1
|
Mann A, Kumari J, Kumar R, Kumar P, Pradhan AK, Pental D, Bisht NC. Targeted editing of multiple homologues of GTR1 and GTR2 genes provides the ideal low-seed, high-leaf glucosinolate oilseed mustard with uncompromised defence and yield. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2182-2195. [PMID: 37539488 PMCID: PMC10579706 DOI: 10.1111/pbi.14121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 08/05/2023]
Abstract
Glucosinolate content in the two major oilseed Brassica crops-rapeseed and mustard has been reduced to the globally accepted Canola quality level (<30 μmoles/g of seed dry weight, DW), making the protein-rich seed meal useful as animal feed. However, the overall lower glucosinolate content in seeds as well as in the other parts of such plants renders them vulnerable to biotic challenges. We report CRISPR/Cas9-based editing of glucosinolate transporter (GTR) family genes in mustard (Brassica juncea) to develop ideal lines with the desired low seed glucosinolate content (SGC) while maintaining high glucosinolate levels in the other plant parts for uncompromised plant defence. Use of three gRNAs provided highly efficient and precise editing of four BjuGTR1 and six BjuGTR2 homologues leading to a reduction of SGC from 146.09 μmoles/g DW to as low as 6.21 μmoles/g DW. Detailed analysis of the GTR-edited lines showed higher accumulation and distributional changes of glucosinolates in the foliar parts. However, the changes did not affect the plant defence and yield parameters. When tested against the pathogen Sclerotinia sclerotiorum and generalist pest Spodoptera litura, the GTR-edited lines displayed a defence response at par or better than that of the wild-type line. The GTR-edited lines were equivalent to the wild-type line for various seed yield and seed quality traits. Our results demonstrate that simultaneous editing of multiple GTR1 and GTR2 homologues in mustard can provide the desired low-seed, high-leaf glucosinolate lines with an uncompromised defence and yield.
Collapse
Affiliation(s)
- Avni Mann
- National Institute of Plant Genome ResearchNew DelhiIndia
| | - Juhi Kumari
- National Institute of Plant Genome ResearchNew DelhiIndia
| | - Roshan Kumar
- National Institute of Plant Genome ResearchNew DelhiIndia
| | - Pawan Kumar
- National Institute of Plant Genome ResearchNew DelhiIndia
| | | | | | | |
Collapse
|
2
|
Jhingan S, Harloff HJ, Abbadi A, Welsch C, Blümel M, Tasdemir D, Jung C. Reduced glucosinolate content in oilseed rape (Brassica napus L.) by random mutagenesis of BnMYB28 and BnCYP79F1 genes. Sci Rep 2023; 13:2344. [PMID: 36759657 PMCID: PMC9911628 DOI: 10.1038/s41598-023-28661-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
The presence of anti-nutritive compounds like glucosinolates (GSLs) in the rapeseed meal severely restricts its utilization as animal feed. Therefore, reducing the GSL content to < 18 µmol/g dry weight in the seeds is a major breeding target. While candidate genes involved in the biosynthesis of GSLs have been described in rapeseed, comprehensive functional analyses are missing. By knocking out the aliphatic GSL biosynthesis genes BnMYB28 and BnCYP79F1 encoding an R2R3 MYB transcription factor and a cytochrome P450 enzyme, respectively, we aimed to reduce the seed GSL content in rapeseed. After expression analyses on single paralogs, we used an ethyl methanesulfonate (EMS) treated population of the inbred winter rapeseed 'Express617' to detect functional mutations in the two gene families. Our results provide the first functional analysis by knock-out for the two GSL biosynthesis genes in winter rapeseed. We demonstrate that independent knock-out mutants of the two genes possessed significantly reduced seed aliphatic GSLs, primarily progoitrin. Compared to the wildtype Express617 control plants (36.3 µmol/g DW), progoitrin levels were decreased by 55.3% and 32.4% in functional mutants of BnMYB28 (16.20 µmol/g DW) and BnCYP79F1 (24.5 µmol/g DW), respectively. Our study provides a strong basis for breeding rapeseed with improved meal quality in the future.
Collapse
Affiliation(s)
- Srijan Jhingan
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Hans-Joachim Harloff
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Amine Abbadi
- NPZ Innovation GmbH, Hohenlieth-Hof, 24363, Holtsee, Germany
| | - Claudia Welsch
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Product Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel Kanal 44, 24106, Kiel, Germany
| | - Martina Blümel
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Product Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel Kanal 44, 24106, Kiel, Germany
| | - Deniz Tasdemir
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Product Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel Kanal 44, 24106, Kiel, Germany
- Christian-Albrechts-University of Kiel, Christian-Albrechts-Platz 4, 24118, Kiel, Germany
| | - Christian Jung
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany.
| |
Collapse
|
3
|
Rakshita KN, Singh S, Verma VK, Sharma BB, Saini N, Iquebal MA, Sharma A, Dey SS, Behera TK. Agro-morphological and molecular diversity in different maturity groups of Indian cauliflower (Brassica oleracea var. botrytis L.). PLoS One 2021; 16:e0260246. [PMID: 34890399 PMCID: PMC8664203 DOI: 10.1371/journal.pone.0260246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 11/05/2021] [Indexed: 11/29/2022] Open
Abstract
The present study analysed the molecular and agro-morphological diversity in a set of 92 diverse cauliflower genotypes and two each of cabbage and broccoli. Field evaluation of the genotypes was done in randomized block design (RBD) at two locations (i.e. IARI, New Delhi and ICAR-RC-NEH Region, Barapani) during Rabi2019-20. Genotypes showed variation for all the eight observed traits at both locations and, the differences in early and snowball groups were distinct. Pusa Meghna, DC-33-8, Pusa Kartiki and CC-14 were earliest for curd initiation. Genotypes showed higher values for curd traits at Delhi. Molecular diversity was detected with 90 polymorphic simple sequence repeats (SSR). Number of alleles ranged from 1 to 9 with mean value of 2.16 and the highest polymorphic information content (PIC) value was observed for primer BoGMS0742 (0.68) with a mean value of 0.18. Cluster analysis using agro-morphological traits substantiated classification of the genotypes for maturity groups. However, SSR analysis revealed four clusters and with a composite pattern of genotype distribution. STRUCTURE analysis also supported the admixture and four subpopulations. The studyindicates for introgression of genetic fragments across the maturity groups, thereby, potential for use in further genetic improvement and heterosis breeding.
Collapse
Affiliation(s)
- K. N. Rakshita
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Shrawan Singh
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Brij Bihari Sharma
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Navinder Saini
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Mir Asif Iquebal
- ICAR-Indian Agricultural Statistical Research Institute, New Delhi, India
| | - Akanksha Sharma
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Shyam Sunder Dey
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - T. K. Behera
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
4
|
Gohain B, Kumar P, Malhotra B, Augustine R, Pradhan AK, Bisht NC. A comprehensive Vis-NIRS equation for rapid quantification of seed glucosinolate content and composition across diverse Brassica oilseed chemotypes. Food Chem 2021; 354:129527. [PMID: 33756325 DOI: 10.1016/j.foodchem.2021.129527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/03/2021] [Accepted: 03/02/2021] [Indexed: 01/28/2023]
Abstract
The globally cultivated Brassica crops contain high deliverable concentrations of health-promoting glucosinolates. Development of a Visible-Near InfraRed Spectroscopy (Vis-NIRS) calibration to profile different glucosinolate components from 641 diverse Brassica juncea chemotypes was attempted in this study. Principal component analysis of HPLC-determined glucosinolates established the distinctiveness of four B. juncea populations used. Subsequently, modified partial least square regression based population-specific and combined Vis-NIRS models were developed, wherein the combined model exhibited higher coefficient of determination (R2; 0.81-0.97) for eight glucosinolates and higher ratio of prediction determination (RPD; 2.42-5.35) for seven glucosinolates in B. juncea populations. Furthermore, range error ratio (RER > 4) for twelve and RER > 10 for eight glucosinolates make the combined model acceptable for screening and quality control. The model also provided excellent prediction for aliphatic glucosinolates in four oilseed Brassica species. Overall, our work highlights the potential of Vis-NIR spectroscopy in estimating glucosinolate content in the economically important Brassica oilseeds.
Collapse
Affiliation(s)
- Bornali Gohain
- National Institute for Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Pawan Kumar
- National Institute for Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Bhanu Malhotra
- National Institute for Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Rehna Augustine
- Centre for Plant Biotechnology & Molecular Biology, Kerala Agricultural University, 680656, India.
| | - Akshay K Pradhan
- Department of Genetics, University of Delhi South Campus, New Delhi 110021, India.
| | - Naveen C Bisht
- National Institute for Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
5
|
Borpatragohain P, Rose TJ, Liu L, Barkla BJ, Raymond CA, King GJ. Remobilization and fate of sulphur in mustard. ANNALS OF BOTANY 2019; 124:471-480. [PMID: 31181139 PMCID: PMC6798836 DOI: 10.1093/aob/mcz101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 06/06/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND AND AIMS Sulphur (S) is an essential macronutrient involved in numerous metabolic pathways required for plant growth. Crops of the plant family Brassicaceae require more S compared with other crops for optimum growth and yield, with most S ultimately sequestered in the mature seeds as the storage proteins cruciferin and napin, along with the unique S-rich secondary metabolite glucosinolate (GSL). It is well established that S assimilation primarily takes place in the shoots rather than roots, and that sulphate is the major form in which S is transported and stored in plants. We carried out a developmental S audit to establish the net fluxes of S in two lines of Brassica juncea mustard where seed GSL content differed but resulted in no yield penalty. METHODS We quantified S pools (sulphate, GSL and total S) in different organs at multiple growth stages until maturity, which also allowed us to test the hypothesis that leaf S, accumulated as a primary S sink, becomes remobilized as a secondary source to meet the requirements of GSL as the dominant seed S sink. KEY RESULTS Maximum plant sulphate accumulation had occurred by floral initiation in both lines, at which time most of the sulphate was found in the leaves, confirming its role as the primary S sink. Up to 52 % of total sulphate accumulated by the low-GSL plants was lost through senesced leaves. In contrast, S from senescing leaves of the high-GSL line was remobilized to other tissues, with GSL accumulating in the seed from commencement of silique filling until maturity. CONCLUSION We have established that leaf S compounds that accumulated as primary S sinks at early developmental stages in condiment type B. juncea become remobilized as a secondary S source to meet the demand for GSL as the dominant seed S sink at maturity.
Collapse
Affiliation(s)
| | - Terry J Rose
- Southern Cross Plant Science, Southern Cross University, Lismore, Australia
| | - Lei Liu
- Southern Cross Plant Science, Southern Cross University, Lismore, Australia
| | - Bronwyn J Barkla
- Southern Cross Plant Science, Southern Cross University, Lismore, Australia
| | - Carolyn A Raymond
- Southern Cross Plant Science, Southern Cross University, Lismore, Australia
| | - Graham J King
- Southern Cross Plant Science, Southern Cross University, Lismore, Australia
- For correspondence. E-mail
| |
Collapse
|
6
|
Augustine R, Bisht NC. Targeted silencing of genes in polyploids: lessons learned from Brassica juncea-glucosinolate system. PLANT CELL REPORTS 2019; 38:51-57. [PMID: 30306251 DOI: 10.1007/s00299-018-2348-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 10/02/2018] [Indexed: 06/08/2023]
Abstract
Intron-spliced hairpin RNAi construct targeting the exonic region of BjuMYB28 driven by the native promoter is the best suited strategy for developing viable low glucosinolate lines in polyploid Brassica juncea. Targeted silencing of specific homolog(s) of a multigene family in polyploids through RNA interference (RNAi) is a challenging effort. Indian oilseed mustard (Brassica juncea), a natural allotetraploid, is expected to have 4-6 copies of every Arabidopsis gene ortholog. In the current study, we have attempted to establish the best gene silencing system suitable for BjuMYB28, a transcription factor gene, with the objective of developing low seed glucosinolate lines in B. juncea. After comparing multiple combinations of BjuMYB28 gene homologs, promoters, target regions (exon and 3' UTR) and silencing strategies (RNAi and antisense), we suggest that the intron-spliced hairpin RNAi construct targeting the specific exonic region of the BjuMYB28 gene under the control of native promoter, whose peak activity synchronises with the highest glucosinolate accumulation phase of the plant, is the best suited strategy for developing viable low glucosinolate lines in polyploid B. juncea.
Collapse
Affiliation(s)
- Rehna Augustine
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Naveen C Bisht
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
7
|
Seo MS, Kim JS. Understanding of MYB Transcription Factors Involved in Glucosinolate Biosynthesis in Brassicaceae. Molecules 2017; 22:molecules22091549. [PMID: 28906468 PMCID: PMC6151624 DOI: 10.3390/molecules22091549] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 09/08/2017] [Accepted: 09/12/2017] [Indexed: 02/06/2023] Open
Abstract
Glucosinolates (GSLs) are widely known secondary metabolites that have anticarcinogenic and antioxidative activities in humans and defense roles in plants of the Brassicaceae family. Some R2R3-type MYB (myeloblastosis) transcription factors (TFs) control GSL biosynthesis in Arabidopsis. However, studies on the MYB TFs involved in GSL biosynthesis in Brassica species are limited because of the complexity of the genome, which includes an increased number of paralog genes as a result of genome duplication. The recent completion of the genome sequencing of the Brassica species permits the identification of MYB TFs involved in GSL biosynthesis by comparative genome analysis with A. thaliana. In this review, we describe various findings on the regulation of GSL biosynthesis in Brassicaceae. Furthermore, we identify 63 orthologous copies corresponding to five MYB TFs from Arabidopsis, except MYB76 in Brassica species. Fifty-five MYB TFs from the Brassica species possess a conserved amino acid sequence in their R2R3 MYB DNA-binding domain, and share close evolutionary relationships. Our analysis will provide useful information on the 55 MYB TFs involved in the regulation of GSL biosynthesis in Brassica species, which have a polyploid genome.
Collapse
Affiliation(s)
- Mi-Suk Seo
- Genomics Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wansan-gu, Jeonju 54874, Korea.
| | - Jung Sun Kim
- Genomics Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wansan-gu, Jeonju 54874, Korea.
| |
Collapse
|
8
|
|
9
|
Augustine R, Bisht NC. Regulation of Glucosinolate Metabolism: From Model Plant Arabidopsis thaliana to Brassica Crops. REFERENCE SERIES IN PHYTOCHEMISTRY 2017. [DOI: 10.1007/978-3-319-25462-3_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Borpatragohain P, Rose TJ, King GJ. Fire and Brimstone: Molecular Interactions between Sulfur and Glucosinolate Biosynthesis in Model and Crop Brassicaceae. FRONTIERS IN PLANT SCIENCE 2016; 7:1735. [PMID: 27917185 PMCID: PMC5116641 DOI: 10.3389/fpls.2016.01735] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/03/2016] [Indexed: 05/20/2023]
Abstract
Glucosinolates (GSLs) represent one of the most widely studied classes of plant secondary metabolite, and have a wide range of biological activities. Their unique properties also affect livestock and human health, and have been harnessed for food and other end-uses. Since GSLs are sulfur (S)-rich there are many lines of evidence suggesting that plant S status plays a key role in determining plant GSL content. However, there is still a need to establish a detailed knowledge of the distribution and remobilization of S and GSLs throughout the development of Brassica crops, and to represent this in terms of primary and secondary sources and sinks. The increased genome complexity, gene duplication and divergence within brassicas, together with their ontogenetic plasticity during crop development, appear to have a marked effect on the regulation of S and GSLs. Here, we review the current understanding of inorganic S (sulfate) assimilation into organic S forms, including GSLs and their precursors, the intracellular and inter-organ transport of inorganic and organic S forms, and the accumulation of GSLs in specific tissues. We present this in the context of overlapping sources and sinks, transport processes, signaling molecules and their associated molecular interactions. Our analysis builds on recent insights into the molecular regulation of sulfate uptake and transport by different transporters, transcription factors and miRNAs, and the role that these may play in GSL biosynthesis. We develop a provisional model describing the key processes that could be targeted in crop breeding programs focused on modifying GSL content.
Collapse
Affiliation(s)
| | - Terry J. Rose
- Southern Cross Plant Science, Southern Cross University, LismoreNSW, Australia
- Southern Cross GeoScience, Southern Cross University, LismoreNSW, Australia
| | - Graham J. King
- Southern Cross Plant Science, Southern Cross University, LismoreNSW, Australia
| |
Collapse
|
11
|
Sharma M, Mukhopadhyay A, Gupta V, Pental D, Pradhan AK. BjuB.CYP79F1 Regulates Synthesis of Propyl Fraction of Aliphatic Glucosinolates in Oilseed Mustard Brassica juncea: Functional Validation through Genetic and Transgenic Approaches. PLoS One 2016; 11:e0150060. [PMID: 26919200 PMCID: PMC4769297 DOI: 10.1371/journal.pone.0150060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/09/2016] [Indexed: 12/03/2022] Open
Abstract
Among the different types of methionine-derived aliphatic glucosinolates (GS), sinigrin (2-propenyl), the final product in 3C GS biosynthetic pathway is considered very important as it has many pharmacological and therapeutic properties. In Brassica species, the candidate gene regulating synthesis of 3C GS remains ambiguous. Earlier reports of GSL-PRO, an ortholog of Arabidopsis thaliana gene At1g18500 as a probable candidate gene responsible for 3C GS biosynthesis in B. napus and B. oleracea could not be validated in B. juncea through genetic analysis. In this communication, we report the isolation and characterization of the gene CYP79F1, an ortholog of A. thaliana gene At1g16410 that is involved in the first step of core GS biosynthesis. The gene CYP79F1 in B. juncea showed presence-absence polymorphism between lines Varuna that synthesizes sinigrin and Heera virtually free from sinigrin. Using this presence-absence polymorphism, CYP79F1 was mapped to the previously mapped 3C GS QTL region (J16Gsl4) in the LG B4 of B. juncea. In Heera, the gene was observed to be truncated due to an insertion of a ~4.7 kb TE like element leading to the loss of function of the gene. Functional validation of the gene was carried out through both genetic and transgenic approaches. An F2 population segregating only for the gene CYP79F1 and the sinigrin phenotype showed perfect co-segregation. Finally, genetic transformation of a B. juncea line (QTL-NIL J16Gsl4) having high seed GS but lacking sinigrin with the wild type CYP79F1 showed the synthesis of sinigrin validating the role of CYP79F1 in regulating the synthesis of 3C GS in B. juncea.
Collapse
Affiliation(s)
- Manisha Sharma
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | - Arundhati Mukhopadhyay
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, India
| | - Vibha Gupta
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, India
| | - Deepak Pental
- Department of Genetics, University of Delhi South Campus, New Delhi, India
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, India
| | - Akshay K. Pradhan
- Department of Genetics, University of Delhi South Campus, New Delhi, India
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
12
|
Augustine R, Bisht NC. Biofortification of oilseed Brassica juncea with the anti-cancer compound glucoraphanin by suppressing GSL-ALK gene family. Sci Rep 2015; 5:18005. [PMID: 26657321 PMCID: PMC4997087 DOI: 10.1038/srep18005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 11/10/2015] [Indexed: 12/25/2022] Open
Abstract
Glucosinolates are amino acids derived secondary metabolites, invariably present in Brassicales, which have huge health and agricultural benefits. Sulphoraphane, the breakdown product of glucosinolate glucoraphanin is known to posses anti-cancer properties. AOP (2-oxoglutarate-dependent dioxygenases) or GSL-ALK enzyme catalyzes the conversion of desirable glucoraphanin to deleterious gluconapin and progoitrin, which are present in very high amounts in most of the cultivable Brassica species including Brassica juncea. In this study we showed that B. juncea encodes four functional homologs of GSL-ALK gene and constitutive silencing of GSL-ALK homologs resulted in accumulation of glucoraphanin up to 43.11 μmoles g(-1) DW in the seeds with a concomitant reduction in the anti-nutritional glucosinolates. Glucoraphanin content was found remarkably high in leaves as well as sprouts of the transgenic lines. Transcript quantification of high glucoraphanin lines confirmed significant down-regulation of GSL-ALK homologs. Growth and other seed quality parameters of the transgenic lines did not show drastic difference, compared to the untransformed control. High glucoraphanin lines also showed higher resistance towards stem rot pathogen Sclerotinia sclerotiorum. Our results suggest that metabolic engineering of GSL-ALK has huge potential for enriching glucoraphanin content, and improve the oil quality and vegetable value of Brassica crops.
Collapse
Affiliation(s)
- Rehna Augustine
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, INDIA
| | - Naveen C. Bisht
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, INDIA
| |
Collapse
|
13
|
Augustine R, Bisht NC. Biotic elicitors and mechanical damage modulate glucosinolate accumulation by co-ordinated interplay of glucosinolate biosynthesis regulators in polyploid Brassica juncea. PHYTOCHEMISTRY 2015; 117:43-50. [PMID: 26057228 DOI: 10.1016/j.phytochem.2015.05.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 03/31/2015] [Accepted: 05/26/2015] [Indexed: 05/28/2023]
Abstract
Glucosinolates are nitrogen and sulfur containing secondary metabolites found mainly in the Brassicaceae. They function as plant defense compounds against a broad spectrum of pathogens and pests. Since these molecules form part of the plant defense mechanism, glucosinolate biosynthesis may be modulated by environmental signals leading to activation of a biological stress response. In the current study, we have mimicked such conditions by exogenously applying biotic elicitors such as methyl jasmonate, salicylic acid, glucose and mechanical injury in Brassica juncea seedling over a time course experiment. We found that total glucosinolates over-accumulated under these stress conditions with maximum accumulation observed 24h post treatment. Indole glucosinolates like 1-methoxy-indol-3-ylmethyl and its precursor indol-3-methyl glucosinolates showed a more significant induction compared to aliphatic glucosinolates thereby suggesting a prominent role of indole glucosinolates during plant defense response in B. juncea seedlings. In contrast, the higher amounts of aliphatic glucosinolates were less regulated by the tested biotic elicitors in B. juncea. Expression profiling of multiple homologs of key transcriptional regulators of glucosinolate biosynthesis further showed that a complex interplay of these regulators exists in polyploid B. juncea where they exert co-ordinated and overlapping effects toward altering glucosinolate accumulation. This study has a significant role toward understanding and augmenting plant defense mechanisms in B. juncea, a globally important oilseed crop of genus Brassica.
Collapse
Affiliation(s)
- Rehna Augustine
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Naveen C Bisht
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
14
|
Rout K, Sharma M, Gupta V, Mukhopadhyay A, Sodhi YS, Pental D, Pradhan AK. Deciphering allelic variations for seed glucosinolate traits in oilseed mustard (Brassica juncea) using two bi-parental mapping populations. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:657-66. [PMID: 25628164 DOI: 10.1007/s00122-015-2461-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/10/2015] [Indexed: 05/21/2023]
Abstract
QTL mapping by two DH mapping populations deciphered allelic variations for five different seed glucosinolate traits in B. juncea. Allelic variations for five different seed glucosinolate (GS) traits, namely % propyl, % butyl, % pentyl, aliphatics and total GS content were studied through QTL analysis using two doubled haploid (DH) mapping populations. While the high GS parents in two populations differed in their profiles of seed aliphatic GS, the low GS parents were similar. Phenotypic data of seed GS traits from three environments of the two populations were subjected to QTL analysis. The first population (referred to as DE population) detected a total of 60 QTL from three environments which upon intra-population meta-QTL analysis were merged to 17 S-QTL (Stable QTL) and 15 E-QTL (Environment QTL). The second population (referred to as VH population) detected 58 QTL from the three environments that were merged to 15S-QTL and 16E-QTL. In both the populations, majority of S-QTL were detected as major QTL. Inter-population meta-analysis identified three C-QTL (consensus QTL) formed by merging major QTL from the two populations. Candidate genes of GS pathway were co-localized to the QTL regions either through genetic mapping or through in silico comparative analysis. Parental allelic variants of QTL or of the co-mapped candidate gene(s) were determined on the basis of the significantly different R (2) values of the component QTL from the two populations which were merged to form C-QTL. The results of the study are significant for marker-assisted transfer of the low GS trait and also for developing lines with lower GS than are present in Brassica juncea.
Collapse
Affiliation(s)
- Kadambini Rout
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | | | | | | | | | | | | |
Collapse
|
15
|
Augustine R, Majee M, Pradhan AK, Bisht NC. Genomic origin, expression differentiation and regulation of multiple genes encoding CYP83A1, a key enzyme for core glucosinolate biosynthesis, from the allotetraploid Brassica juncea. PLANTA 2015; 241:651-65. [PMID: 25410614 DOI: 10.1007/s00425-014-2205-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 11/10/2014] [Indexed: 05/04/2023]
Abstract
The multiple BjuCYP83A1 genes formed as a result of polyploidy have retained cell-, tissue-, and condition-specific transcriptional sub-functionalization to control the complex aliphatic glucosinolates biosynthesis in the allotetraploid Brassica juncea. Glucosinolates along with their breakdown products are associated with diverse roles in plant metabolism, plant defense and animal nutrition. CYP83A1 is a key enzyme that oxidizes aliphatic aldoximes to aci-nitro compounds in the complex aliphatic glucosinolate biosynthetic pathway. In this study, we reported the isolation of four CYP83A1 genes named BjuCYP83A1-1, -2, -3, and -4 from allotetraploid Brassica juncea (AABB genome), an economically important oilseed crop of Brassica genus. The deduced BjuCYP83A1 proteins shared 85.7-88.4 % of sequence identity with A. thaliana AtCYP83A1 and 84.2-95.8 % among themselves. Phylogenetic and divergence analysis revealed that the four BjuCYP83A1 proteins are evolutionary conserved and have evolved via duplication and hybridization of two relatively simpler diploid Brassica genomes namely B. rapa (AA genome) and B. nigra (BB genome), and have retained high level of sequence conservation following allopolyploidization. Ectopic over-expression of BjuCYP83A1-1 in A. thaliana showed that it is involved mainly in the synthesis of C4 aliphatic glucosinolates. Detailed expression analysis using real-time qRT-PCR in B. juncea and PromoterBjuCYP83A1-GUS lines in A. thaliana confirmed that the four BjuCYP83A1 genes have retained ubiquitous, overlapping but distinct expression profiles in different tissue and cell types of B. juncea, and in response to various elicitor treatments and environmental conditions. Taken together, this study demonstrated that transcriptional sub-functionalization and coordinated roles of multiple BjuCYP83A1 genes control the biosynthesis of aliphatic glucosinolates in the allotetraploid B. juncea, and provide a framework for metabolic engineering of aliphatic glucosinolates in economically important Brassica species.
Collapse
|
16
|
Paritosh K, Gupta V, Yadava SK, Singh P, Pradhan AK, Pental D. RNA-seq based SNPs for mapping in Brassica juncea (AABB): synteny analysis between the two constituent genomes A (from B. rapa) and B (from B. nigra) shows highly divergent gene block arrangement and unique block fragmentation patterns. BMC Genomics 2014; 15:396. [PMID: 24886001 PMCID: PMC4045973 DOI: 10.1186/1471-2164-15-396] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 05/20/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Brassica juncea (AABB) is an allotetraploid species containing genomes of B. rapa (AA) and B. nigra (BB). It is a major oilseed crop in South Asia, and grown on approximately 6-7 million hectares of land in India during the winter season under dryland conditions. B. juncea has two well defined gene pools--Indian and east European. Hybrids between the two gene pools are heterotic for yield. A large number of qualitative and quantitative traits need to be introgressed from one gene pool into the other. This study explores the availability of SNPs in RNA-seq generated contigs, and their use for general mapping, fine mapping of selected regions, and comparative arrangement of gene blocks on B. juncea A and B genomes. RESULTS RNA isolated from two lines of B. juncea--Varuna (Indian type) and Heera (east European type)--was sequenced using Illumina paired end sequencing technology, and assembled using the Velvet de novo programme. A and B genome specific contigs were identified in two steps. First, by aligning contigs against the B. rapa protein database (available at BRAD), and second by comparing percentage identity at the nucleotide level with B. rapa CDS and B. nigra transcriptome. 135,693 SNPs were recorded in the assembled partial gene models of Varuna and Heera, 85,473 in the A genome and 50,236 in the B. Using KASpar technology, 999 markers were added to an earlier intron polymorphism marker based map of a B. juncea Varuna x Heera DH population. Many new gene blocks were identified in the B genome. A number of SNP markers covered single copy homoeologues of the A and B genomes, and these were used to identify homoeologous blocks between the two genomes. Comparison of the block architecture of A and B genomes revealed extensive differences in gene block associations and block fragmentation patterns. CONCLUSIONS Sufficient SNP markers are available for general and specific -region fine mapping of crosses between lines of two diverse B. juncea gene pools. Comparative gene block arrangement and block fragmentation patterns between A and B genomes support the hypothesis that the two genomes evolved from independent hexaploidy events.
Collapse
Affiliation(s)
| | | | | | | | | | - Deepak Pental
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India.
| |
Collapse
|
17
|
Sharma A, Li X, Lim YP. Comparative genomics of Brassicaceae crops. BREEDING SCIENCE 2014; 64:3-13. [PMID: 24987286 PMCID: PMC4031108 DOI: 10.1270/jsbbs.64.3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 02/16/2014] [Indexed: 06/03/2023]
Abstract
The family Brassicaceae is one of the major groups of the plant kingdom and comprises diverse species of great economic, agronomic and scientific importance, including the model plant Arabidopsis. The sequencing of the Arabidopsis genome has revolutionized our knowledge in the field of plant biology and provides a foundation in genomics and comparative biology. Genomic resources have been utilized in Brassica for diversity analyses, construction of genetic maps and identification of agronomic traits. In Brassicaceae, comparative sequence analysis across the species has been utilized to understand genome structure, evolution and the detection of conserved genomic segments. In this review, we focus on the progress made in genetic resource development, genome sequencing and comparative mapping in Brassica and related species. The utilization of genomic resources and next-generation sequencing approaches in improvement of Brassica crops is also discussed.
Collapse
Affiliation(s)
- Ashutosh Sharma
- Graduate School of Agricultural Science, Tohoku University,
Aoba, Sendai, Miyagi 981-8555,
Japan
- Present address: Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Xiaonan Li
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University,
Daejeon 305-764,
Republic of Korea
| | - Yong Pyo Lim
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University,
Daejeon 305-764,
Republic of Korea
| |
Collapse
|
18
|
Dechaine JM, Brock MT, Weinig C. QTL architecture of reproductive fitness characters in Brassica rapa. BMC PLANT BIOLOGY 2014; 14:66. [PMID: 24641198 PMCID: PMC4004417 DOI: 10.1186/1471-2229-14-66] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 03/03/2014] [Indexed: 05/19/2023]
Abstract
BACKGROUND Reproductive output is critical to both agronomists seeking to increase seed yield and to evolutionary biologists interested in understanding natural selection. We examine the genetic architecture of diverse reproductive fitness traits in recombinant inbred lines (RILs) developed from a crop (seed oil) × wild-like (rapid cycling) genotype of Brassica rapa in field and greenhouse environments. RESULTS Several fitness traits showed strong correlations and QTL-colocalization across environments (days to bolting, fruit length and seed color). Total fruit number was uncorrelated across environments and most QTL affecting this trait were correspondingly environment-specific. Most fitness components were positively correlated, consistent with life-history theory that genotypic variation in resource acquisition masks tradeoffs. Finally, we detected evidence of transgenerational pleiotropy, that is, maternal days to bolting was negatively correlated with days to offspring germination. A QTL for this transgenerational correlation was mapped to a genomic region harboring one copy of FLOWERING LOCUS C, a genetic locus known to affect both days to flowering as well as germination phenotypes. CONCLUSIONS This study characterizes the genetic structure of important fitness/yield traits within and between generations in B. rapa. Several identified QTL are suitable candidates for fine-mapping for the improvement of yield in crop Brassicas. Specifically, brFLC1, warrants further investigation as a potential regulator of phenology between generations.
Collapse
Affiliation(s)
- Jennifer M Dechaine
- Department of Biological Sciences, Central Washington University, Ellensburg, WA 98926, USA
| | - Marcus T Brock
- Department of Botany, University of Wyoming, Laramie, WY 82071, USA
| | - Cynthia Weinig
- Department of Botany, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
19
|
Augustine R, Majee M, Gershenzon J, Bisht NC. Four genes encoding MYB28, a major transcriptional regulator of the aliphatic glucosinolate pathway, are differentially expressed in the allopolyploid Brassica juncea. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4907-21. [PMID: 24043856 PMCID: PMC3830477 DOI: 10.1093/jxb/ert280] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Glucosinolates are Capparales-specific secondary metabolites that have immense potential in human health and agriculture. Unlike Arabidopsis thaliana, our knowledge about glucosinolate regulators in the Brassica crops is sparse. In the current study, four MYB28 homologues were identified (BjuMYB28-1,-2,-3,-4) from the polyploid Brassica juncea, and the effects of allopolyploidization on the divergence of gene sequence, structure, function, and expression were assessed. The deduced protein sequences of the four BjuMYB28 genes showed 76.1-83.1% identity with the Arabidopsis MYB28. Phylogenetic analysis revealed that the four BjuMYB28 proteins have evolved via the hybridization and duplication processes forming the B. juncea genome (AABB) from B. rapa (AA) and B. nigra (BB), while retaining high levels of sequence conservation. Mutant complementation and over-expression studies in A. thaliana showed that all four BjuMYB28 genes encode functional MYB28 proteins and resulted in similar aliphatic glucosinolate composition and content. Detailed expression analysis using qRT-PCR assays and promoter-GUS lines revealed that the BjuMYB28 genes have both tissue- and cell-specific expression partitioning in B. juncea. The two B-genome origin BjuMYB28 genes had more abundant transcripts during the early stages of plant development than the A-genome origin genes. However, with the onset of the reproductive phase, expression levels of all four BjuMYB28 increased significantly, which may be necessary for producing and maintaining high amounts of aliphatic glucosinolates during the later stages of plant development. Taken together, our results suggest that the four MYB28 genes are differentially expressed and regulated in B. juncea to play discrete though overlapping roles in controlling aliphatic glucosinolate biosynthesis.
Collapse
Affiliation(s)
- Rehna Augustine
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Manoj Majee
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, Germany
| | - Naveen C. Bisht
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
20
|
Augustine R, Mukhopadhyay A, Bisht NC. Targeted silencing of BjMYB28 transcription factor gene directs development of low glucosinolate lines in oilseed Brassica juncea. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:855-66. [PMID: 23721233 DOI: 10.1111/pbi.12078] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 04/03/2013] [Accepted: 04/08/2013] [Indexed: 05/20/2023]
Abstract
Brassica juncea (Indian mustard), a globally important oilseed crop, contains relatively high amount of seed glucosinolates ranging from 80 to 120 μmol/g dry weight (DW). One of the major breeding objectives in oilseed Brassicas is to improve the seed-meal quality through the development of low-seed-glucosinolate lines (<30 μmol/g DW), as high amounts of certain seed glucosinolates are known to be anti-nutritional and reduce the meal palatability. Here, we report the development of transgenic B. juncea lines having seed glucosinolates as low as 11.26 μmol/g DW, through RNAi-based targeted suppression of BjMYB28, a R2R3-MYB transcription factor family gene involved in aliphatic glucosinolate biosynthesis. Targeted silencing of BjMYB28 homologs provided significant reduction in the anti-nutritional aliphatic glucosinolates fractions, without altering the desirable nonaliphatic glucosinolate pool, both in leaves and seeds of transgenic plants. Molecular characterization of single-copy, low glucosinolate homozygous lines confirmed significant down-regulation of BjMYB28 homologs vis-à-vis enhanced accumulation of BjMYB28-specific siRNA pool. Consequently, these low glucosinolate lines also showed significant suppression of genes involved in aliphatic glucosinolate biosynthesis. The low glucosinolate trait was stable in subsequent generations of the transgenic lines with no visible off-target effects on plant growth and development. Various seed quality parameters including fatty acid composition, oil content, protein content and seed weight of the low glucosinolate lines also remained unaltered, when tested under containment conditions in the field. Our results indicate that targeted silencing of a key glucosinolate transcriptional regulator MYB28 has huge potential for reducing the glucosinolates content and improving the seed-meal quality of oilseed Brassica crops.
Collapse
Affiliation(s)
- Rehna Augustine
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | | | | |
Collapse
|
21
|
Zou Z, Ishida M, Li F, Kakizaki T, Suzuki S, Kitashiba H, Nishio T. QTL analysis using SNP markers developed by next-generation sequencing for identification of candidate genes controlling 4-methylthio-3-butenyl glucosinolate contents in roots of radish, Raphanus sativus L. PLoS One 2013; 8:e53541. [PMID: 23308250 PMCID: PMC3538544 DOI: 10.1371/journal.pone.0053541] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 11/29/2012] [Indexed: 12/30/2022] Open
Abstract
SNP markers for QTL analysis of 4-MTB-GSL contents in radish roots were developed by determining nucleotide sequences of bulked PCR products using a next-generation sequencer. DNA fragments were amplified from two radish lines by multiplex PCR with six primer pairs, and those amplified by 2,880 primer pairs were mixed and sequenced. By assembling sequence data, 1,953 SNPs in 750 DNA fragments, 437 of which have been previously mapped in a linkage map, were identified. A linkage map of nine linkage groups was constructed with 188 markers, and five QTLs were detected in two F(2) populations, three of them accounting for more than 50% of the total phenotypic variance being repeatedly detected. In the identified QTL regions, nine SNP markers were newly produced. By synteny analysis of the QTLs regions with Arabidopsis thaliana and Brassica rapa genome sequences, three candidate genes were selected, i.e., RsMAM3 for production of aliphatic glucosinolates linked to GSL-QTL-4, RsIPMDH1 for leucine biosynthesis showing strong co-expression with glucosinolate biosynthesis genes linked to GSL-QTL-2, and RsBCAT4 for branched-chain amino acid aminotransferase linked to GSL-QTL-1. Nucleotide sequences and expression of these genes suggested their possible function in 4MTB-GSL biosynthesis in radish roots.
Collapse
Affiliation(s)
- Zhongwei Zou
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Masahiko Ishida
- NARO Institute of Vegetable and Tea Science, Tsu, Mie, Japan
| | - Feng Li
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | | | - Sho Suzuki
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Hiroyasu Kitashiba
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Takeshi Nishio
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
22
|
Feng J, Long Y, Shi L, Shi J, Barker G, Meng J. Characterization of metabolite quantitative trait loci and metabolic networks that control glucosinolate concentration in the seeds and leaves of Brassica napus. THE NEW PHYTOLOGIST 2012; 193:96-108. [PMID: 21973035 DOI: 10.1111/j.1469-8137.2011.03890.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
• Glucosinolates are a major class of secondary metabolites found in the Brassicaceae, whose degradation products are proving to be increasingly important for human health and in crop protection. • The genetic and metabolic basis of glucosinolate accumulation was dissected through analysis of total glucosinolate concentration and its individual components in both leaves and seeds of a doubled-haploid (DH) mapping population of oilseed rape/canola (Brassica napus). • The quantitative trait loci (QTL) that had an effect on glucosinolate concentration in either or both of the organs were integrated, resulting in 105 metabolite QTL (mQTL). Pairwise correlations between individual glucosinolates and prior knowledge of the metabolic pathways involved in the biosynthesis of different glucosinolates allowed us to predict the function of genes underlying the mQTL. Moreover, this information allowed us to construct an advanced metabolic network and associated epistatic interactions responsible for the glucosinolate composition in both leaves and seeds of B. napus. • A number of previously unknown potential regulatory relationships involved in glucosinolate synthesis were identified and this study illustrates how genetic variation can affect a biochemical pathway.
Collapse
Affiliation(s)
- Ji Feng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Long
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiaqin Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Guy Barker
- Life Sciences, University of Warwick, Wellesbourne, Warwick CV35 9EF, UK
| | - Jinling Meng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|