9-Pro and Pi2-LRR respectively, targeting the unique polymorphisms of the resistant and susceptible alleles of Pi2 and of Pi9. The InDel marker Pi9-Pro differentiates three different genotypes corresponding to the Pi2/Piz-t, Pi9 and non-Pi2/Piz-t/Pi9 alleles, and the CAPS marker Pi2-LRR differentiates the Pi2 allele from the non-Pi2 allele. Based on the two newly developed markers and two available markers Pi2SNP and Pi9SNP, the presence of Pi2 and Pi9 was assessed in a set of 434 rice accessions consisting of 377 Chinese indica cultivars/breeding materials and 57 Chinese japonica cultivars/breeding materials. Of the 434 accessions tested, while one indica restorer line Huazhan was identified harboring the Pi2 resistance allele, no other rice line was identified harboring the Pi2 or Pi9 resistance alleles. CONCLUSIONS Allele-specific marker-based assessment revealed that Pi2 and Pi9 have not been widely incorporated into diverse Chinese indica rice cultivars. Thus, the two blast resistance genes can be new gene sources for developing blast resistant rice, especially indica rice, in China. The two newly developed markers should be highly useful for using Pi2 and Pi9 in marker-assisted selection (MAS) breeding programs.
Collapse
Affiliation(s)
- Dagang Tian
- College of Crop Science, Fujian Agricultural and Forestry University, Fuzhou, 350002, China
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Zaijie Chen
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Ziqiang Chen
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Yuanchang Zhou
- College of Crop Science, Fujian Agricultural and Forestry University, Fuzhou, 350002, China.
| | - Zonghua Wang
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Feng Wang
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Songbiao Chen
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China.
| |
Collapse
|
39
|
Kinoshita N, Takano S, Shimoda N, Takamure I, Sato T, Kato K. Development of genome-wide PCR-based markers from insertion, deletion and single nucleotide polymorphisms for closely related Japanese rice cultivars and identification of QTLs for the appearance of cooked rice and polished rice. BREEDING SCIENCE 2016; 66:742-751. [PMID: 28163590 PMCID: PMC5282762 DOI: 10.1270/jsbbs.16108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/08/2016] [Indexed: 05/17/2023]
Abstract
Appearance of rice grain is an important property, affecting its acceptance by consumers. Moreover, appearance is a complex characteristic involving many components, including glossiness and whiteness. The genetic bases for the glossiness of cooked rice and the whiteness of polished rice (WPR) were determined using 133 recombinant inbred lines (RILs) derived from a cross between two closely related cultivars from Hokkaido, Joiku462, with high glossiness and whiteness, and Yukihikari, an ancestor of Joiku462 with low glossiness and whiteness. Analyses identified 167 genome-wide InDel markers, five cleaved amplified polymorphic sequences (CAPS) and eight derived CAPS markers differentiating the parental lines. The glossiness area (GLA) and glossiness strength (GLS) of cooked rice and WPR were determined for RILs in two locations, Pippu and Sapporo, Hokkaido. Four QTLs were detected. qGLA10 and qGLS9 were detected on chromosomes 10 and 9, respectively, with both being significant at both geographic locations. qWPR1 on chromosome 1 was significant at Pippu, and qWPR4 on chromosome 4 was significant at Sapporo. The Joiku462 alleles at all QTLs increased each trait. The PCR-based markers flanking these four QTLs may be useful for improvement of GLA, GLS and WPR.
Collapse
Affiliation(s)
- Noriko Kinoshita
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine,
Nishi 2-11 Inada, Obihiro, Hokkaido 080-8555,
Japan
| | - Sho Takano
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine,
Nishi 2-11 Inada, Obihiro, Hokkaido 080-8555,
Japan
| | - Naomi Shimoda
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine,
Nishi 2-11 Inada, Obihiro, Hokkaido 080-8555,
Japan
| | - Itsuro Takamure
- Graduate School of Agriculture, Hokkaido University,
Kita 9 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589,
Japan
| | - Takashi Sato
- Rice Breeding Group, Kamikawa Agricultural Experiment Station, Local Independent Administrative Agency Hokkaido Research Organization,
Minami 1-5, Pippu, Hokkaido 078-0397,
Japan
| | - Kiyoaki Kato
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine,
Nishi 2-11 Inada, Obihiro, Hokkaido 080-8555,
Japan
- Corresponding author (e-mail: )
| |
Collapse
|
40
|
Yang H, He J, Wei W, Chu W, Yu S, Tian Y, Peng F, Liu H, Zhang Z, Chen J. The c.-360 T>C mutation affects PGAM2 transcription activity and is linked with the water holding capacity of the longissimus lumborum muscle in pigs. Meat Sci 2016; 122:139-144. [PMID: 27538264 DOI: 10.1016/j.meatsci.2016.07.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 07/26/2016] [Accepted: 07/28/2016] [Indexed: 11/18/2022]
Abstract
The phosphoglycerate mutase 2 (PGAM2) gene encodes a key enzyme in the glycolytic process. This study examined a functional mutation in the PGAM2 gene and evaluated its relationship with water holding capacity (WHC). RT-qPCR analysis showed the PGAM2 mRNA level was significantly higher in the low-WHC group than in the high-WHC group (P<0.05). The c.-360 T>C mutation was identified through sequencing and found to have opposite allele distributions in the two groups. The allele was further genotyped in 170 Duroc×Large White×Yorkshire crossbred pigs using allele-specific PCR. The CC genotype was associated with lower WHC and higher PGAM2 mRNA levels, whereas the TT genotype corresponded to a higher WHC and lower PGAM2 mRNA levels (P<0.05). A luciferase activity assay also showed that the CC-genotype promoter had higher activity than the TT-genotype promoter (P<0.05). In conclusion, we discovered the c.-360 T>C mutation in the PGAM2 gene, which is a promising marker for improving pork WHC.
Collapse
Affiliation(s)
- Haoxin Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jiawen He
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wei Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Weiwei Chu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Shigang Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ye Tian
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Fengyi Peng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Hongcheng Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zengkai Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jie Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
41
|
Zhang J, Zhao K, Hou D, Cai J, Zhang Q, Cheng T, Pan H, Yang W. Genome-Wide Discovery of DNA Polymorphisms in Mei ( Prunus mume Sieb. et Zucc.), an Ornamental Woody Plant, with Contrasting Tree Architecture and their Functional Relevance for Weeping Trait. PLANT MOLECULAR BIOLOGY REPORTER 2016; 35:37-46. [PMID: 28239231 PMCID: PMC5306074 DOI: 10.1007/s11105-016-1000-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Next-generation sequencing technologies provide opportunities to ascertain the genetic basis of phenotypic differences, even in the closely related cultivars via detection of large amount of DNA polymorphisms. In this study, we performed whole-genome re-sequencing of two mei cultivars with contrasting tree architecture. 75.87 million 100 bp pair-end reads were generated, with 92 % coverage of the genome. Re-sequencing data of two former upright mei cultivars were applied for detecting DNA polymorphisms, since we were more interested in variations conferring weeping trait. Applying stringent parameters, 157,317 mutual single nucleotide polymorphisms (SNPs) and 15,064 mutual insertions-deletions (InDels) were detected and found unevenly distributed within and among the mei chromosomes, which lead to the discovery of 220 high-density, 463 low-density SNP regions together with 80 high-density InDel regions. Additionally, 322 large-effect SNPs and 433 large-effect InDels were detected, and 10.09 % of the SNPs were observed in coding regions. 5.25 % SNPs in coding regions resulted in non-synonymous changes. Ninety SNPs were chosen randomly for validation using high-resolution melt analysis. 93.3 % of the candidate SNPs contained the predicted SNPs. Pfam analysis was further conducted to better understand SNP effects on gene functions. DNA polymorphisms of two known QTL loci conferring weeping trait and their functional effect were also analyzed thoroughly. This study highlights promising functional markers for molecular breeding and a whole-genome genetic basis of weeping trait in mei.
Collapse
Affiliation(s)
- Jie Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry University, Beijing, 100083 China
| | - Kai Zhao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry University, Beijing, 100083 China
| | - Dan Hou
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry University, Beijing, 100083 China
| | - Junhuo Cai
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry University, Beijing, 100083 China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry University, Beijing, 100083 China
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry University, Beijing, 100083 China
| | - Huitang Pan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry University, Beijing, 100083 China
| | - Weiru Yang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry University, Beijing, 100083 China
| |
Collapse
|
42
|
Zheng W, Wang Y, Wang L, Ma Z, Zhao J, Wang P, Zhang L, Liu Z, Lu X. Genetic mapping and molecular marker development for Pi65(t), a novel broad-spectrum resistance gene to rice blast using next-generation sequencing. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:1035-44. [PMID: 26883042 DOI: 10.1007/s00122-016-2681-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 01/23/2016] [Indexed: 05/17/2023]
Abstract
A novel R gene was mapped to a locus on chromosome 11 from 30.42 to 30.85 Mb, which was proven to be efficient in the improvement of rice blast resistance. Rice blast is a devastating fungal disease worldwide. The use of blast resistance (R) genes is the most important approach to control the disease in rice breeding. In the present study, we finely mapped a novel resistance gene Pi65(t), conferring a broad-spectrum resistance to the fungus Magnaporthe oryzae, using bulked segregant analysis in combination with next-generation sequencing technology. Segregation in a doubled haploid (DH) population and a BC1F2 population suggested that resistance to blast in Gangyu129 was likely conferred by a single dominant gene, designated Pi65(t); it was located on chromosome 11 from 30.20 to 31.20 Mb using next-generation sequencing. After screening recombinants with newly developed molecular markers, the region was narrowed down to 0.43 Mb, flanked by SNP-2 and SNP-8 at the physical location from 30.42 to 30.85 Mb based on the Nipponbare reference database in build 5. Using the software QTL IciMapping, Pi65(t) was further mapped to a locus between InDel-1 and SNP-4 with genetic distances of 0.11 and 0.98 cM, respectively. Within this region, 4 predicted R genes were found with nucleotide binding site and leucine-rich repeat (NBS-LRR) domains. We developed molecular markers to genotype 305 DH lines and found that InDel-1 was closely linked with Pi65(t). Using InDel-1, a new rice variety Chuangxin1 containing Pi65(t) was developed, and it is highly resistant to rice blast and produces a high yield in Liaoning province of China. This indicated that Pi65(t) could play a key role in the improvement of rice blast resistance.
Collapse
Affiliation(s)
- Wenjing Zheng
- Crops Molecular Improvement Laboratory, Liaoning Innovation Center of the Academy of Agricultural Sciences, 84 Dongling Road, Shenyang, 110161, China.
| | - Yan Wang
- Plant Protection College, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110161, China
| | - Lili Wang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110161, China
| | - Zuobin Ma
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110161, China
| | - Jiaming Zhao
- Crops Molecular Improvement Laboratory, Liaoning Innovation Center of the Academy of Agricultural Sciences, 84 Dongling Road, Shenyang, 110161, China
| | - Ping Wang
- Crops Molecular Improvement Laboratory, Liaoning Innovation Center of the Academy of Agricultural Sciences, 84 Dongling Road, Shenyang, 110161, China
| | - Lixia Zhang
- Crops Molecular Improvement Laboratory, Liaoning Innovation Center of the Academy of Agricultural Sciences, 84 Dongling Road, Shenyang, 110161, China
| | - Zhiheng Liu
- Plant Protection College, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110161, China
| | - Xiaochun Lu
- Crops Molecular Improvement Laboratory, Liaoning Innovation Center of the Academy of Agricultural Sciences, 84 Dongling Road, Shenyang, 110161, China.
| |
Collapse
|
43
|
Mahesh HB, Shirke MD, Singh S, Rajamani A, Hittalmani S, Wang GL, Gowda M. Indica rice genome assembly, annotation and mining of blast disease resistance genes. BMC Genomics 2016; 17:242. [PMID: 26984283 PMCID: PMC4793524 DOI: 10.1186/s12864-016-2523-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/24/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Rice is a major staple food crop in the world. Over 80% of rice cultivation area is under indica rice. Currently, genomic resources are lacking for indica as compared to japonica rice. In this study, we generated deep-sequencing data (Illumina and Pacific Biosciences sequencing) for one of the indica rice cultivars, HR-12 from India. RESULTS We assembled over 86% (389 Mb) of rice genome and annotated 56,284 protein-coding genes from HR-12 genome using Illumina and PacBio sequencing. Comprehensive comparative analyses between indica and japonica subspecies genomes revealed a large number of indica specific variants including SSRs, SNPs and InDels. To mine disease resistance genes, we sequenced few indica rice cultivars that are reported to be highly resistant (Tetep and Tadukan) and susceptible (HR-12 and Co-39) against blast fungal isolates in many countries including India. Whole genome sequencing of rice genotypes revealed high rate of mutations in defense related genes (NB-ARC, LRR and PK domains) in resistant cultivars as compared to susceptible. This study has identified R-genes Pi-ta and Pi54 from durable indica resistant cultivars; Tetep and Tadukan, which can be used in marker assisted selection in rice breeding program. CONCLUSIONS This is the first report of whole genome sequencing approach to characterize Indian rice germplasm. The genomic resources from our work will have a greater impact in understanding global rice diversity, genetics and molecular breeding.
Collapse
Affiliation(s)
- H. B. Mahesh
- />Genomics Laboratory, Centre for Cellular and Molecular Platforms (C-CAMP), National Centre for Biological Sciences (NCBS), Bengaluru, 560065 India
- />Marker Assisted Selection Laboratory, Department of Genetics and Plant Breeding, University of Agricultural Sciences, Bengaluru, 560065 India
- />Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, Ohio State University, Columbus, 43210 USA
| | - Meghana Deepak Shirke
- />Genomics Laboratory, Centre for Cellular and Molecular Platforms (C-CAMP), National Centre for Biological Sciences (NCBS), Bengaluru, 560065 India
- />Manipal University, Manipal, 576104 India
| | - Siddarth Singh
- />Pacific Biosciences, Boon Lay Way, Singapore, 609964 Singapore
| | - Anantharamanan Rajamani
- />Genomics Laboratory, Centre for Cellular and Molecular Platforms (C-CAMP), National Centre for Biological Sciences (NCBS), Bengaluru, 560065 India
| | - Shailaja Hittalmani
- />Marker Assisted Selection Laboratory, Department of Genetics and Plant Breeding, University of Agricultural Sciences, Bengaluru, 560065 India
| | - Guo-Liang Wang
- />Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, Ohio State University, Columbus, 43210 USA
| | - Malali Gowda
- />Genomics Laboratory, Centre for Cellular and Molecular Platforms (C-CAMP), National Centre for Biological Sciences (NCBS), Bengaluru, 560065 India
- />Genomics Discovery Program, School of Conservation, Life Science and Health Sciences, TransDisciplinary University, Foundation of Revitalization of Local Health Traditions, Bengaluru, 560064 India
| |
Collapse
|
44
|
Liu J, Li J, Qu J, Yan S. Development of Genome-Wide Insertion and Deletion Polymorphism Markers from Next-Generation Sequencing Data in Rice. RICE (NEW YORK, N.Y.) 2015; 8:63. [PMID: 26271787 PMCID: PMC4536249 DOI: 10.1186/s12284-015-0063-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 08/08/2015] [Indexed: 05/06/2023]
Abstract
BACKGROUND Next-generation sequencing technologies enable the re-sequencing of a large number of genomes and provide an unprecedented opportunity to discover numerous DNA polymorphisms throughout the genome of a species. As the second most abundant form of genetic variation, InDels, with characteristics of co-dominance, multiple alleles and high stability and density and that are easy to genotype, have received an increasing amount attention. RESULTS In this work, a total of 2,329,544 InDels were identified in 1767 rice genomes; these InDels were dispersed across all 12 rice chromosomes, with one InDel marker found, on average, every 160.22 bp. There were 162,380 highly polymorphic InDels with a polymorphism information content (PIC) ≥ 0.5, contributing 1.81 % to the unique primer set. Of these highly polymorphic InDels, we also selected InDels with major allele differences (the size difference between the most and second most frequent alleles) ≥ 3 bp or 8 bp for primer design, which provided a more flexible choice for researchers. Finally, we experimentally validated 100 highly polymorphic InDels for accuracy and polymorphism. The PCR results showed that the accuracy of the InDel markers was 95.70 %, while the average PIC value was 0.56, with a range of 0.19 to 0.78; the average allele number was 3.02, with a range of 2 to 5. CONCLUSIONS Our genome-wide and easily used InDel markers with high polymorphism and density in both cultivated and wild rice will undoubtedly have practical implications in rice marker-assisted breeding and will also meet the need of fine-scale genetic mapping in map-based rice gene cloning.
Collapse
Affiliation(s)
- Jian Liu
- />Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130 China
- />Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan 611130 China
| | - Jingwei Li
- />Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130 China
- />Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan 611130 China
| | - Jingtao Qu
- />Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130 China
- />Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan 611130 China
| | | |
Collapse
|
45
|
Zhang Z, Li J, Muhammad J, Cai J, Jia F, Shi Y, Gong J, Shang H, Liu A, Chen T, Ge Q, Palanga KK, Lu Q, Deng X, Tan Y, Li W, Sun L, Gong W, Yuan Y. High Resolution Consensus Mapping of Quantitative Trait Loci for Fiber Strength, Length and Micronaire on Chromosome 25 of the Upland Cotton (Gossypium hirsutum L.). PLoS One 2015; 10:e0135430. [PMID: 26262992 PMCID: PMC4532425 DOI: 10.1371/journal.pone.0135430] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/21/2015] [Indexed: 12/17/2022] Open
Abstract
Cotton (Gossypium hirsutum L.) is an important agricultural crop that provides renewable natural fiber resources for the global textile industry. Technological developments in the textile industry and improvements in human living standards have increased the requirement for supplies and better quality cotton. Upland cotton 0-153 is an elite cultivar harboring strong fiber strength genes. To conduct quantitative trait locus (QTL) mapping for fiber quality in 0-153, we developed a population of 196 recombinant inbred lines (RILs) from a cross between 0-153 and sGK9708. The fiber quality traits in 11 environments were measured and a genetic linkage map of chromosome 25 comprising 210 loci was constructed using this RIL population, mainly using simple sequence repeat markers and single nucleotide polymorphism markers. QTLs were identified across diverse environments using the composite interval mapping method. A total of 37 QTLs for fiber quality traits were identified on chromosome 25, of which 17 were stably expressed in at least in two environments. A stable fiber strength QTL, qFS-chr25-4, which was detected in seven environments and was located in the marker interval between CRI-SNP120491 and BNL2572, could explain 6.53%-11.83% of the observed phenotypic variations. Meta-analysis also confirmed the above QTLs with previous reports. Application of these QTLs could contribute to improving fiber quality and provide information for marker-assisted selection.
Collapse
Affiliation(s)
- Zhen Zhang
- State Key Laboratory of Cotton Biology, Key Laboratory of biological and genetic breeding of cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Junwen Li
- State Key Laboratory of Cotton Biology, Key Laboratory of biological and genetic breeding of cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Jamshed Muhammad
- State Key Laboratory of Cotton Biology, Key Laboratory of biological and genetic breeding of cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Juan Cai
- State Key Laboratory of Cotton Biology, Key Laboratory of biological and genetic breeding of cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Fei Jia
- State Key Laboratory of Cotton Biology, Key Laboratory of biological and genetic breeding of cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Yuzhen Shi
- State Key Laboratory of Cotton Biology, Key Laboratory of biological and genetic breeding of cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Juwu Gong
- State Key Laboratory of Cotton Biology, Key Laboratory of biological and genetic breeding of cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Haihong Shang
- State Key Laboratory of Cotton Biology, Key Laboratory of biological and genetic breeding of cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Aiying Liu
- State Key Laboratory of Cotton Biology, Key Laboratory of biological and genetic breeding of cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Tingting Chen
- State Key Laboratory of Cotton Biology, Key Laboratory of biological and genetic breeding of cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Qun Ge
- State Key Laboratory of Cotton Biology, Key Laboratory of biological and genetic breeding of cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Koffi Kibalou Palanga
- State Key Laboratory of Cotton Biology, Key Laboratory of biological and genetic breeding of cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Quanwei Lu
- Anyang Collage of Technology, Anyang, 455000, Henan, China
| | - Xiaoying Deng
- State Key Laboratory of Cotton Biology, Key Laboratory of biological and genetic breeding of cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Yunna Tan
- State Key Laboratory of Cotton Biology, Key Laboratory of biological and genetic breeding of cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Wei Li
- Anyang Collage of Technology, Anyang, 455000, Henan, China
| | - Linyang Sun
- Anyang Collage of Technology, Anyang, 455000, Henan, China
| | - Wankui Gong
- State Key Laboratory of Cotton Biology, Key Laboratory of biological and genetic breeding of cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Youlu Yuan
- State Key Laboratory of Cotton Biology, Key Laboratory of biological and genetic breeding of cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| |
Collapse
|
46
|
Identification of Laying-Related SNP Markers in Geese Using RAD Sequencing. PLoS One 2015; 10:e0131572. [PMID: 26181055 PMCID: PMC4504669 DOI: 10.1371/journal.pone.0131572] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 06/03/2015] [Indexed: 12/18/2022] Open
Abstract
Laying performance is an important economical trait of goose production. As laying performance is of low heritability, it is of significance to develop a marker-assisted selection (MAS) strategy for this trait. Definition of sequence variation related to the target trait is a prerequisite of quantitating MAS, but little is presently known about the goose genome, which greatly hinders the identification of genetic markers for the laying traits of geese. Recently developed restriction site-associated DNA (RAD) sequencing is a possible approach for discerning large-scale single nucleotide polymorphism (SNP) and reducing the complexity of a genome without having reference genomic information available. In the present study, we developed a pooled RAD sequencing strategy for detecting geese laying-related SNP. Two DNA pools were constructed, each consisting of equal amounts of genomic DNA from 10 individuals with either high estimated breeding value (HEBV) or low estimated breeding value (LEBV). A total of 139,013 SNP were obtained from 42,291,356 sequences, of which 18,771,943 were for LEBV and 23,519,413 were for HEBV cohorts. Fifty-five SNP which had different allelic frequencies in the two DNA pools were further validated by individual-based AS-PCR genotyping in the LEBV and HEBV cohorts. Ten out of 55 SNP exhibited distinct allele distributions in these two cohorts. These 10 SNP were further genotyped in a goose population of 492 geese to verify the association with egg numbers. The result showed that 8 of 10 SNP were associated with egg numbers. Additionally, liner regression analysis revealed that SNP Record-111407, 106975 and 112359 were involved in a multiplegene network affecting laying performance. We used IPCR to extend the unknown regions flanking the candidate RAD tags. The obtained sequences were subjected to BLAST to retrieve the orthologous genes in either ducks or chickens. Five novel genes were cloned for geese which harbored the candidate laying-related SNP, including membrane associated guanylate kinase (MAGI-1), KIAA1462, Rho GTPase activating protein 21 (ARHGAP21), acyl-CoA synthetase family member 2 (ACSF2), astrotactin 2 (ASTN2). Collectively, our data suggests that 8 SNP and 5 genes might be promising candidate markers or targets for marker-assisted selection of egg numbers in geese.
Collapse
|
47
|
Rathinasabapathi P, Purushothaman N, Ramprasad VL, Parani M. Whole genome sequencing and analysis of Swarna, a widely cultivated indica rice variety with low glycemic index. Sci Rep 2015; 5:11303. [PMID: 26068787 PMCID: PMC4464077 DOI: 10.1038/srep11303] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 05/18/2015] [Indexed: 12/13/2022] Open
Abstract
Swarna is a popular cultivated indica rice variety with low glycemic index (GI) but its genetic basis is not known. The whole genome of Swarna was sequenced using Illumina’s paired-end technology, and the reads were mapped to the Nipponbare reference genome. Overall, 65,984 non-synonymous SNPs were identified in 20,350 genes, and in silico analysis predicted that 4,847 of them in 2,214 genes may have deleterious effect on protein functions. Polymorphisms were found in all the starch biosynthesis genes, except the gene for branching enzyme IIa. It was found that T/G SNP at position 246, ‘A’ at position 2,386, and ‘C’ at position 3,378 in the granule bound starch synthase I gene, and C/T SNP at position 1,188 in the glucose-6-phosphate translocator gene may contribute to the low GI phenotype in Swarna. All these variants were also found in the genome of another low GI indica rice variety from Columbia, Fedearroz 50. The whole genome analysis of Swarna helped to understand the genetic basis of GI in rice, which is a complex trait involving multiple factors.
Collapse
Affiliation(s)
- Pasupathi Rathinasabapathi
- Genomics Laboratory, Department of Genetic Engineering, SRM University, Chennai, Tamil Nadu- 603 203, India
| | - Natarajan Purushothaman
- Genomics Laboratory, Department of Genetic Engineering, SRM University, Chennai, Tamil Nadu- 603 203, India
| | | | - Madasamy Parani
- Genomics Laboratory, Department of Genetic Engineering, SRM University, Chennai, Tamil Nadu- 603 203, India
| |
Collapse
|
48
|
Tanweer FA, Rafii MY, Sijam K, Rahim HA, Ahmed F, Latif MA. Current advance methods for the identification of blast resistance genes in rice. C R Biol 2015; 338:321-34. [DOI: 10.1016/j.crvi.2015.03.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/03/2015] [Accepted: 03/03/2015] [Indexed: 11/25/2022]
|
49
|
Hua LX, Liang LQ, He XY, Wang L, Zhang WS, Liu W, Liu XQ, Lin F. Development of a marker specific for the rice blast resistance genePi39in the Chinese cultivar Q15 and its use in genetic improvement. BIOTECHNOL BIOTEC EQ 2015. [DOI: 10.1080/13102818.2015.1011894] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
50
|
Singh AK, Singh PK, Arya M, Singh NK, Singh US. Molecular Screening of Blast Resistance Genes in Rice using SSR Markers. THE PLANT PATHOLOGY JOURNAL 2015; 31:12-24. [PMID: 25774106 PMCID: PMC4356601 DOI: 10.5423/ppj.oa.06.2014.0054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 12/09/2014] [Accepted: 11/17/2014] [Indexed: 05/29/2023]
Abstract
Rice Blast is the most devastating disease causing major yield losses in every year worldwide. It had been proved that using resistant rice varieties would be the most effective way to control this disease. Molecular screening and genetic diversities of major rice blast resistance genes were determined in 192 rice germplasm accessions using simple sequence repeat (SSR) markers. The genetic frequencies of the 10 major rice blast resistance genes varied from 19.79% to 54.69%. Seven accessions IC337593, IC346002, IC346004, IC346813, IC356117, IC356422 and IC383441 had maximum eight blast resistance gene, while FR13B, Hourakani, Kala Rata 1-24, Lemont, Brown Gora, IR87756-20-2-2-3, IC282418, IC356419, PKSLGR-1 and PKSLGR-39 had seven blast resistance genes. Twenty accessions possessed six genes, 36 accessions had five genes, 41 accessions had four genes, 38 accessions had three genes, 26 accessions had two genes, 13 accessions had single R gene and only one accession IC438644 does not possess any one blast resistant gene. Out of 192 accessions only 17 accessions harboured 7 to 8 blast resistance genes.
Collapse
Affiliation(s)
- A. K. Singh
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi-221005,
India
| | - P. K. Singh
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi-221005,
India
| | - Madhuri Arya
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi-221005,
India
| | - N. K. Singh
- National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute, New Delhi 110 012,
India
| | - U. S. Singh
- STRASA-IRRI-India Office, Rajendra Place, 9 Floor, Aggrawal Corporate Tower, New Delhi 110 008,
India
| |
Collapse
|