1
|
Vidakovic DO, Perovic D, Semilet TV, Börner A, Khlestkina EK. The consensus rye microsatellite map with EST-SSRs transferred from wheat. Vavilovskii Zhurnal Genet Selektsii 2021; 24:459-464. [PMID: 33659829 PMCID: PMC7716552 DOI: 10.18699/vj20.48-o] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Microsatellite (SSR) markers with known precise intrachromosomal locations are widely used for mapping genes in rye and for the investigation of wheat-rye translocation lines and triticale highly demanded for mapping economically important genes and QTL-analysis. One of the sources of novel SSR markers in rye are microsatellites transferable from the wheat genome. Broadening the list of available SSRs in rye mapped to chromosomes is still needed, since some rye chromosome maps still have just a few microsatellite loci mapped. The goal of the current study was to integrate wheat EST-SSRs into the existing rye genetic maps and to construct a consensus rye microsatellite map. Four rye mapping populations (P87/P105, N6/N2, N7/N2 and N7/N6) were tested with CFE (EST-SSRs) primers. A total of 23 Xcfe loci were mapped on rye chromosomes: Xcfe023, -136 and -266 on chromosome 1R, Xcfe006, -067, -175 and -187 on 2R, Xcfe029 and -282 on 3R, Xcfe004, -100, -152, -224 and -260 on 4R, Xcfe037, -208 and -270 on 5R, Xcfe124, -159 and -277 on 6R, Xcfe010, -143 and -228 on 7R. With the exception of Xcfe159 and Xcfe224, all the Xcfe loci mapped were found in orthologous positions considering multiple evolutionary translocations in the rye genome relative to those of common wheat. The consensus map was constructed using mapping data from the four bi-parental populations. It contains a total of 123 microsatellites, 12 SNPs, 118 RFLPs and 2 isozyme loci.
Collapse
Affiliation(s)
- D O Vidakovic
- Julius Kuehn-Institute (JKI), Quedlinburg, Germany University of Novi Sad, Department of Biology and Ecology, Novi Sad, Serbia
| | - D Perovic
- Julius Kuehn-Institute (JKI), Quedlinburg, Germany
| | - T V Semilet
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia
| | - A Börner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - E K Khlestkina
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
2
|
Hawliczek A, Bolibok L, Tofil K, Borzęcka E, Jankowicz-Cieślak J, Gawroński P, Kral A, Till BJ, Bolibok-Brągoszewska H. Deep sampling and pooled amplicon sequencing reveals hidden genic variation in heterogeneous rye accessions. BMC Genomics 2020; 21:845. [PMID: 33256606 PMCID: PMC7706248 DOI: 10.1186/s12864-020-07240-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/18/2020] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Loss of genetic variation negatively impacts breeding efforts and food security. Genebanks house over 7 million accessions representing vast allelic diversity that is a resource for sustainable breeding. Discovery of DNA variations is an important step in the efficient use of these resources. While technologies have improved and costs dropped, it remains impractical to consider resequencing millions of accessions. Candidate genes are known for most agronomic traits, providing a list of high priority targets. Heterogeneity in seed stocks means that multiple samples from an accession need to be evaluated to recover available alleles. To address this we developed a pooled amplicon sequencing approach and applied it to the out-crossing cereal rye (Secale cereale L.). RESULTS Using the amplicon sequencing approach 95 rye accessions of different improvement status and worldwide origin, each represented by a pooled sample comprising DNA of 96 individual plants, were evaluated for sequence variation in six candidate genes with significant functions on biotic and abiotic stress resistance, and seed quality. Seventy-four predicted deleterious variants were identified using multiple algorithms. Rare variants were recovered including those found only in a low percentage of seed. CONCLUSIONS We conclude that this approach provides a rapid and flexible method for evaluating stock heterogeneity, probing allele diversity, and recovering previously hidden variation. A large extent of within-population heterogeneity revealed in the study provides an important point for consideration during rye germplasm conservation and utilization efforts.
Collapse
Affiliation(s)
- Anna Hawliczek
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Leszek Bolibok
- Department of Silviculture, Institute of Forest Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Katarzyna Tofil
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Ewa Borzęcka
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Joanna Jankowicz-Cieślak
- Plant Breeding and Genetics Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IAEA Laboratories Seibersdorf, International Atomic Energy Agency, Vienna International Centre, Vienna, Austria
| | - Piotr Gawroński
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Adam Kral
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Bradley J Till
- Plant Breeding and Genetics Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IAEA Laboratories Seibersdorf, International Atomic Energy Agency, Vienna International Centre, Vienna, Austria.
- Veterinary Genetics Laboratory, University of California, Davis, Davis, California, USA.
| | - Hanna Bolibok-Brągoszewska
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland.
| |
Collapse
|
3
|
Assessing the genetic diversity and characterizing genomic regions conferring Tan Spot resistance in cultivated rye. PLoS One 2019; 14:e0214519. [PMID: 30921415 PMCID: PMC6438500 DOI: 10.1371/journal.pone.0214519] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 03/14/2019] [Indexed: 11/19/2022] Open
Abstract
Rye (Secale cereale L.) is known for its wide adaptation due to its ability to tolerate harsh environments in semiarid areas. To assess the diversity in rye we genotyped a panel of 178 geographically diverse accessions of four Secale sp. from U.S. National Small Grains Collection using 4,037 high-quality SNPs (single nucleotide polymorphisms) developed by genotyping-by-sequencing (GBS). PCA and STRUCTURE analysis revealed three major clusters that separate S. cereale L. from S. strictum and S. sylvestre, however, genetic clusters did not correlate with geographic origins and growth habit (spring/winter). The panel was evaluated for response to Pyrenophora tritici-repentis race 5 (PTR race 5) and nearly 59% accessions showed resistance or moderate resistance. Genome-wide association study (GWAS) was performed on S. cereale subsp. cereale using the 4,037 high-quality SNPs. Two QTLs (QTs.sdsu-5R and QTs.sdsu-2R) on chromosomes 5R and 2R were identified conferring resistance to PTR race 5 (p < 0.001) that explained 13.1% and 11.6% of the phenotypic variation, respectively. Comparative analysis showed a high degree of synteny between rye and wheat with known rearrangements as expected. QTs.sdsu-2R was mapped in the genomic region corresponding to wheat chromosome group 2 and QTs.sdsu-5R was mapped to a small terminal region on chromosome 4BL. Based on the genetic diversity, a set of 32 accessions was identified to represents more than 99% of the allelic diversity with polymorphic information content (PIC) of 0.25. This set can be utilized for genetic characterization of useful traits and genetic improvement of rye, triticale, and wheat.
Collapse
|
4
|
Maraci Ö, Özkan H, Bilgin R. Phylogeny and genetic structure in the genus Secale. PLoS One 2018; 13:e0200825. [PMID: 30024916 PMCID: PMC6053196 DOI: 10.1371/journal.pone.0200825] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 06/29/2018] [Indexed: 11/18/2022] Open
Abstract
Secale L. is a small but important genus that includes cultivated rye. Although genetic diversity of cultivated rye is high, patterns of genetic diversity in the whole genus, and potential factors affecting the distribution of genetic diversity remain elusive. The population structure and distribution of genetic variation within Secale, and its correlation with taxonomic delimitation, cultivation status or spatial distribution in relation to geography and climate zones were analyzed in this study. A collection of 726 individual plants derived from 139 different accessions representing Secale cereale, S. vavilovii, S. strictum, and S. sylvestre were investigated using SSR analysis and sequence diversity analysis of a nuclear EST region. Our results indicated that perennial S. strictum subspecies are genetically divergent from annual forms of the genus. Existence of two distinct clusters within the annual taxa was observed, one corresponding to samples from Asia, and a second to those outside of Asia. No clear genetic structure was observed between different annual species/subspecies, indicating introgression between these taxa. The analysis of cultivated rye revealed that landrace populations from the Middle East have the highest genetic diversity, supporting the idea of the area being the center of origin for cultivated rye. Considering high adaptive potential of those populations, Middle Eastern landraces should be regarded as genetic resources reservoirs for new niches and future breeding programs.
Collapse
Affiliation(s)
- Öncü Maraci
- Department of Animal Behaviour, Bielefeld University, Bielefeld, Germany
- Evolutionary Biology, Bielefeld University, Bielefeld, Germany
- Institute of Environmental Sciences, Boğaziçi University, Istanbul, Turkey
| | - Hakan Özkan
- Department of Field Crops, Faculty of Agriculture, University of Çukurova, Adana,Turkey
| | - Raşit Bilgin
- Institute of Environmental Sciences, Boğaziçi University, Istanbul, Turkey
| |
Collapse
|
5
|
Parida SK, Kalia S, Pandit A, Nayak P, Singh RK, Gaikwad K, Srivastava PS, Singh NK, Mohapatra T. Single nucleotide polymorphism in sugar pathway and disease resistance genes in sugarcane. PLANT CELL REPORTS 2016; 35:1629-1653. [PMID: 27289592 DOI: 10.1007/s00299-016-1978-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/21/2016] [Indexed: 06/06/2023]
Abstract
Single nucleotide polymorphism in sugar pathway and disease resistance genes showing genetic association with sugar content and red rot resistance would be useful in marker-assisted genetic improvement of sugarcane. Validation and genotyping of potential sequence variants in candidate genes are necessary to understand their functional significance and trait association potential. We discovered, characterized, validated and genotyped SNPs and InDels in sugar pathway and disease resistance genes of Saccharum complex and sugarcane varieties using amplicon sequencing and CAPS assays. The SNPs were abundant in the non-coding 3'UTRs than 5'UTRs and coding sequences depicting a strong bias toward C to T transition substitutions than transversions. Sequencing of cloned amplicons validated 61.6 and 45.2 % SNPs detected in silico in 21 sugar pathway and 16 disease resistance genes, respectively. Sixteen SNPs in four sugar pathway genes and 10 SNPs in nine disease resistance genes were validated through cost-effective CAPS assay. Functional and adaptive significance of SNP and protein haplotypes identified in sugar pathway and disease resistance genes was assessed by correlating their allelic variation with missense amino acid substitutions in the functional domains, alteration in protein structure models and possible modulation of catalytic enzyme activity in contrasting high and low sugar and moderately red rot resistant and highly susceptible sugarcane genotypes. A strong genetic association of five SNPs in the sugar pathway and disease resistance genes, and an InDel marker in the promoter sequence of sucrose synthase-2 gene, with sugar content and red rot resistance, was evident. The functionally relevant SNPs and InDels, detected and validated in sugar pathway and disease resistance genes, and genic CAPS markers designed, would be of immense use in marker-assisted genetic improvement of sugarcane for sugar content and disease resistance.
Collapse
Affiliation(s)
- Swarup K Parida
- National Research Centre on Plant Biotechnology, New Delhi, 110012, India
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sanjay Kalia
- National Research Centre on Plant Biotechnology, New Delhi, 110012, India
- Department of Biotechnology, CGO Complex, Lodhi Road, New Delhi, 110003, India
| | - Awadhesh Pandit
- National Research Centre on Plant Biotechnology, New Delhi, 110012, India
- National Centre for Biological Sciences, Bengaluru, 560065, Karnataka , India
| | - Preetam Nayak
- Utkal University, Vanivihar, Bhubaneswar, Odisha, 751004, India
| | - Ram Kushal Singh
- U.P. Council of Sugarcane Research, Shahjahanpur, Uttar Pradesh, 242001, India
| | - Kishor Gaikwad
- National Research Centre on Plant Biotechnology, New Delhi, 110012, India
| | | | - Nagendra K Singh
- National Research Centre on Plant Biotechnology, New Delhi, 110012, India
| | - Trilochan Mohapatra
- National Research Centre on Plant Biotechnology, New Delhi, 110012, India.
- Indian Council of Agricultural Research, Krishi Bhavan, New Delhi, 110001, India.
| |
Collapse
|
6
|
Aiyaz M, Divakara ST, Mudili V, Moore GG, Gupta VK, Yli-Mattila T, Nayaka SC, Niranjana SR. Molecular Diversity of Seed-borne Fusarium Species Associated with Maize in India. Curr Genomics 2016; 17:132-44. [PMID: 27226769 PMCID: PMC4864842 DOI: 10.2174/1389202917666151116213056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/18/2015] [Accepted: 06/20/2015] [Indexed: 01/07/2023] Open
Abstract
A total of 106 maize seed samples were collected from different agro-climatic regions of India. Sixty-two Fusarium isolates were recovered, 90% of which were identified as Fusarium verticillioides based on morphological and molecular characters. Use of the tef-1α gene corrected/refined the morphological species identifications of 11 isolates, and confirmed those of the remaining isolates. Genetic diversity among the Fusarium isolates involved multilocus fingerprinting profiles by Inter Simple Sequence Repeats (ISSR) UPGMA and tef-1α gene phenetic analyses; for which, we observed no significant differences among the isolates based on geographic origin or fumonisin production; most of the subdivision related to species. Genotyping was performed on the F. verticillioides isolates, using 12 primer sets from the fumonisin pathway, to elucidate the molec-ular basis of fumonisin production or non-production. One fumonisin-negative isolate, UOMMF-16, was unable to amplify nine of the 12 fumonisin cluster genes tested. We also used the CD-ELISA method to confirm fumonisin production for our 62 Fusarium isolates. Only 15 isolates were found to be fumonisin-negative. Interestingly, genotypic characterization re-vealed six isolates with various gene deletion patterns that also tested positive for the production of fumonisins via CD-ELISA. Our findings confirm the importance of molecular studies for species delimitation, and for observing genetic and phenotypic diversity, among the Fusaria.
Collapse
Affiliation(s)
- Mohammed Aiyaz
- Department of Studies in Biotechnology, University of Mysore, Mysore-570006, India;
| | | | - Venkataramana Mudili
- DRDO-BU-Centre for Life Sciences, Bharathiar University campus, Coimbatore, Tamil Nadu-640046, India
| | - Geromy George Moore
- Southern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, New Orleans, USA
| | - Vijai Kumar Gupta
- MGBG, Discipline of Biochemistry, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Tapani Yli-Mattila
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Siddaiah Chandra Nayaka
- Department of Studies in Biotechnology, University of Mysore, Mysore-570006, India; ,Address correspondence to this author at the Department of Studies in Biotechnology, University of Mysore, Mysore- 570006, Karnataka, India; Fax: +91-0821-2419880; E-mail:
| | | |
Collapse
|
7
|
Hagenblad J, Oliveira HR, Forsberg NEG, Leino MW. Geographical distribution of genetic diversity in Secale landrace and wild accessions. BMC PLANT BIOLOGY 2016; 16:23. [PMID: 26786820 PMCID: PMC4719562 DOI: 10.1186/s12870-016-0710-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 01/11/2016] [Indexed: 05/26/2023]
Abstract
BACKGROUND Rye, Secale cereale L., has historically been a crop of major importance and is still a key cereal in many parts of Europe. Single populations of cultivated rye have been shown to capture a large proportion of the genetic diversity present in the species, but the distribution of genetic diversity in subspecies and across geographical areas is largely unknown. Here we explore the structure of genetic diversity in landrace rye and relate it to that of wild and feral relatives. RESULTS A total of 567 SNPs were analysed in 434 individuals from 76 accessions of wild, feral and cultivated rye. Genetic diversity was highest in cultivated rye, slightly lower in feral rye taxa and significantly lower in the wild S. strictum Presl. and S. africanum Stapf. Evaluation of effects from ascertainment bias suggests underestimation of diversity primarily in S. strictum and S. africanum. Levels of ascertainment bias, STRUCTURE and principal component analyses all supported the proposed classification of S. africanum and S. strictum as a separate species from S. cereale. S. afghanicum (Vav.) Roshev, S. ancestrale Zhuk., S. dighoricum (Vav.) Roshev, S. segetale (Zhuk.) Roshev and S. vavilovii Grossh. seemed, in contrast, to share the same gene pool as S. cereale and their genetic clustering was more dependent on geographical origin than taxonomic classification. S. vavilovii was found to be the most likely wild ancestor of cultivated rye. Among cultivated rye landraces from Europe, Asia and North Africa five geographically discrete genetic clusters were identified. These had only limited overlap with major agro-climatic zones. Slash-and-burn rye from the Finnmark area in Scandinavia formed a distinct cluster with little similarity to other landrace ryes. Regional studies of Northern and South-West Europe demonstrate different genetic distribution patterns as a result of varying cultivation intensity. CONCLUSIONS With the exception of S. strictum and S. africanum different rye taxa share the majority of the genetic variation. Due to the vast sharing of genetic diversity within the S. cereale clade, ascertainment bias seems to be a lesser problem in rye than in predominantly selfing species. By exploiting within accession diversity geographic structure can be shown on a much finer scale than previously reported.
Collapse
Affiliation(s)
- Jenny Hagenblad
- IFM Biology, Linköping University, SE-581 83, Linköping, Sweden.
| | - Hugo R Oliveira
- IFM Biology, Linköping University, SE-581 83, Linköping, Sweden.
- CIBIO-Research Centre in Biodiversity and Genetic Resources, Campus Agrário de Vairão. R. Padre Armando Quintas, 4485-661, Vairão, Portugal.
- Nordiska Museet, Swedish Museum of Cultural History, SE-643 98, Julita, Sweden.
- Present Address: Faculty of Life Sciences, The University of Manchester. Manchester Institute of Biotechnology, 131 Princess Street, M1 7DN, Manchester, UK.
| | | | - Matti W Leino
- IFM Biology, Linköping University, SE-581 83, Linköping, Sweden.
- Nordiska Museet, Swedish Museum of Cultural History, SE-643 98, Julita, Sweden.
| |
Collapse
|
8
|
Sehgal D, Skot L, Singh R, Srivastava RK, Das SP, Taunk J, Sharma PC, Pal R, Raj B, Hash CT, Yadav RS. Exploring potential of pearl millet germplasm association panel for association mapping of drought tolerance traits. PLoS One 2015; 10:e0122165. [PMID: 25970600 PMCID: PMC4430295 DOI: 10.1371/journal.pone.0122165] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/07/2015] [Indexed: 11/19/2022] Open
Abstract
A pearl millet inbred germplasm association panel (PMiGAP) comprising 250 inbred lines, representative of cultivated germplasm from Africa and Asia, elite improved open-pollinated cultivars, hybrid parental inbreds and inbred mapping population parents, was recently established. This study presents the first report of genetic diversity in PMiGAP and its exploitation for association mapping of drought tolerance traits. For diversity and genetic structure analysis, PMiGAP was genotyped with 37 SSR and CISP markers representing all seven linkage groups. For association analysis, it was phenotyped for yield and yield components and morpho-physiological traits under both well-watered and drought conditions, and genotyped with SNPs and InDels from seventeen genes underlying a major validated drought tolerance (DT) QTL. The average gene diversity in PMiGAP was 0.54. The STRUCTURE analysis revealed six subpopulations within PMiGAP. Significant associations were obtained for 22 SNPs and 3 InDels from 13 genes under different treatments. Seven SNPs associations from 5 genes were common under irrigated and one of the drought stress treatments. Most significantly, an important SNP in putative acetyl CoA carboxylase gene showed constitutive association with grain yield, grain harvest index and panicle yield under all treatments. An InDel in putative chlorophyll a/b binding protein gene was significantly associated with both stay-green and grain yield traits under drought stress. This can be used as a functional marker for selecting high yielding genotypes with 'stay green' phenotype under drought stress. The present study identified useful marker-trait associations of important agronomics traits under irrigated and drought stress conditions with genes underlying a major validated DT-QTL in pearl millet. Results suggest that PMiGAP is a useful panel for association mapping. Expression patterns of genes also shed light on some physiological mechanisms underlying pearl millet drought tolerance.
Collapse
Affiliation(s)
- Deepmala Sehgal
- Institute of Biological, Environmental and Biological Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion, United Kingdom
| | - Leif Skot
- Institute of Biological, Environmental and Biological Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion, United Kingdom
| | - Richa Singh
- Institute of Biological, Environmental and Biological Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion, United Kingdom
- Chaudhary Charan Singh Haryana Agricultural University (CCSHAU), Department of Molecular Biology and Biotechnology, Hisar, Haryana, India
| | - Rakesh Kumar Srivastava
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh, India
| | - Sankar Prasad Das
- Institute of Biological, Environmental and Biological Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion, United Kingdom
- ICAR Research Complex for NEH Region, Tripura Centre, Lembucherra, India
| | - Jyoti Taunk
- Institute of Biological, Environmental and Biological Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion, United Kingdom
- Chaudhary Charan Singh Haryana Agricultural University (CCSHAU), Department of Molecular Biology and Biotechnology, Hisar, Haryana, India
| | - Parbodh C. Sharma
- Institute of Biological, Environmental and Biological Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion, United Kingdom
- Central Soil Salinity Research Institute (CSSRI), Karnal, India
| | - Ram Pal
- Institute of Biological, Environmental and Biological Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion, United Kingdom
- National Research Centre for Orchids, Darjeeling Campus, Darjeeling, India
| | - Bhasker Raj
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh, India
| | | | - Rattan S. Yadav
- Institute of Biological, Environmental and Biological Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion, United Kingdom
| |
Collapse
|
9
|
Saxena MS, Bajaj D, Kujur A, Das S, Badoni S, Kumar V, Singh M, Bansal KC, Tyagi AK, Parida SK. Natural allelic diversity, genetic structure and linkage disequilibrium pattern in wild chickpea. PLoS One 2014; 9:e107484. [PMID: 25222488 PMCID: PMC4164632 DOI: 10.1371/journal.pone.0107484] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 08/11/2014] [Indexed: 01/23/2023] Open
Abstract
Characterization of natural allelic diversity and understanding the genetic structure and linkage disequilibrium (LD) pattern in wild germplasm accessions by large-scale genotyping of informative microsatellite and single nucleotide polymorphism (SNP) markers is requisite to facilitate chickpea genetic improvement. Large-scale validation and high-throughput genotyping of genome-wide physically mapped 478 genic and genomic microsatellite markers and 380 transcription factor gene-derived SNP markers using gel-based assay, fluorescent dye-labelled automated fragment analyser and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass array have been performed. Outcome revealed their high genotyping success rate (97.5%) and existence of a high level of natural allelic diversity among 94 wild and cultivated Cicer accessions. High intra- and inter-specific polymorphic potential and wider molecular diversity (11-94%) along with a broader genetic base (13-78%) specifically in the functional genic regions of wild accessions was assayed by mapped markers. It suggested their utility in monitoring introgression and transferring target trait-specific genomic (gene) regions from wild to cultivated gene pool for the genetic enhancement. Distinct species/gene pool-wise differentiation, admixed domestication pattern, and differential genome-wide recombination and LD estimates/decay observed in a six structured population of wild and cultivated accessions using mapped markers further signifies their usefulness in chickpea genetics, genomics and breeding.
Collapse
Affiliation(s)
- Maneesha S. Saxena
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
| | - Deepak Bajaj
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
| | - Alice Kujur
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
| | - Shouvik Das
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
| | - Saurabh Badoni
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
| | - Vinod Kumar
- National Research Centre on Plant Biotechnology (NRCPB), New Delhi, India
| | - Mohar Singh
- National Bureau of Plant Genetic Resources (NBPGR), New Delhi, India
| | - Kailash C. Bansal
- National Bureau of Plant Genetic Resources (NBPGR), New Delhi, India
| | - Akhilesh K. Tyagi
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
| | - Swarup K. Parida
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
10
|
Lü ZC, Sun HB, Wan FH, Guo JY, Zhang GF. High Variation in Single Nucleotide Polymorphisms (SNPs) and Insertions/Deletions (Indels) in the Highly Invasive Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) Middle East-Asia Minor 1 (MEAM1). NEOTROPICAL ENTOMOLOGY 2013; 42:521-526. [PMID: 23949985 DOI: 10.1007/s13744-013-0152-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 07/03/2013] [Indexed: 06/02/2023]
Abstract
Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) Middle East-Asia Minor 1 (MEAM1) is invasive and adaptive to varied environments throughout the world. The adaptability is closely related to genomic variation such as single nucleotide polymorphisms (SNPs) and insertions/deletions (indels). In order to elucidate the feature of SNPs and indels in MEAM1, and reveal the association between SNPs/indels and adaptive capacity to various environments, a computational approach with QualitySNP was used to identify reliable SNPs and indels on the basis of 9110-expressed sequence tags of MEAM1 present in the NCBI database. There were 575 SNPs detected with a density of 10.1 SNPs/kb and 6.4 SNPs/contig. Also, 237 transitions (39.3%) and 366 transversions (60.7%) were obtained, where the ratio of transitions to transversions was 0.65:1. In addition, 581 indels with a density of 14.1 indels/kb and 9.2 indels/contig were detected. Collectively, it showed that invasive MEAM1 has high SNPs density, and higher SNPs percentage than non-invasive B. tabaci species. A high SNPs density/percentage in MEAM1 yielded a high genomic variation that might have allowed it to adapt to varied environments, which provides some support to understand the invasive nature of MEAM1 at the genomic level. High levels of genomic variation are implicated in the level of adaptive capacity and invasive species are thought to exhibit higher levels of adaptive capacity than non-invasive species.
Collapse
Affiliation(s)
- Z C Lü
- State Key Lab for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - H B Sun
- State Key Lab for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - F H Wan
- State Key Lab for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China.
- Center for Management of Invasive Alien Species, Ministry of Agriculture, Beijing, China.
| | - J Y Guo
- State Key Lab for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
- Center for Management of Invasive Alien Species, Ministry of Agriculture, Beijing, China
| | - G F Zhang
- State Key Lab for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| |
Collapse
|
11
|
Biochemical features of native red wines and genetic diversity of the corresponding grape varieties from Campania region. Food Chem 2013; 143:506-13. [PMID: 24054274 DOI: 10.1016/j.foodchem.2013.07.133] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 06/16/2013] [Accepted: 07/29/2013] [Indexed: 11/24/2022]
Abstract
Campania region has always been considered one of the most appreciated Italian districts for wine production. Wine distinctiveness arises from their native grapevines. To better define the chemical profile of Campania autochthonous red grape varieties, we analysed the phenolic composition of Aglianico di Taurasi, Aglianico del Vulture, Aglianico del Taburno, Piedirosso wines, and a minor native variety, Lingua di Femmina in comparison with Merlot and Cabernet Sauvignon, as reference cultivars. A genetic profiling was also carried out using microsatellite molecular markers with high polymorphic and unambiguous profiles. Principal component analysis applied to 72 wines based on the 18 biochemical parameters, explained 77.6% of the total variance and highlighted important biological entities providing insightful patterns. Moreover, comparison of SSR-based data with phenylpropanoid molecules exhibited a statistically significant correlation. Our approach might be reasonably adopted for future characterisations and traceability of grapevines and corresponding wines.
Collapse
|
12
|
Liu Y, He Z, Appels R, Xia X. Functional markers in wheat: current status and future prospects. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 125:1-10. [PMID: 22366867 DOI: 10.1007/s00122-012-1829-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 02/11/2012] [Indexed: 05/18/2023]
Abstract
Functional markers (FM) are developed from sequence polymorphisms present in allelic variants of a functional gene at a locus. FMs accurately discriminate alleles of a targeted gene, and are ideal molecular markers for marker-assisted selection in wheat breeding. In this paper, we summarize FMs developed and used in common wheat. To date, more than 30 wheat loci associated with processing quality, agronomic traits, and disease resistance, have been cloned, and 97 FMs were developed to identify 93 alleles based on the sequences of those genes. A general approach is described for isolation of wheat genes and development of FMs based on in silico cloning and comparative genomics. The divergence of DNA sequences of different alleles that affect gene function is summarized. In addition, 14 molecular markers specific for alien genes introduced from common wheat relatives were also described. This paper provides updated information on all FMs and gene-specific STS markers developed so far in wheat and should facilitate their application in wheat breeding programs.
Collapse
Affiliation(s)
- Yanan Liu
- National Wheat Improvement Centre, The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | | | | | | |
Collapse
|
13
|
Tomita M, Seno A. Rye chromosome-specific polymerase chain reaction products developed by primers designed from the EcoO109I recognition site. Genome 2012; 55:370-82. [PMID: 22563759 DOI: 10.1139/g2012-024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
From our analysis of repeat sequences in the rye genome, the presence of multiple restriction sites of EcoO109I (5'-PuGGNCCPy-3') across the genome has been predicted. By first using primers designed to contain EcoO109I sites in polymerase chain reaction (PCR), polymorphic DNA markers were effectively obtained. A total of 43 types of 10-mer primers containing EcoO109I sites were applied for PCR by using genomic DNA of Secale cereale self-fertile line IR27 and Triticum aestivum 'Chinese Spring' (CS) as the template. Twenty two primers detected polymorphisms between wheat and rye, and they were applied for PCR using a series of CS wheat--'Imperial' rye chromosome addition lines as templates. Nine chromosome-specific amplification fragments identified on five chromosomes were collected from gels and hybridized with nylon membrane-transferred PCR products from the wheat-rye chromosome addition lines. The gel blot was only observed between the collected fragments; therefore, these fragments were confirmed to be chromosome-specific. These fragments were sequenced and converted to sequence-tagged site (STS) primers. We therefore introduce a new method for building chromosome-specific DNA markers: (i) multiple polymorphic fragments can be obtained from EcoO109I primers and (ii) the addition of three nucleotides to the EcoO109I site restricts the amplification region to generate chromosome-specific fragments.
Collapse
Affiliation(s)
- Motonori Tomita
- Molecular Genetics Laboratory, Faculty of Agriculture, Tottori University, 101, Minami 4-chome, Koyama-cho, Tottori, Tottori 680-8553, Japan.
| | | |
Collapse
|
14
|
Sehgal D, Rajaram V, Armstead IP, Vadez V, Yadav YP, Hash CT, Yadav RS. Integration of gene-based markers in a pearl millet genetic map for identification of candidate genes underlying drought tolerance quantitative trait loci. BMC PLANT BIOLOGY 2012; 12:9. [PMID: 22251627 PMCID: PMC3287966 DOI: 10.1186/1471-2229-12-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 01/17/2012] [Indexed: 05/21/2023]
Abstract
BACKGROUND Identification of genes underlying drought tolerance (DT) quantitative trait loci (QTLs) will facilitate understanding of molecular mechanisms of drought tolerance, and also will accelerate genetic improvement of pearl millet through marker-assisted selection. We report a map based on genes with assigned functional roles in plant adaptation to drought and other abiotic stresses and demonstrate its use in identifying candidate genes underlying a major DT-QTL. RESULTS Seventy five single nucleotide polymorphism (SNP) and conserved intron spanning primer (CISP) markers were developed from available expressed sequence tags (ESTs) using four genotypes, H 77/833-2, PRLT 2/89-33, ICMR 01029 and ICMR 01004, representing parents of two mapping populations. A total of 228 SNPs were obtained from 30.5 kb sequenced region resulting in a SNP frequency of 1/134 bp. The positions of major pearl millet linkage group (LG) 2 DT-QTLs (reported from crosses H 77/833-2 × PRLT 2/89-33 and 841B × 863B) were added to the present consensus function map which identified 18 genes, coding for PSI reaction center subunit III, PHYC, actin, alanine glyoxylate aminotransferase, uridylate kinase, acyl-CoA oxidase, dipeptidyl peptidase IV, MADS-box, serine/threonine protein kinase, ubiquitin conjugating enzyme, zinc finger C- × 8-C × 5-C × 3-H type, Hd3, acetyl CoA carboxylase, chlorophyll a/b binding protein, photolyase, protein phosphatase1 regulatory subunit SDS22 and two hypothetical proteins, co-mapping in this DT-QTL interval. Many of these candidate genes were found to have significant association with QTLs of grain yield, flowering time and leaf rolling under drought stress conditions. CONCLUSIONS We have exploited available pearl millet EST sequences to generate a mapped resource of seventy five new gene-based markers for pearl millet and demonstrated its use in identifying candidate genes underlying a major DT-QTL in this species. The reported gene-based markers represent an important resource for identification of candidate genes for other mapped abiotic stress QTLs in pearl millet. They also provide a resource for initiating association studies using candidate genes and also for comparing the structure and function of distantly related plant genomes such as other Poaceae members.
Collapse
Affiliation(s)
- Deepmala Sehgal
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion SY23 3 EB, UK
| | - Vengaldas Rajaram
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), ICRISAT-Patencheru, Hyderabad 502 324, Andhra Pradesh, India
| | - Ian Peter Armstead
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion SY23 3 EB, UK
| | - Vincent Vadez
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), ICRISAT-Patencheru, Hyderabad 502 324, Andhra Pradesh, India
| | - Yash Pal Yadav
- Chaudhary Charan Singh Haryana Agricultural University (CCSHAU), Bawal 123 501, Haryana, India
| | - Charles Thomas Hash
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), ICRISAT-Patencheru, Hyderabad 502 324, Andhra Pradesh, India
| | - Rattan Singh Yadav
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion SY23 3 EB, UK
| |
Collapse
|
15
|
A high density consensus map of rye (Secale cereale L.) based on DArT markers. PLoS One 2011; 6:e28495. [PMID: 22163026 PMCID: PMC3232230 DOI: 10.1371/journal.pone.0028495] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 11/09/2011] [Indexed: 12/02/2022] Open
Abstract
Background Rye (Secale cereale L.) is an economically important crop, exhibiting unique features such as outstanding resistance to biotic and abiotic stresses and high nutrient use efficiency. This species presents a challenge to geneticists and breeders due to its large genome containing a high proportion of repetitive sequences, self incompatibility, severe inbreeding depression and tissue culture recalcitrance. The genomic resources currently available for rye are underdeveloped in comparison with other crops of similar economic importance. The aim of this study was to create a highly saturated, multilocus linkage map of rye via consensus mapping, based on Diversity Arrays Technology (DArT) markers. Methodology/Principal Findings Recombinant inbred lines (RILs) from 5 populations (564 in total) were genotyped using DArT markers and subjected to linkage analysis using Join Map 4.0 and Multipoint Consensus 2.2 software. A consensus map was constructed using a total of 9703 segregating markers. The average chromosome map length ranged from 199.9 cM (2R) to 251.4 cM (4R) and the average map density was 1.1 cM. The integrated map comprised 4048 loci with the number of markers per chromosome ranging from 454 for 7R to 805 for 4R. In comparison with previously published studies on rye, this represents an eight-fold increase in the number of loci placed on a consensus map and a more than two-fold increase in the number of genetically mapped DArT markers. Conclusions/Significance Through the careful choice of marker type, mapping populations and the use of software packages implementing powerful algorithms for map order optimization, we produced a valuable resource for rye and triticale genomics and breeding, which provides an excellent starting point for more in-depth studies on rye genome organization.
Collapse
|
16
|
Bioinformatic analysis of fruit-specific expressed sequence tag libraries of Diospyros kaki Thunb.: view at the transcriptome at different developmental stages. 3 Biotech 2011; 1:35-45. [PMID: 22558534 PMCID: PMC3339603 DOI: 10.1007/s13205-011-0005-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Accepted: 03/21/2011] [Indexed: 11/06/2022] Open
Abstract
We present here a systematic analysis of the Diospyros kaki expressed sequence tags (ESTs) generated from development stage-specific libraries. A total of 2,529 putative tentative unigenes were identified in the MF library whereas the OYF library displayed 3,775 tentative unigenes. Among the two cDNA libraries, 325 EST-Simple sequence repeats (SSRs) in 296 putative unigenes were detected in the MF library showing an occurrence of 11.7% with a frequency of 1 SSR/3.16 kb whereas the OYF library had an EST-SSRs occurrence of 10.8% with 407 EST-SSRs in the 352 putative unigenes with a frequency of 1 SSR/2.92 kb. We observed a higher frequency of SNPs and indels in the OYF library (20.94 SNPs/indels per 100 bp) in comparison to MF library showed a relatively lower frequency (0.74 SNPs/indels per 100 bp). A combined homology and secondary structure analysis approach identified a potential miRNA precursor, an ortholog of miR159, and potential miR159 targets, in the development-specific ESTs of D. kaki.
Collapse
|
17
|
Kumar GR, Sakthivel K, Sundaram R, Neeraja C, Balachandran S, Rani NS, Viraktamath B, Madhav M. Allele mining in crops: Prospects and potentials. Biotechnol Adv 2010; 28:451-61. [DOI: 10.1016/j.biotechadv.2010.02.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 09/21/2009] [Accepted: 09/25/2009] [Indexed: 12/26/2022]
|
18
|
Khlestkina EK, Tereshchenko OY, Salina EA. Anthocyanin biosynthesis genes location and expression in wheat–rye hybrids. Mol Genet Genomics 2009; 282:475-85. [DOI: 10.1007/s00438-009-0479-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Accepted: 08/13/2009] [Indexed: 11/30/2022]
|
19
|
Shi BJ, Gustafson JP, Button J, Miyazaki J, Pallotta M, Gustafson N, Zhou H, Langridge P, Collins NC. Physical analysis of the complex rye (Secale cereale L.) Alt4 aluminium (aluminum) tolerance locus using a whole-genome BAC library of rye cv. Blanco. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 119:695-704. [PMID: 19529908 DOI: 10.1007/s00122-009-1080-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 05/21/2009] [Indexed: 05/27/2023]
Abstract
Rye is a diploid crop species with many outstanding qualities, and is important as a source of new traits for wheat and triticale improvement. Rye is highly tolerant of aluminum (Al) toxicity, and possesses a complex structure at the Alt4 Al tolerance locus not found at the corresponding locus in wheat. Here we describe a BAC library of rye cv. Blanco, representing a valuable resource for rye molecular genetic studies, and assess the library's suitability for investigating Al tolerance genes. The library provides 6 x genome coverage of the 8.1 Gb rye genome, has an average insert size of 131 kb, and contains only ~2% of empty or organelle-derived clones. Genetic analysis attributed the Al tolerance of Blanco to the Alt4 locus on the short arm of chromosome 7R, and revealed the presence of multiple allelic variants (haplotypes) of the Alt4 locus in the BAC library. BAC clones containing ALMT1 gene clusters from several Alt4 haplotypes were identified, and will provide useful starting points for exploring the basis for the structural variability and functional specialization of ALMT1 genes at this locus.
Collapse
Affiliation(s)
- B-J Shi
- Australian Centre for Plant Functional Genomics (ACPFG), School of Agriculture, Food and Wine, University of Adelaide, PMB1, Glen Osmond, SA, 5064, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Deleu W, Esteras C, Roig C, González-To M, Fernández-Silva I, Gonzalez-Ibeas D, Blanca J, Aranda MA, Arús P, Nuez F, Monforte AJ, Picó MB, Garcia-Mas J. A set of EST-SNPs for map saturation and cultivar identification in melon. BMC PLANT BIOLOGY 2009; 9:90. [PMID: 19604363 PMCID: PMC2722630 DOI: 10.1186/1471-2229-9-90] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 07/15/2009] [Indexed: 05/18/2023]
Abstract
BACKGROUND There are few genomic tools available in melon (Cucumis melo L.), a member of the Cucurbitaceae, despite its importance as a crop. Among these tools, genetic maps have been constructed mainly using marker types such as simple sequence repeats (SSR), restriction fragment length polymorphisms (RFLP) and amplified fragment length polymorphisms (AFLP) in different mapping populations. There is a growing need for saturating the genetic map with single nucleotide polymorphisms (SNP), more amenable for high throughput analysis, especially if these markers are located in gene coding regions, to provide functional markers. Expressed sequence tags (ESTs) from melon are available in public databases, and resequencing ESTs or validating SNPs detected in silico are excellent ways to discover SNPs. RESULTS EST-based SNPs were discovered after resequencing ESTs between the parental lines of the PI 161375 (SC) x 'Piel de sapo' (PS) genetic map or using in silico SNP information from EST databases. In total 200 EST-based SNPs were mapped in the melon genetic map using a bin-mapping strategy, increasing the map density to 2.35 cM/marker. A subset of 45 SNPs was used to study variation in a panel of 48 melon accessions covering a wide range of the genetic diversity of the species. SNP analysis correctly reflected the genetic relationships compared with other marker systems, being able to distinguish all the accessions and cultivars. CONCLUSION This is the first example of a genetic map in a cucurbit species that includes a major set of SNP markers discovered using ESTs. The PI 161375 x 'Piel de sapo' melon genetic map has around 700 markers, of which more than 500 are gene-based markers (SNP, RFLP and SSR). This genetic map will be a central tool for the construction of the melon physical map, the step prior to sequencing the complete genome. Using the set of SNP markers, it was possible to define the genetic relationships within a collection of forty-eight melon accessions as efficiently as with SSR markers, and these markers may also be useful for cultivar identification in Occidental melon varieties.
Collapse
Affiliation(s)
- Wim Deleu
- IRTA, Centre de Recerca en Agrigenòmica CSIC-IRTA-UAB, Carretera de Cabrils Km 2, 08348 Cabrils (Barcelona), Spain
| | - Cristina Esteras
- COMAV-UPV, Institute for the Conservation and Breeding of Agricultural Biodiversity, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| | - Cristina Roig
- COMAV-UPV, Institute for the Conservation and Breeding of Agricultural Biodiversity, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| | - Mireia González-To
- IRTA, Centre de Recerca en Agrigenòmica CSIC-IRTA-UAB, Carretera de Cabrils Km 2, 08348 Cabrils (Barcelona), Spain
| | - Iria Fernández-Silva
- IRTA, Centre de Recerca en Agrigenòmica CSIC-IRTA-UAB, Carretera de Cabrils Km 2, 08348 Cabrils (Barcelona), Spain
| | - Daniel Gonzalez-Ibeas
- Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS)- CSIC, Apdo. correos 164, 30100 Espinardo (Murcia), Spain
| | - José Blanca
- COMAV-UPV, Institute for the Conservation and Breeding of Agricultural Biodiversity, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| | - Miguel A Aranda
- Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS)- CSIC, Apdo. correos 164, 30100 Espinardo (Murcia), Spain
| | - Pere Arús
- IRTA, Centre de Recerca en Agrigenòmica CSIC-IRTA-UAB, Carretera de Cabrils Km 2, 08348 Cabrils (Barcelona), Spain
| | - Fernando Nuez
- COMAV-UPV, Institute for the Conservation and Breeding of Agricultural Biodiversity, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| | - Antonio J Monforte
- IRTA, Centre de Recerca en Agrigenòmica CSIC-IRTA-UAB, Carretera de Cabrils Km 2, 08348 Cabrils (Barcelona), Spain
- Instituto de Biología Molecular y Celular de Plantas (IBMCP) UPV-CSIC, Ciudad Politécnica de la Innovación Edificio 8E, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - Maria Belén Picó
- COMAV-UPV, Institute for the Conservation and Breeding of Agricultural Biodiversity, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| | - Jordi Garcia-Mas
- IRTA, Centre de Recerca en Agrigenòmica CSIC-IRTA-UAB, Carretera de Cabrils Km 2, 08348 Cabrils (Barcelona), Spain
| |
Collapse
|
21
|
Kozlova SA, Khlestkina EK, Salina EA. Specific features in using SNP markers developed for allopolyploid wheat. RUSS J GENET+ 2009. [DOI: 10.1134/s1022795409010116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Gyawali YP, Nasuda S, Endo TR. Cytological dissection and molecular characterization of chromosome 1R derived from 'Burgas 2' common wheat. Genes Genet Syst 2009; 84:407-16. [DOI: 10.1266/ggs.84.407] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
| | - Shuhei Nasuda
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University
| | - Takashi R. Endo
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University
| |
Collapse
|
23
|
Hackauf B, Rudd S, van der Voort JR, Miedaner T, Wehling P. Comparative mapping of DNA sequences in rye (Secale cereale L.) in relation to the rice genome. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 118:371-84. [PMID: 18953524 DOI: 10.1007/s00122-008-0906-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 09/27/2008] [Indexed: 05/02/2023]
Abstract
The rice genome has proven a valuable resource for comparative approaches to address individual genomic regions in Triticeae species at the molecular level. To exploit this resource for rye genetics and breeding, an inventory was made of EST-derived markers with known genomic positions in rye, which were related with those in rice. As a first inventory set, 92 EST-SSR markers were mapped which had been drawn from a non-redundant rye EST collection representing 5,423 unigenes and 2.2 Mb of DNA. Using a BC1 mapping population which involved an exotic rye accession as donor parent, these EST-SSR markers were arranged in a linkage map together with 25 genomic SSR markers as well as 131 AFLP and four STS markers. This map comprises seven linkage groups corresponding to the seven rye chromosomes and covers 724 cM of the rye genome. For comparative studies, additional inventory sets of EST-based markers were included which originated from the rye-mapping data published by other authors. Altogether, 502 EST-based markers with known chromosomal localizations in rye were used for BlastN search and 334 of them could be in silico mapped in the rice genome. Additionally, 14 markers were included which lacked sequence information but had been genetically mapped in rice. Based on the 348 markers, each of the seven rye chromosomes could be aligned with distinct portions of the rice genome, providing improved insight into the status of the rye-rice genome relationships. Furthermore, the aligned markers provide genomic anchor points between rye and rice, enabling the identification of conserved ortholog set markers for rye. Perspectives of rice as a model for genome analysis in rye are discussed.
Collapse
Affiliation(s)
- B Hackauf
- Julius Kühn Institute, Federal Research Institute for Cultivated Plants, Institute for Breeding Research on Agricultural Crops, Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany.
| | | | | | | | | |
Collapse
|
24
|
Bartoš J, Paux E, Kofler R, Havránková M, Kopecký D, Suchánková P, Šafář J, Šimková H, Town CD, Lelley T, Feuillet C, Doležel J. A first survey of the rye (Secale cereale) genome composition through BAC end sequencing of the short arm of chromosome 1R. BMC PLANT BIOLOGY 2008; 8:95. [PMID: 18803819 PMCID: PMC2565679 DOI: 10.1186/1471-2229-8-95] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Accepted: 09/19/2008] [Indexed: 05/02/2023]
Abstract
BACKGROUND Rye (Secale cereale L.) belongs to tribe Triticeae and is an important temperate cereal. It is one of the parents of man-made species Triticale and has been used as a source of agronomically important genes for wheat improvement. The short arm of rye chromosome 1 (1RS), in particular is rich in useful genes, and as it may increase yield, protein content and resistance to biotic and abiotic stress, it has been introgressed into wheat as the 1BL.1RS translocation. A better knowledge of the rye genome could facilitate rye improvement and increase the efficiency of utilizing rye genes in wheat breeding. RESULTS Here, we report on BAC end sequencing of 1,536 clones from two 1RS-specific BAC libraries. We obtained 2,778 (90.4%) useful sequences with a cumulative length of 2,032,538 bp and an average read length of 732 bp. These sequences represent 0.5% of 1RS arm. The GC content of the sequenced fraction of 1RS is 45.9%, and at least 84% of the 1RS arm consists of repetitive DNA. We identified transposable element junctions in BESs and developed insertion site based polymorphism markers (ISBP). Out of the 64 primer pairs tested, 17 (26.6%) were specific for 1RS. We also identified BESs carrying microsatellites suitable for development of 1RS-specific SSR markers. CONCLUSION This work demonstrates the utility of chromosome arm-specific BAC libraries for targeted analysis of large Triticeae genomes and provides new sequence data from the rye genome and molecular markers for the short arm of rye chromosome 1.
Collapse
Affiliation(s)
- Jan Bartoš
- Laboratory of Molecular Cytogenetics and Cytometry, Institute of Experimental Botany, Sokolovská 6, CZ-77200 Olomouc, Czech Republic
| | - Etienne Paux
- INRA- Université Blaise Pascal, UMR GDEC 1095, 234 Avenue du Brezet, F-63100 Clermont-Ferrand, France
| | - Robert Kofler
- University of Natural Resources and Applied Life Sciences, Department for Agrobiotechnology, Institute for Plant Production Biotechnology, Konrad Lorenz Str. 20, A-3430 Tulln, Austria
| | - Miroslava Havránková
- Laboratory of Molecular Cytogenetics and Cytometry, Institute of Experimental Botany, Sokolovská 6, CZ-77200 Olomouc, Czech Republic
| | - David Kopecký
- Laboratory of Molecular Cytogenetics and Cytometry, Institute of Experimental Botany, Sokolovská 6, CZ-77200 Olomouc, Czech Republic
| | - Pavla Suchánková
- Laboratory of Molecular Cytogenetics and Cytometry, Institute of Experimental Botany, Sokolovská 6, CZ-77200 Olomouc, Czech Republic
| | - Jan Šafář
- Laboratory of Molecular Cytogenetics and Cytometry, Institute of Experimental Botany, Sokolovská 6, CZ-77200 Olomouc, Czech Republic
| | - Hana Šimková
- Laboratory of Molecular Cytogenetics and Cytometry, Institute of Experimental Botany, Sokolovská 6, CZ-77200 Olomouc, Czech Republic
| | - Christopher D Town
- The J. Craig Venter Institute, 9704 Medical Center Drive, Rockville MD 20850, USA
| | - Tamas Lelley
- University of Natural Resources and Applied Life Sciences, Department for Agrobiotechnology, Institute for Plant Production Biotechnology, Konrad Lorenz Str. 20, A-3430 Tulln, Austria
| | - Catherine Feuillet
- INRA- Université Blaise Pascal, UMR GDEC 1095, 234 Avenue du Brezet, F-63100 Clermont-Ferrand, France
| | - Jaroslav Doležel
- Laboratory of Molecular Cytogenetics and Cytometry, Institute of Experimental Botany, Sokolovská 6, CZ-77200 Olomouc, Czech Republic
- Department of Cell Biology and Genetics, Palacký University, Šlechtitelù 11, CZ-78371 Olomouc, Czech Republic
| |
Collapse
|
25
|
Jenkins G, Phillips D, Mikhailova EI, Timofejeva L, Jones RN. Meiotic genes and proteins in cereals. Cytogenet Genome Res 2008; 120:291-301. [PMID: 18504358 DOI: 10.1159/000121078] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2007] [Indexed: 12/20/2022] Open
Abstract
We review the current status of our understanding and knowledge of the genes and proteins controlling meiosis in five major cereals, rye, wheat, barley, rice and maize. For each crop, we describe the genetic and genomic infrastructure available to investigators, before considering the inventory of genes and proteins that have roles to play in this process. Emphasis is given throughout as to how translational genomic and proteomic approaches have enabled us to circumvent some of the intractable features of this important group of plants.
Collapse
Affiliation(s)
- G Jenkins
- Institute of Biological Sciences, University of Wales, Aberystwyth, UK.
| | | | | | | | | |
Collapse
|
26
|
Isik Z, Parmaksiz I, Coruh C, Geylan-Su YS, Cebeci O, Beecher B, Budak H. Organellar genome analysis of rye (Secale cereale) representing diverse geographic regions. Genome 2008; 50:724-34. [PMID: 17893732 DOI: 10.1139/g07-052] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rye (Secale cereale) is an important diploid (2n = 14, RR) crop species of the Triticeae and a better understanding of its organellar genome variation can aid in its improvement. Previous genetic analyses of rye focused on the nuclear genome. In the present study, the objective was to investigate the organellar genome diversity and relationships of 96 accessions representing diverse geographic regions using chloroplast (cp) and mitochondrial (mt) DNA PCR-RFLPs. Seven cpDNA and 4 mtDNA coding and noncoding regions were amplified using universal cpDNA and mtDNA primer pairs. Each amplified fragment was digested with 13 different restriction enzymes. mtDNA analysis indicated that the number of polymorphic loci (20) was low and genetic differentiation (GST) was 0.60, excluding the outgroups (hexaploid wheat, Triticum aestivum, 2n = 6x = 42, AABBDD; triticale, xTriticosecale Wittmack, 2n = 6x = 42, AABBRR). cpDNA analysis revealed a low level of polymorphism (40%) among the accessions, and GST was 0.39. Of the 96 genotypes studied, 70 could not be differentiated using cpDNA PCR-RFLPs even though they are from different geographic regions. This is most likely due to germplasm exchange, indicating that genotypes might have a common genetic background. Two cpDNA and 3 mtDNA fragments were significantly correlated to the site of germplasm collection. However, there was no clear trend. These results indicate that the level of organellar polymorphism is low among the cultivated rye genotypes. The cpDNA and mtDNA PCR-RFLP markers used in the present study could be used as molecular markers in rye genetics and breeding programs.
Collapse
Affiliation(s)
- Z Isik
- Sabanci University, Biological Sciences and Bioengineering Program, Orhanli 34956, Tuzla, Istanbul, Turkey
| | | | | | | | | | | | | |
Collapse
|
27
|
Kota R, Varshney RK, Prasad M, Zhang H, Stein N, Graner A. EST-derived single nucleotide polymorphism markers for assembling genetic and physical maps of the barley genome. Funct Integr Genomics 2007; 8:223-33. [PMID: 17968603 DOI: 10.1007/s10142-007-0060-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 08/17/2007] [Accepted: 09/15/2007] [Indexed: 11/24/2022]
Abstract
In a panel of seven genotypes, 437 expressed sequence tag (EST)-derived DNA fragments were sequenced. Single nucleotide polymorphisms (SNPs) that were polymorphic between the parents of three mapping populations were mapped by heteroduplex analysis and a genome-wide consensus map comprising 216 EST-derived SNPs and 4 InDel (insertion/deletion) markers was constructed. The average frequency of SNPs amounted to 1/130 bp and 1/107.8 bp for a set of randomly selected and a set of mapped ESTs, respectively. The calculated nucleotide diversities (pi) ranged from 0 to 40.0 x 10(-3) (average 3.1 x 10(-3)) and 0.52 x 10(-3) to 39.51 x 10(-3) (average 4.37 x 10(-3)) for random and mapped ESTs, respectively. The polymorphism information content value for mapped SNPs ranged from 0.24 to 0.50 with an average of 0.34. As expected, combination of SNPs present in an amplicon (haplotype) exhibited a higher information content ranging from 0.24 to 0.85 with an average of 0.50. Cleaved amplified polymorphic sequence assays (including InDels) were designed for a total of 87 (39.5%) SNP markers. The high abundance of SNPs in the barley genome provides avenues for the systematic development of saturated genetic maps and their integration with physical maps.
Collapse
Affiliation(s)
- R Kota
- Plant Disease Resistance Group, CSIRO-Plant Industry, PO Box 1600, Canberra ACT 2601, Australia
| | | | | | | | | | | |
Collapse
|