1
|
Wong ELY, Nevado B, Hiscock SJ, Filatov DA. Rapid evolution of hybrid breakdown following recent divergence with gene flow in Senecio species on Mount Etna, Sicily. Heredity (Edinb) 2023; 130:40-52. [PMID: 36494489 PMCID: PMC9814926 DOI: 10.1038/s41437-022-00576-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 12/13/2022] Open
Abstract
How do nascent species evolve reproductive isolation during speciation with on-going gene flow? How do hybrid lineages become stabilised hybrid species? While commonly used genomic approaches provide an indirect way to identify species incompatibility factors, synthetic hybrids generated from interspecific crosses allow direct pinpointing of phenotypic traits involved in incompatibilities and the traits that are potentially adaptive in hybrid species. Here we report the analysis of phenotypic variation and hybrid breakdown in crosses between closely-related Senecio aethnensis and S. chrysanthemifolius, and their homoploid hybrid species, S. squalidus. The two former species represent a likely case of recent (<200 ky) speciation with gene flow driven by adaptation to contrasting conditions of high- and low-elevations on Mount Etna, Sicily. As these species form viable and fertile hybrids, it remains unclear whether they have started to evolve reproductive incompatibility. Our analysis represents the first study of phenotypic variation and hybrid breakdown involving multiple Senecio hybrid families. It revealed wide range of variation in multiple traits, including the traits previously unrecorded in synthetic hybrids. Leaf shape, highly distinct between S. aethnensis and S. chrysanthemifolius, was extremely variable in F2 hybrids, but more consistent in S. squalidus. Our study demonstrates that interspecific incompatibilities can evolve rapidly despite on-going gene flow between the species. Further work is necessary to understand the genetic bases of these incompatibilities and their role in speciation with gene flow.
Collapse
Affiliation(s)
- Edgar L. Y. Wong
- grid.4991.50000 0004 1936 8948Department of Biology, University of Oxford, Oxford, UK ,grid.507705.0Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Bruno Nevado
- grid.4991.50000 0004 1936 8948Department of Biology, University of Oxford, Oxford, UK ,grid.9983.b0000 0001 2181 4263Centre for Ecology, Evolution and Environmental Changes, University of Lisbon, Lisbon, Portugal
| | - Simon J. Hiscock
- grid.4991.50000 0004 1936 8948Department of Biology, University of Oxford, Oxford, UK ,Oxford Botanic Garden and Arboretum, Oxford, UK
| | - Dmitry A. Filatov
- grid.4991.50000 0004 1936 8948Department of Biology, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Than Kutay Soe, Kunieda M, Sunohara H, Inukai Y, Reyes VP, Nishiuchi S, Doi K. A Novel Combination of Genes Causing Temperature-Sensitive Hybrid Weakness in Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:908000. [PMID: 35837460 PMCID: PMC9274174 DOI: 10.3389/fpls.2022.908000] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/26/2022] [Indexed: 09/29/2023]
Abstract
Reproductive isolation is an obstacle for plant breeding when a distant cross is demanded. It can be divided into two main types based on different growth stages: prezygotic isolation and postzygotic isolation. The hybrid weakness, which is a type of postzygotic isolation, can become a problem in crop breeding. In order to overcome reproductive isolation, it is necessary to elucidate its mechanism. In this study, genetic analysis for low temperature-dependent hybrid weakness was conducted in a rice F2 population derived from Taichung 65 (T65, Japonica) and Lijiangxintuanheigu (LTH, Japonica). The weak and severe weak plants in F2 showed shorter culm length, late heading, reduced panicle number, decreased grain numbers per panicle, and impaired root development in the field. Our result also showed that hybrid weakness was affected by temperature. It was observed that 24°C enhanced hybrid weakness, whereas 34°C showed recovery from hybrid weakness. In terms of the morphology of embryos, no difference was observed. Therefore, hybrid weakness affects postembryonic development and is independent of embryogenesis. The genotypes of 126 F2 plants were determined through genotyping-by-sequencing and a linkage map consisting of 862 single nucleotide polymorphism markers was obtained. Two major quantitative trait loci (QTLs) were detected on chromosomes 1 [hybrid weakness j 1 (hwj1)] and 11 [hybrid weakness j 2 (hwj2)]. Further genotyping indicated that the hybrid weakness was due to an incompatible interaction between the T65 allele of hwj1 and the LTH allele of hwj2. A large F2 populations consisting of 5,722 plants were used for fine mapping of hwj1 and hwj2. The two loci, hwj1 and hwj2, were mapped in regions of 65-kb on chromosome 1 and 145-kb on chromosome 11, respectively. For hwj1, the 65-kb region contained 11 predicted genes, while in the hwj2 region, 22 predicted genes were identified, two of which are disease resistance-related genes. The identified genes along these regions serve as preliminary information on the molecular networks associated with hybrid weakness in rice.
Collapse
Affiliation(s)
- Than Kutay Soe
- Laboratory of Information Sciences in Agricultural Lands, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- Department of Botany, University of Yangon, Yangon, Myanmar
| | - Mai Kunieda
- Laboratory of Information Sciences in Agricultural Lands, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Hidehiko Sunohara
- Laboratory of Information Sciences in Agricultural Lands, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- Environmental Control Center Co., Ltd., Hachioji, Japan
| | - Yoshiaki Inukai
- International Center for Research and Education in Agriculture, Nagoya University, Nagoya, Japan
| | - Vincent Pamugas Reyes
- Laboratory of Information Sciences in Agricultural Lands, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Shunsaku Nishiuchi
- Laboratory of Information Sciences in Agricultural Lands, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Kazuyuki Doi
- Laboratory of Information Sciences in Agricultural Lands, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
3
|
He H, Sadahisa K, Yokoi S, Tezuka T. Parental Genome Imbalance Causes Hybrid Seed Lethality as Well as Ovary Abscission in Interspecific and Interploidy Crosses in Nicotiana. FRONTIERS IN PLANT SCIENCE 2022; 13:899206. [PMID: 35665169 PMCID: PMC9161172 DOI: 10.3389/fpls.2022.899206] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Enhanced ovary abscission after pollination and hybrid seed lethality result in post-zygotic reproductive isolation in plant interspecific crosses. However, the connection between these barriers remains unclear. Here, we report that an imbalance in parental genomes or endosperm balance number (EBN) causes hybrid seed lethality and ovary abscission in both interspecific and intraspecific-interploidy crosses in the genus Nicotiana. Auxin treatment suppressed ovary abscission, but not hybrid seed lethality, in an interspecific cross between Nicotiana suaveolens and N. tabacum, suggesting that ovary abscission-related genes are located downstream of those involved in hybrid seed lethality. We performed interploidy crosses among N. suaveolens tetraploids, octoploids, and neopolyploids and revealed hybrid seed lethality and ovary abscission in interploid crosses. Furthermore, a higher maternal EBN than paternal EBN caused these barriers, as previously observed in N. suaveolens × N. tabacum crosses. Altogether, these results suggest that maternal excess of EBN causes hybrid seed lethality, which in turn leads to ovary abscission through the same mechanism in both interspecific and interploidy crosses.
Collapse
Affiliation(s)
- Hai He
- Laboratory of Plant Breeding and Propagation, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Kumi Sadahisa
- Laboratory of Plant Breeding and Propagation, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Shuji Yokoi
- Laboratory of Plant Breeding and Propagation, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
- Laboratory of Breeding and Genetics, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Japan
- Education and Research Field, School of Agriculture, Osaka Metropolitan University, Sakai, Japan
- Bioeconomy Research Institute, Research Center for the 21st Century, Osaka Metropolitan University, Sakai, Japan
| | - Takahiro Tezuka
- Laboratory of Plant Breeding and Propagation, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
- Laboratory of Breeding and Genetics, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Japan
- Education and Research Field, School of Agriculture, Osaka Metropolitan University, Sakai, Japan
| |
Collapse
|
4
|
Kim SH, Ji SD, Lee HS, Jeon YA, Shim KC, Adeva C, Luong NH, Yuan P, Kim HJ, Tai TH, Ahn SN. A Novel Embryo Phenotype Associated With Interspecific Hybrid Weakness in Rice Is Controlled by the MADS-Domain Transcription Factor OsMADS8. FRONTIERS IN PLANT SCIENCE 2022; 12:778008. [PMID: 35069634 PMCID: PMC8769243 DOI: 10.3389/fpls.2021.778008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/03/2021] [Indexed: 05/27/2023]
Abstract
A novel hybrid weakness gene, DTE9, associated with a dark tip embryo (DTE) trait, was observed in CR6078, an introgression line derived from a cross between the Oryza sativa spp. japonica "Hwayeong" (HY) and the wild relative Oryza rufipogon. CR6078 seeds exhibit protruding embryos and flowers have altered inner floral organs. DTE9 was also associated with several hybrid weakness symptoms including decreased grain weight. Map-based cloning and transgenic approaches revealed that DTE9 is an allele of OsMADS8, a MADS-domain transcription factor. Genetic analysis indicated that two recessive complementary genes were responsible for the expression of the DTE trait. No sequence differences were observed between the two parental lines in the OsMADS8 coding region; however, numerous single nucleotide polymorphisms were detected in the promoter and intronic regions. We generated overexpression (OX) and RNA interference (RNAi) transgenic lines of OsMADS8 in HY and CR6078, respectively. The OsMADS8-OX lines showed the dark tip embryo phenotype, whereas OsMADS8-RNAi recovered the normal embryo phenotype. Changes in gene expression, including of ABCDE floral homeotic genes, were observed in the OsMADS8-OX and OsMADS8-RNAi lines. Overexpression of OsMADS8 led to decreased expression of OsEMF2b and ABA signaling-related genes including OsVP1/ABI3. HY seeds showed higher ABA content than CR6078 seeds, consistent with OsMADS8/DTE9 regulating the expression of genes related ABA catabolism in CR6078. Our results suggest that OsMADS8 is critical for floral organ determination and seed germination and that these effects are the result of regulation of the expression of OsEMF2b and its role in ABA signaling and catabolism.
Collapse
Affiliation(s)
- Sun Ha Kim
- Department of Agronomy, College of Agriculture & Life Sciences, Chungnam National University, Daejeon, South Korea
| | - Shi-Dong Ji
- Department of Agronomy, College of Agriculture & Life Sciences, Chungnam National University, Daejeon, South Korea
| | - Hyun-Sook Lee
- Department of Agronomy, College of Agriculture & Life Sciences, Chungnam National University, Daejeon, South Korea
| | - Yun-A Jeon
- Department of Agronomy, College of Agriculture & Life Sciences, Chungnam National University, Daejeon, South Korea
| | - Kyu-Chan Shim
- Department of Agronomy, College of Agriculture & Life Sciences, Chungnam National University, Daejeon, South Korea
| | - Cheryl Adeva
- Department of Agronomy, College of Agriculture & Life Sciences, Chungnam National University, Daejeon, South Korea
| | - Ngoc Ha Luong
- Department of Agronomy, College of Agriculture & Life Sciences, Chungnam National University, Daejeon, South Korea
| | - Pingrong Yuan
- Department of Agronomy, College of Agriculture & Life Sciences, Chungnam National University, Daejeon, South Korea
| | | | - Thomas H. Tai
- Crops Pathology and Genetics Research Unit, USDA-ARS, Davis, CA, United States
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Sang-Nag Ahn
- Department of Agronomy, College of Agriculture & Life Sciences, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
5
|
Tezuka T, Kitamura N, Imagawa S, Hasegawa A, Shiragaki K, He H, Yanase M, Ogata Y, Morikawa T, Yokoi S. Genetic Mapping of the HLA1 Locus Causing Hybrid Lethality in Nicotiana Interspecific Hybrids. PLANTS 2021; 10:plants10102062. [PMID: 34685871 PMCID: PMC8539413 DOI: 10.3390/plants10102062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/27/2022]
Abstract
Hybrid lethality, a postzygotic mechanism of reproductive isolation, is a phenomenon that causes the death of F1 hybrid seedlings. Hybrid lethality is generally caused by the epistatic interaction of two or more loci. In the genus Nicotiana, N. debneyi has the dominant allele Hla1-1 at the HLA1 locus that causes hybrid lethality in F1 hybrid seedlings by interaction with N. tabacum allele(s). Here, we mapped the HLA1 locus using the F2 population segregating for the Hla1-1 allele derived from the interspecific cross between N. debneyi and N. fragrans. To map HLA1, several DNA markers including random amplified polymorphic DNA, amplified fragment length polymorphism, and simple sequence repeat markers, were used. Additionally, DNA markers were developed based on disease resistance gene homologs identified from the genome sequence of N. benthamiana. Linkage analysis revealed that HLA1 was located between two cleaved amplified polymorphic sequence markers Nb14-CAPS and NbRGH1-CAPS at a distance of 10.8 and 10.9 cM, respectively. The distance between these markers was equivalent to a 682 kb interval in the genome sequence of N. benthamiana.
Collapse
Affiliation(s)
- Takahiro Tezuka
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 599-8531, Japan; (N.K.); (K.S.); (H.H.); (M.Y.); (Y.O.); (T.M.); (S.Y.)
- Education and Research Field, College of Life, Environment and Advanced Sciences, Osaka Prefecture University, Osaka 599-8531, Japan
- Correspondence:
| | - Naoto Kitamura
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 599-8531, Japan; (N.K.); (K.S.); (H.H.); (M.Y.); (Y.O.); (T.M.); (S.Y.)
| | - Sae Imagawa
- School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 599-8531, Japan; (S.I.); (A.H.)
| | - Akira Hasegawa
- School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 599-8531, Japan; (S.I.); (A.H.)
| | - Kumpei Shiragaki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 599-8531, Japan; (N.K.); (K.S.); (H.H.); (M.Y.); (Y.O.); (T.M.); (S.Y.)
| | - Hai He
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 599-8531, Japan; (N.K.); (K.S.); (H.H.); (M.Y.); (Y.O.); (T.M.); (S.Y.)
| | - Masanori Yanase
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 599-8531, Japan; (N.K.); (K.S.); (H.H.); (M.Y.); (Y.O.); (T.M.); (S.Y.)
| | - Yoshiyuki Ogata
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 599-8531, Japan; (N.K.); (K.S.); (H.H.); (M.Y.); (Y.O.); (T.M.); (S.Y.)
| | - Toshinobu Morikawa
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 599-8531, Japan; (N.K.); (K.S.); (H.H.); (M.Y.); (Y.O.); (T.M.); (S.Y.)
| | - Shuji Yokoi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 599-8531, Japan; (N.K.); (K.S.); (H.H.); (M.Y.); (Y.O.); (T.M.); (S.Y.)
- Education and Research Field, College of Life, Environment and Advanced Sciences, Osaka Prefecture University, Osaka 599-8531, Japan
- Bioeconomy Research Institute, Research Center for the 21st Century, Osaka Prefecture University, Osaka 599-8531, Japan
| |
Collapse
|
6
|
Yoneya Y, Wakabayashi T, Kato K. The temperature sensitive hybrid breakdown 1 induces low temperature-dependent intrasubspecific hybrid breakdown in rice. BREEDING SCIENCE 2021; 71:268-276. [PMID: 34377075 PMCID: PMC8329891 DOI: 10.1270/jsbbs.20129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/07/2021] [Indexed: 06/13/2023]
Abstract
Hybrid breakdown (HB) is an important type of post-zygotic reproductive barrier that inhibits hybrid production during the process of cross-breeding. A novel low temperature-dependent HB was identified in a chromosomal segment substitution line (CSSL) library derived from a cross of two rice (Oryza sativa L. japonica) cultivars, Yukihikari and Kirara397. A set of weakness symptoms in a target CSSL was observed at 23°C, but was rescued at 27°C and/or 30°C. Genetic analysis of HB using an F2:3 population of a cross between a target CSSL and Kirara397 found that a recessive temperature sensitive hybrid breakdown1 (thb1) gene from Yukihikari caused HB in the genetic background of Kirara397. Molecular mapping showed that thb1 was located within a 199-kb fragment on chromosome 6. A genetic study of F2 populations of reciprocal crosses between Yukihikari and Kirara397 confirmed that this HB was induced by the interaction of two recessive genes. These results provide important clues to further dissect the mechanism of generation of a novel temperature sensitive HB in rice intrasubspecific crosses and suggest that these linked markers will useful in rice breeding.
Collapse
Affiliation(s)
- Yuuki Yoneya
- Department of Agro-Environmental Science, Obihiro University of Agriculture
and Veterinary Medicine, Nishi 2-11 Inada, Obihiro, Hokkaido
080-8555, Japan
| | - Tae Wakabayashi
- Department of Agro-Environmental Science, Obihiro University of Agriculture
and Veterinary Medicine, Nishi 2-11 Inada, Obihiro, Hokkaido
080-8555, Japan
| | - Kiyoaki Kato
- Department of Agro-Environmental Science, Obihiro University of Agriculture
and Veterinary Medicine, Nishi 2-11 Inada, Obihiro, Hokkaido
080-8555, Japan
| |
Collapse
|
7
|
Calvo-Baltanás V, Wang J, Chae E. Hybrid Incompatibility of the Plant Immune System: An Opposite Force to Heterosis Equilibrating Hybrid Performances. FRONTIERS IN PLANT SCIENCE 2021; 11:576796. [PMID: 33717206 PMCID: PMC7953517 DOI: 10.3389/fpls.2020.576796] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Hybridization is a core element in modern rice breeding as beneficial combinations of two parental genomes often result in the expression of heterosis. On the contrary, genetic incompatibility between parents can manifest as hybrid necrosis, which leads to tissue necrosis accompanied by compromised growth and/or reduced reproductive success. Genetic and molecular studies of hybrid necrosis in numerous plant species revealed that such self-destructing symptoms in most cases are attributed to autoimmunity: plant immune responses are inadvertently activated in the absence of pathogenic invasion. Autoimmunity in hybrids predominantly occurs due to a conflict involving a member of the major plant immune receptor family, the nucleotide-binding domain and leucine-rich repeat containing protein (NLR; formerly known as NBS-LRR). NLR genes are associated with disease resistance traits, and recent population datasets reveal tremendous diversity in this class of immune receptors. Cases of hybrid necrosis involving highly polymorphic NLRs as major causes suggest that diversified R gene repertoires found in different lineages would require a compatible immune match for hybridization, which is a prerequisite to ensure increased fitness in the resulting hybrids. In this review, we overview recent genetic and molecular findings on hybrid necrosis in multiple plant species to provide an insight on how the trade-off between growth and immunity is equilibrated to affect hybrid performances. We also revisit the cases of hybrid weakness in which immune system components are found or implicated to play a causative role. Based on our understanding on the trade-off, we propose that the immune system incompatibility in plants might play an opposite force to restrict the expression of heterosis in hybrids. The antagonism is illustrated under the plant fitness equilibrium, in which the two extremes lead to either hybrid necrosis or heterosis. Practical proposition from the equilibrium model is that breeding efforts for combining enhanced disease resistance and high yield shall be achieved by balancing the two forces. Reverse breeding toward utilizing genomic data centered on immune components is proposed as a strategy to generate elite hybrids with balanced immunity and growth.
Collapse
|
8
|
Hori K, Suzuki K, Ishikawa H, Nonoue Y, Nagata K, Fukuoka S, Tanaka J. Genomic Regions Involved in Differences in Eating and Cooking Quality Other than Wx and Alk Genes between indica and japonica Rice Cultivars. RICE (NEW YORK, N.Y.) 2021; 14:8. [PMID: 33415511 PMCID: PMC7790929 DOI: 10.1186/s12284-020-00447-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 12/17/2020] [Indexed: 05/18/2023]
Abstract
BACKGROUND In temperate rice cultivation regions, japonica rice cultivars are grown preferentially because consumers deem them to have good eating quality, whereas indica rice cultivars have high grain yields and strong heat tolerance but are considered to have poor eating quality. To mitigate the effects of global warming on rice production, it is important to develop novel rice cultivars with both desirable eating quality and resilience to high temperatures. Eating quality and agronomic traits were evaluated in a reciprocal set of chromosome segment substitution lines derived from crosses between a japonica rice cultivar 'Koshihikari' and an indica rice cultivar 'Takanari'. RESULTS We detected 112 QTLs for amylose and protein contents, whiteness, stickiness, hardness and eating quality of cooked rice grains. Almost of 'Koshihikari' chromosome segments consistently improved eating quality. Among detected QTLs, six QTLs on chromosomes 1-5 and 11 were detected that increased whiteness and stickiness of cooked grains or decreased their hardness for 3 years. The QTLs on chromosomes 2-4 were not associated with differences in amylose or protein contents. QTLs on chromosomes 1-5 did not coincide with QTLs for agronomic traits such as heading date, culm length, panicle length, spikelet fertility and grain yield. Genetic effects of the detected QTLs were confirmed in substitution lines carrying chromosome segments from five other indica cultivars in the 'Koshihikari' genetic background. CONCLUSION The detected QTLs were associated with differences in eating quality between indica and japonica rice cultivars. These QTLs appear to be widely distributed among indica cultivars and to be novel genetic factors for eating quality traits because their chromosome regions differed from those of the GBSSI (Wx) and SSIIa (Alk) genes. The detected QTLs would be very useful for improvement of eating quality of indica rice cultivars in breeding programs.
Collapse
Affiliation(s)
- Kiyosumi Hori
- Institute of Crop Science, NARO, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan.
| | - Keitaro Suzuki
- Institute of Crop Science, NARO, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Haruka Ishikawa
- College of Agriculture, Ibaraki University, 3-21-1 Chuo, Ami, Ibaraki, 300-0393, Japan
| | - Yasunori Nonoue
- Institute of Crop Science, NARO, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Kazufumi Nagata
- Institute of Crop Science, NARO, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
- Present address: St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae, Kawasaki, Kanagawa, 216-8511, Japan
| | - Shuichi Fukuoka
- Institute of Crop Science, NARO, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Junichi Tanaka
- Institute of Crop Science, NARO, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan.
- Graduate School of Life and Environmental Science, University of Tsukuba, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan.
| |
Collapse
|
9
|
Matsubara K. How Hybrid Breakdown Can Be Handled in Rice Crossbreeding? FRONTIERS IN PLANT SCIENCE 2020; 11:575412. [PMID: 33193514 PMCID: PMC7641626 DOI: 10.3389/fpls.2020.575412] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/30/2020] [Indexed: 05/16/2023]
Abstract
In crosses between genetically divergent parents, traits such as weakness and sterility often segregate in later generations. This hybrid breakdown functions as a reproductive barrier and reduces selection efficiency in crossbreeding. Here, I provide an overview of hybrid breakdown in rice crosses and discuss ways to avoid and mitigate the effects of hybrid breakdown on rice crossbreeding, including genomics-assisted breeding.
Collapse
|
10
|
Mulsanti IW, Yamamoto T, Ueda T, Samadi AF, Kamahora E, Rumanti IA, Thanh VC, Adachi S, Suzuki S, Kanekatsu M, Hirasawa T, Ookawa T. Finding the superior allele of japonica-type for increasing stem lodging resistance in indica rice varieties using chromosome segment substitution lines. RICE 2018; 11:25. [PMID: 29671092 PMCID: PMC5906422 DOI: 10.1186/s12284-018-0216-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 04/04/2018] [Indexed: 05/04/2023]
|
11
|
Fukuda A, Sugimoto K, Ando T, Yamamoto T, Yano M. Chromosomal locations of a gene underlying heat-accelerated brown spot formation and its suppressor genes in rice. Mol Genet Genomics 2014; 290:1085-94. [PMID: 25532750 DOI: 10.1007/s00438-014-0975-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 12/05/2014] [Indexed: 11/25/2022]
Abstract
Brown spots on mature leaves from the heading to ripening stages in rice are considered to be lesions induced by heat stress. However, there are few studies of lesions that are induced by heat stress rather than by pathogen infections. To understand the genetic background underlying such lesions, we used the chromosome segment substitution line (CSSL) SL518, derived from a distant cross between rice cultivars Koshihikari (japonica) and Nona Bokra (indica). We observed brown spots on mature leaf blades of the CSSL, although the parents barely showed any spots. Spot formation in SL518 was accelerated by high temperature, suggesting that the candidate gene for spot formation is related to heat stress response. Using progeny derived from a cross between SL518 and Koshihikari, we mapped the causative gene, BROWN-SPOTTED LEAF 1 (BSPL1), on chromosome 5. We speculated that one or more Nona Bokra genes suppress spot formation caused by BSPL1 and identified candidate genomic regions on chromosomes 2 and 9 using a cross between a near-isogenic line for BSPL1 and other CSSLs possessing Nona Bokra segments in the Koshihikari genetic background. In conclusion, our data support the concept that multiple genes are complementarily involved in brown spot formation induced by heat stress and will be useful for cloning of the novel gene(s) related to the spot formation.
Collapse
Affiliation(s)
- Atsunori Fukuda
- Agrogenomics Research Center, National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan,
| | | | | | | | | |
Collapse
|
12
|
Matsubara K, Yamamoto E, Mizobuchi R, Yonemaru JI, Yamamoto T, Kato H, Yano M. Hybrid breakdown caused by epistasis-based recessive incompatibility in a cross of rice (Oryza sativa L.). J Hered 2014; 106:113-22. [PMID: 25429024 DOI: 10.1093/jhered/esu065] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Viability and fertility in organisms depend on epistatic interactions between loci maintained in lineages. Here, we describe reduced fitness of segregants (hybrid breakdown, HB) that emerged in an F2 population derived from a cross between 2 rice (Oryza sativa L.) cultivars, "Tachisugata" (TS) and "Hokuriku 193" (H193), despite both parents and F1s showing normal fitness. Quantitative trait locus (QTL) analyses detected 13 QTLs for 4 morphological traits associated with the HB and 6 associated with principal component scores calculated from values of the morphological traits in the F2 population. Two-way analysis of variance of the putative QTLs identified 4 QTL pairs showing significant epistasis; among them, a pair on chromosomes 1 and 12 made the greatest contribution to HB. The finding was supported by genetic experiments using F3 progeny. HB emerged only when a plant was homozygous for the TS allele at the QTL on chromosome 1 and homozygous for the H193 allele at the QTL on chromosome 12, indicating that each allele behaves as recessive to the other. Our results support the idea that epistasis is an essential part of hybrid fitness.
Collapse
Affiliation(s)
- Kazuki Matsubara
- From the NARO Institute of Crop Science, 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8518, Japan (Matsubara and Kato); and the National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan (Yamamoto, Mizobuchi, Yonemaru, Yamamoto, and Yano). Eiji Yamamoto is now at the NARO Institute of Vegetable and Tea Science, Tsu, Mie 514-2392, Japan. Masahiro Yano is now at the NARO Institute of Crop Science, Tsukuba, Ibaraki 305-8518, Japan. Hiroshi Kato is now at the National Institute of Agrobiological Sciences, Hitachiohmiya, Ibaraki 319-2293, Japan.
| | - Eiji Yamamoto
- From the NARO Institute of Crop Science, 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8518, Japan (Matsubara and Kato); and the National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan (Yamamoto, Mizobuchi, Yonemaru, Yamamoto, and Yano). Eiji Yamamoto is now at the NARO Institute of Vegetable and Tea Science, Tsu, Mie 514-2392, Japan. Masahiro Yano is now at the NARO Institute of Crop Science, Tsukuba, Ibaraki 305-8518, Japan. Hiroshi Kato is now at the National Institute of Agrobiological Sciences, Hitachiohmiya, Ibaraki 319-2293, Japan
| | - Ritsuko Mizobuchi
- From the NARO Institute of Crop Science, 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8518, Japan (Matsubara and Kato); and the National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan (Yamamoto, Mizobuchi, Yonemaru, Yamamoto, and Yano). Eiji Yamamoto is now at the NARO Institute of Vegetable and Tea Science, Tsu, Mie 514-2392, Japan. Masahiro Yano is now at the NARO Institute of Crop Science, Tsukuba, Ibaraki 305-8518, Japan. Hiroshi Kato is now at the National Institute of Agrobiological Sciences, Hitachiohmiya, Ibaraki 319-2293, Japan
| | - Jun-ichi Yonemaru
- From the NARO Institute of Crop Science, 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8518, Japan (Matsubara and Kato); and the National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan (Yamamoto, Mizobuchi, Yonemaru, Yamamoto, and Yano). Eiji Yamamoto is now at the NARO Institute of Vegetable and Tea Science, Tsu, Mie 514-2392, Japan. Masahiro Yano is now at the NARO Institute of Crop Science, Tsukuba, Ibaraki 305-8518, Japan. Hiroshi Kato is now at the National Institute of Agrobiological Sciences, Hitachiohmiya, Ibaraki 319-2293, Japan
| | - Toshio Yamamoto
- From the NARO Institute of Crop Science, 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8518, Japan (Matsubara and Kato); and the National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan (Yamamoto, Mizobuchi, Yonemaru, Yamamoto, and Yano). Eiji Yamamoto is now at the NARO Institute of Vegetable and Tea Science, Tsu, Mie 514-2392, Japan. Masahiro Yano is now at the NARO Institute of Crop Science, Tsukuba, Ibaraki 305-8518, Japan. Hiroshi Kato is now at the National Institute of Agrobiological Sciences, Hitachiohmiya, Ibaraki 319-2293, Japan
| | - Hiroshi Kato
- From the NARO Institute of Crop Science, 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8518, Japan (Matsubara and Kato); and the National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan (Yamamoto, Mizobuchi, Yonemaru, Yamamoto, and Yano). Eiji Yamamoto is now at the NARO Institute of Vegetable and Tea Science, Tsu, Mie 514-2392, Japan. Masahiro Yano is now at the NARO Institute of Crop Science, Tsukuba, Ibaraki 305-8518, Japan. Hiroshi Kato is now at the National Institute of Agrobiological Sciences, Hitachiohmiya, Ibaraki 319-2293, Japan.
| | - Masahiro Yano
- From the NARO Institute of Crop Science, 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8518, Japan (Matsubara and Kato); and the National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan (Yamamoto, Mizobuchi, Yonemaru, Yamamoto, and Yano). Eiji Yamamoto is now at the NARO Institute of Vegetable and Tea Science, Tsu, Mie 514-2392, Japan. Masahiro Yano is now at the NARO Institute of Crop Science, Tsukuba, Ibaraki 305-8518, Japan. Hiroshi Kato is now at the National Institute of Agrobiological Sciences, Hitachiohmiya, Ibaraki 319-2293, Japan
| |
Collapse
|
13
|
Sherman NA, Victorine A, Wang RJ, Moyle LC. Interspecific tests of allelism reveal the evolutionary timing and pattern of accumulation of reproductive isolation mutations. PLoS Genet 2014; 10:e1004623. [PMID: 25211473 PMCID: PMC4161300 DOI: 10.1371/journal.pgen.1004623] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 07/23/2014] [Indexed: 01/23/2023] Open
Abstract
Despite extensive theory, little is known about the empirical accumulation and evolutionary timing of mutations that contribute to speciation. Here we combined QTL (Quantitative Trait Loci) analyses of reproductive isolation, with information on species evolutionary relationships, to reconstruct the order and timing of mutations contributing to reproductive isolation between three plant (Solanum) species. To evaluate whether reproductive isolation QTL that appear to coincide in more than one species pair are homologous, we used cross-specific tests of allelism and found evidence for both homologous and lineage-specific (non-homologous) alleles at these co-localized loci. These data, along with isolation QTL unique to single species pairs, indicate that >85% of isolation-causing mutations arose later in the history of divergence between species. Phylogenetically explicit analyses of these data support non-linear models of accumulation of hybrid incompatibility, although the specific best-fit model differs between seed (pairwise interactions) and pollen (multi-locus interactions) sterility traits. Our findings corroborate theory that predicts an acceleration ('snowballing') in the accumulation of isolation loci as lineages progressively diverge, and suggest different underlying genetic bases for pollen versus seed sterility. Pollen sterility in particular appears to be due to complex genetic interactions, and we show this is consistent with a snowball model where later arising mutations are more likely to be involved in pairwise or multi-locus interactions that specifically involve ancestral alleles, compared to earlier arising mutations.
Collapse
Affiliation(s)
- Natasha A. Sherman
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Anna Victorine
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Richard J. Wang
- Laboratory of Genetics, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Leonie C. Moyle
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
14
|
Fraïsse C, Elderfield JAD, Welch JJ. The genetics of speciation: are complex incompatibilities easier to evolve? J Evol Biol 2014; 27:688-99. [PMID: 24581268 DOI: 10.1111/jeb.12339] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 12/11/2013] [Accepted: 01/04/2014] [Indexed: 01/22/2023]
Abstract
Reproductive isolation can evolve readily when genotypes containing incompatible alleles are connected by chains of fit intermediates. Experimental crosses show that such Dobzhansky-Muller incompatibilities (DMIs) are often complex (involving alleles at three or more loci) and asymmetrical (such that reciprocal introgressions have very different effects on fitness). One possible explanation is that asymmetrical and complex DMIs are 'easier to evolve', because they block fewer of the possible evolutionary paths between the parental genotypes. To assess this argument, we model evolutionary divergence in allopatry and calculate the delays to divergence caused by DMIs of different kinds. We find that the number of paths is sometimes, though not always, a reliable predictor of the time to divergence. In particular, we find limited support for the idea that symmetrical DMIs take longer to evolve, but this applies largely to two-locus symmetrical DMIs (which leave no path of fit intermediates). Symmetrical complex DMIs can also delay divergence, but only in a limited region of parameter space. In most other cases, the presence and form of DMIs have little influence on times to divergence, and so we argue that ease of evolution is unlikely to be important in explaining the experimental data.
Collapse
Affiliation(s)
- C Fraïsse
- Université Montpellier 2, Montpellier Cedex 5, France; Station Méditerranéenne de l'Environnement Littoral, CNRS, Institut des Sciences de l'Evolution (ISEM UMR 5554), Sete, France; Department of Genetics, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
15
|
Ouyang Y, Zhang Q. Understanding reproductive isolation based on the rice model. ANNUAL REVIEW OF PLANT BIOLOGY 2013; 64:111-35. [PMID: 23638826 DOI: 10.1146/annurev-arplant-050312-120205] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Reproductive isolation is both an indicator of speciation and a mechanism for maintaining species identity. Here we review the progress in studies of hybrid sterility in rice to illustrate the present understanding of the molecular and evolutionary mechanisms underlying reproductive isolation. Findings from molecular characterization of genes controlling hybrid sterility can be summarized with three evolutionary genetic models. The parallel divergence model features duplicated loci generated by genome evolution; in this model, the gametes abort when the two copies of loss-of-function mutants meet in hybrids. In the sequential divergence model, mutations of two linked loci occur sequentially in one lineage, and negative interaction between the ancestral and nascent alleles of different genes causes incompatibility. The parallel-sequential divergence model involves three tightly linked loci, exemplified by a killer-protector system formed of mutations in two steps. We discuss the significance of such findings and their implications for crop improvement.
Collapse
Affiliation(s)
- Yidan Ouyang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | | |
Collapse
|
16
|
Matsuda F, Okazaki Y, Oikawa A, Kusano M, Nakabayashi R, Kikuchi J, Yonemaru JI, Ebana K, Yano M, Saito K. Dissection of genotype-phenotype associations in rice grains using metabolome quantitative trait loci analysis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:624-36. [PMID: 22229385 DOI: 10.1111/j.1365-313x.2012.04903.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A comprehensive and large-scale metabolome quantitative trait loci (mQTL) analysis was performed to investigate the genetic backgrounds associated with metabolic phenotypes in rice grains. The metabolome dataset consisted of 759 metabolite signals obtained from the grains of 85 lines of rice (Oryza sativa, Sasanishiki × Habataki back-crossed inbred lines). Metabolome analysis was performed using four mass spectrometry pipelines to enhance detection of different classes of metabolites. This mQTL analysis of a wide range of metabolites highlighted an uneven distribution of 802 mQTLs on the rice genome, as well as different modes of metabolic trait (m-trait) control among various types of metabolites. The levels of most metabolites within rice grains were highly sensitive to environmental factors, but only weakly associated with mQTLs. Coordinated control was observed for several groups of metabolites, such as amino acids linked to the mQTL hotspot on chromosome 3. For flavonoids, m-trait variation among the experimental lines was tightly governed by genetic factors that alter the glycosylation of flavones. Many loci affecting levels of metabolites were detected by QTL analysis, and plausible gene candidates were evaluated by in silico analysis. Several mQTLs profoundly influenced metabolite levels, providing insight into the control of rice metabolism. The genomic region and genes potentially responsible for the biosynthesis of apigenin-6,8-di-C-α-l-arabinoside are presented as an example of a critical mQTL identified by the analysis.
Collapse
Affiliation(s)
- Fumio Matsuda
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Xin XY, Wang WX, Yang JS, Luo XJ. Genetic analysis of heterotic loci detected in a cross between indica and japonica rice (Oryza sativa L.). BREEDING SCIENCE 2011; 61:380-8. [PMID: 23136475 PMCID: PMC3406766 DOI: 10.1270/jsbbs.61.380] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 09/05/2011] [Indexed: 05/04/2023]
Abstract
The study on the genetic basis of heterosis has received significant attention in recent years. In this study, using a set of introgression lines (ILs) and corresponding testcross F(1) populations, we investigated heterotic loci (HL) associated with six yield-related traits in both Oryza sativa L. subsp. indica and japonica. A total of 41 HL were detected on the basis of mid-parent heterosis values with single-point analysis. The F(1) test-cross population showed superiority in most yield-related traits and was characterized by a high frequency of overdominant HL. Thirty-eight of the 41 HL were overdominant, and in the absence of epistasis, three HL were dominant, suggesting that heterotic effects at the single-locus level mainly appeared to be overdominant in rice. Twenty-four HL had a real positive effect, suggesting that they are viable candidates for the improvement of rice yield potential. Compared with the quantitative trait loci (QTLs) detected in the ILs, only six out of the 41 (14.6%) HL were detected in QTL analysis under the same statistical threshold, indicating that heterosis and trait performance may be conditioned by different sets of loci.
Collapse
|
18
|
Matsubara K, Ebana K, Mizubayashi T, Itoh S, Ando T, Nonoue Y, Ono N, Shibaya T, Ogiso E, Hori K, Fukuoka S, Yano M. Relationship between transmission ratio distortion and genetic divergence in intraspecific rice crosses. Mol Genet Genomics 2011; 286:307-19. [PMID: 21918817 DOI: 10.1007/s00438-011-0648-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Accepted: 09/04/2011] [Indexed: 10/17/2022]
Abstract
The strength of reproductive isolation often correlates positively with parental divergence in both animals and plants. Here, we assess the relationship between transmission ratio distortion (TRD) of marker loci and parental divergence in intraspecific rice (Oryza sativa L.) crosses. We produced 10 diverse F(2) populations by crossing a temperate japonica reference accession with each of 10 donor accessions belonging to subpopulations different from the reference accession, and then genotyped the F(2) populations using molecular markers distributed across the entire genome. Significant TRDs (α = 0.05) were detected in 9 of the 10 F(2) populations. TRD regions on chromosomes 3 and 6 were common to several populations; in contrast, other TRD regions were unique to a single population, indicating the diversification of genomic location of TRDs among the populations. The level of TRD (estimated from the overall number and magnitude of TRDs) was significantly correlated with the genetic distance between the donor accessions and the reference accession. Our results suggest that in intraspecific rice crosses, parental divergence may result in diversification of the TRD pattern, followed by an increase in the level of TRD.
Collapse
Affiliation(s)
- Kazuki Matsubara
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wu YP, Ko PY, Lee WC, Wei FJ, Kuo SC, Ho SW, Hour AL, Hsing YI, Lin YR. Comparative analyses of linkage maps and segregation distortion of two F₂ populations derived from japonica crossed with indica rice. Hereditas 2010; 147:225-36. [PMID: 21039459 DOI: 10.1111/j.1601-5223.2010.02120.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
To facilitate genetic research, we constructed two linkage maps by employing two F₂ populations derived from rice inter-subspecific crosses, japonica Tainung 67 (TNG67)/indica Taichung Sen 10 (TCS10) and japonica TNG67/indica Taichung Sen 17 (TCS17). We established linkage map lengths of 1481.6 cM and 1267.4 cM with average intervals of 13.8 cM and 14.4 cM by using 107 and 88 PCR markers for coverage of 88% of the rice genome in TNG67/TCS10 and TNG67/TCS17, respectively. The discrepancy in genetic maps in the two populations could be due to different cross combinations, crossing-over events, progeny numbers and/or markers. The most plausible explanation was segregation distortion; 18 markers (16.8%) distributed at nine regions of seven chromosomes and 10 markers (11.4%) at four regions of four chromosomes displayed severe segregation distortion (p < 0.01)in TNG67/TCS10 and TNG67/TCS17, respectively. All segregation-distorted markers in these two populations corresponded to reported reproductive barriers, either gametophytic or zygotic genes but not to hybrid breakdown genes. The observed recombination frequency, which was higher or lower than the intrinsic frequency, revealed the association of segregation distortion skewed to the same or different genotypes at the consecutive markers. The segregation distortion, possibly caused by reproductive barriers, affects the evaluation recombination frequencies and consequently the linkage analysis of QTLs and positional cloning.
Collapse
Affiliation(s)
- Yong-Pei Wu
- Department of Agronomy, Chiayi Agricultrual Experiment Station, Taiwan Agricultural Research Institute, Chiayi, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Yamamoto E, Takashi T, Morinaka Y, Lin S, Wu J, Matsumoto T, Kitano H, Matsuoka M, Ashikari M. Gain of deleterious function causes an autoimmune response and Bateson-Dobzhansky-Muller incompatibility in rice. Mol Genet Genomics 2010; 283:305-15. [PMID: 20140455 DOI: 10.1007/s00438-010-0514-y] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 01/18/2010] [Indexed: 01/16/2023]
Abstract
Reproductive isolation plays an important role in speciation as it restricts gene flow and accelerates genetic divergence between formerly interbreeding population. In rice, hybrid breakdown is a common reproductive isolation observed in both intra and inter-specific crosses. It is a type of post-zygotic reproductive isolation in which sterility and weakness are manifested in the F(2) and later generations. In this study, the physiological and molecular basis of hybrid breakdown caused by two recessive genes, hbd2 and hbd3, in a cross between japonica variety, Koshihikari, and indica variety, Habataki, were investigated. Fine mapping of hbd2 resulted in the identification of the causal gene as casein kinase I (CKI1). Further analysis revealed that hbd2-CKI1 allele gains its deleterious function that causes the weakness phenotype by a change of one amino acid. As for the other gene, hbd3 was mapped to the NBS-LRR gene cluster region. It is the most common class of R-gene that triggers the immune signal in response to pathogen attack. Expression analysis of pathogen response marker genes suggested that weakness phenotype in this hybrid breakdown can be attributed to an autoimmune response. So far, this is the first evidence linking autoimmune response to post-zygotic isolation in rice. This finding provides a new insight in understanding the molecular and evolutionary mechanisms establishing post-zygotic isolation in plants.
Collapse
Affiliation(s)
- Eiji Yamamoto
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, 464-8601, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Dettman JR, Anderson JB, Kohn LM. Genome-wide investigation of reproductive isolation in experimental lineages and natural species of Neurospora: identifying candidate regions by microarray-based genotyping and mapping. Evolution 2009; 64:694-709. [PMID: 19817850 DOI: 10.1111/j.1558-5646.2009.00863.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Inherent incompatibilities between genetic components from genomes of different species may cause intrinsic reproductive isolation. In evolution experiments designed to instigate speciation in laboratory populations of the filamentous fungus Neurospora, we previously discovered a pair of incompatibility loci (dfe and dma) that interact negatively to cause severe defects in sexual reproduction. Here we show that the dfe-dma incompatibility also is a significant cause of genetic isolation between two naturally occurring species of Neurospora (N. crassa and N. intermedia). The strong incompatibility interaction has a simple genetic basis (two biallelic loci) and antagonistic epistasis occurs between heterospecific alleles only, consistent with the Dobzhansky-Muller model of genic incompatibility. We developed microarray-based, restriction-site associated DNA (RAD) markers that identified approximately 1500 polymorphisms between the genomes of the two species, and constructed the first interspecific physical map of Neurospora. With this new mapping resource, the approximate genomic locations of the incompatibility loci were determined using three different approaches: genome scanning, bulk-segregant analyses, and introgression. These population, quantitative, and classical genetics methods concordantly identified two candidate regions, narrowing the search for each incompatibility locus to only approximately 2% of the nuclear genome. This study demonstrates how advances in high-throughput, genome-wide genotyping can be applied to mapping reproductive isolation genes and speciation research.
Collapse
Affiliation(s)
- Jeremy R Dettman
- Department of Ecology & Evolutionary Biology, University of Toronto, Mississauga, Ontario, L5L 1C6, Canada.
| | | | | |
Collapse
|
22
|
|
23
|
Yamamoto T, Yonemaru J, Yano M. Towards the understanding of complex traits in rice: substantially or superficially? DNA Res 2009; 16:141-54. [PMID: 19359285 PMCID: PMC2695773 DOI: 10.1093/dnares/dsp006] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Completion of the genome analysis followed by extensive comprehensive studies on a variety of genes and gene families of rice (Oryza sativa) resulted in rapid accumulation of information concerning the presence of many complex traits that are governed by a number of genes of distinct functions in this most important crop cultivated worldwide. The genetic and molecular biological dissection of many important rice phenotypes has contributed to our understanding of the complex nature of the genetic control with respect to these phenotypes. However, in spite of the considerable advances made in the field, details of genetic control remain largely unsolved, thereby hampering our exploitation of this useful information in the breeding of new rice cultivars. To further strengthen the field application of the genome science data of rice obtained so far, we need to develop more powerful genomics-assisted methods for rice breeding based on information derived from various quantitative trait loci (QTL) and related analyses. In this review, we describe recent progresses and outcomes in rice QTL analyses, problems associated with the application of the technology to rice breeding and their implications for the genetic study of other crops along with future perspectives of the relevant fields.
Collapse
Affiliation(s)
- Toshio Yamamoto
- QTL Genomics Research Center, National Institute of Agrobiological Science, Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602, Japan
| | | | | |
Collapse
|
24
|
Moyle LC, Nakazato T. Comparative genetics of hybrid incompatibility: sterility in two Solanum species crosses. Genetics 2008; 179:1437-53. [PMID: 18562656 PMCID: PMC2475745 DOI: 10.1534/genetics.107.083618] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2007] [Accepted: 04/28/2008] [Indexed: 11/18/2022] Open
Abstract
The genetic basis of hybrid sterility can provide insight into the genetic and evolutionary origins of species barriers. We examine the genetics of hybrid incompatibility between two diploid plant species in the plant clade Solanum sect. Lycopersicon. Using a set of near-isogenic lines (NILs) representing the wild species Solanum pennellii (formerly Lycopersicon pennellii) in the genetic background of the cultivated tomato S. lycopersicum (formerly L. esculentum), we found that hybrid pollen and seed infertility are each based on a modest number of loci, male (pollen) and other (seed) incompatibility factors are roughly comparable in number, and seed-infertility QTL act additively or recessively. These findings are remarkably consistent with our previous analysis in a different species pair, S. lycopersicum x S. habrochaites. Data from both studies contrast strongly with data from Drosophila. Finally, QTL for pollen and seed sterility from the two Solanum studies were chromosomally colocalized, indicating a shared evolutionary history for these QTL, a nonrandom genomic distribution of loci causing sterility, and/or a proclivity of certain genes to be involved in hybrid sterility. We show that comparative mapping data can delimit the probable timing of evolution of detected QTL and discern which sterility loci likely evolved earliest among species.
Collapse
Affiliation(s)
- Leonie C Moyle
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA.
| | | |
Collapse
|
25
|
Jiang W, Chu SH, Piao R, Chin JH, Jin YM, Lee J, Qiao Y, Han L, Piao Z, Koh HJ. Fine mapping and candidate gene analysis of hwh1 and hwh2, a set of complementary genes controlling hybrid breakdown in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 116:1117-1127. [PMID: 18335199 DOI: 10.1007/s00122-008-0740-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2007] [Accepted: 02/25/2008] [Indexed: 05/26/2023]
Abstract
Hybrid breakdown (HB), a phenomenon of reduced viability or fertility accompanied with retarded growth in hybrid progenies, often arises in the offspring of intersubspecific hybrids between indica and japonica in rice. We detected HB plants in F8 recombinant inbred lines derived from the cross between an indica variety, Milyang 23, and a japonica variety, Tong 88-7. HB plants showed retarded growth, with fewer tillers and spikelets. Genetic analysis revealed that HB was controlled by the complementary action of two recessive genes, hwh1 and hwh2, originating from each of both parents, which were fine-mapped on the short arm of chromosome 2 and on the near centromere region of the long arm of chromosome 11, respectively. A comparison of the sequences of candidate genes among both parents and HB plants revealed that hwh1 encoded a putative glucose-methanol-choline oxidoreductase with one amino acid change compared to Hwh1 and that hwh2 probably encoded a putative hexose transporter with a six amino acid insertion compared to Hwh2. Investigation of the distribution of these alleles among 54 japonica and indica cultivars using candidate gene-based markers suggested that the two loci might be involved in developing reproductive barriers between two subspecies.
Collapse
Affiliation(s)
- Wenzhu Jiang
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ando T, Yamamoto T, Shimizu T, Ma XF, Shomura A, Takeuchi Y, Lin SY, Yano M. Genetic dissection and pyramiding of quantitative traits for panicle architecture by using chromosomal segment substitution lines in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 116:881-90. [PMID: 18274726 DOI: 10.1007/s00122-008-0722-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Accepted: 01/23/2008] [Indexed: 05/07/2023]
Abstract
To understand the genetic basis of yield-related traits of rice, we developed 39 chromosome segment substitution lines (CSSLs) from a cross between an average-yielding japonica cultivar, Sasanishiki, as the recurrent parent and a high-yielding indica cultivar, Habataki, as the donor. Five morphological components of panicle architecture in the CSSLs were evaluated in 2 years, and 38 quantitative trait loci (QTLs) distributed on 11 chromosomes were detected. The additive effect of each QTL was relatively small, suggesting that none of the QTLs could explain much of the phenotypic difference in sink size between Sasanishiki and Habataki. We developed nearly isogenic lines for two major QTLs, qSBN1 (for secondary branch number on chromosome 1) and qPBN6 (for primary branch number on chromosome 6), and a line containing both. Phenotypic analysis of these lines revealed that qSBN1 and qPBN6 contributed independently to sink size and that the combined line produced more spikelets. This suggests that the cumulative effects of QTLs distributed throughout the genome form the major genetic basis of panicle architecture in rice.
Collapse
Affiliation(s)
- Tsuyu Ando
- Institute of the Society for Techno-Innovation of Agriculture, Forestry, and Fisheries, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Moyle LC. Genetic underpinnings of postzygotic reproductive barriers among plants. THE NEW PHYTOLOGIST 2008; 179:572-574. [PMID: 18715322 DOI: 10.1111/j.1469-8137.2008.02559.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- Leonie C Moyle
- Indiana University, Bloomington, Department of Biology, 1001 East Third Street, Bloomington, IN 47405, USA
| |
Collapse
|
28
|
Miura K, Yamamoto E, Morinaka Y, Takashi T, Kitano H, Matsuoka M, Ashikari M. The hybrid breakdown 1(t) locus induces interspecific hybrid breakdown between rice Oryza sativa cv. Koshihikari and its wild relative O. nivara. BREEDING SCIENCE 2008. [PMID: 0 DOI: 10.1270/jsbbs.58.99] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Affiliation(s)
- Kotaro Miura
- Bioscience and Biotechnology Center, Nagoya University
- Research Fellow of the Japan Society for the Promotion of Science
| | - Eiji Yamamoto
- Bioscience and Biotechnology Center, Nagoya University
| | | | | | - Hidemi Kitano
- Bioscience and Biotechnology Center, Nagoya University
| | | | | |
Collapse
|