1
|
Chemelewski R, McKinley BA, Finlayson S, Mullet JE. Epicuticular wax accumulation and regulation of wax pathway gene expression during bioenergy Sorghum stem development. FRONTIERS IN PLANT SCIENCE 2023; 14:1227859. [PMID: 37936930 PMCID: PMC10626490 DOI: 10.3389/fpls.2023.1227859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/11/2023] [Indexed: 11/09/2023]
Abstract
Bioenergy sorghum is a drought-tolerant high-biomass C4 grass targeted for production on annual cropland marginal for food crops due primarily to abiotic constraints. To better understand the overall contribution of stem wax to bioenergy sorghum's resilience, the current study characterized sorghum stem cuticular wax loads, composition, morphometrics, wax pathway gene expression and regulation using vegetative phase Wray, R07020, and TX08001 genotypes. Wax loads on sorghum stems (~103-215 µg/cm2) were much higher than Arabidopsis stem and leaf wax loads. Wax on developing sorghum stem internodes was enriched in C28/30 primary alcohols (~65%) while stem wax on fully developed stems was enriched in C28/30 aldehydes (~80%). Scanning Electron Microscopy showed minimal wax on internodes prior to the onset of elongation and that wax tubules first appear associated with cork-silica cell complexes when internode cell elongation is complete. Sorghum homologs of genes involved in wax biosynthesis/transport were differentially expressed in the stem epidermis. Expression of many wax pathway genes (i.e., SbKCS6, SbCER3-1, SbWSD1, SbABCG12, SbABCG11) is low in immature apical internodes then increases at the onset of stem wax accumulation. SbCER4 is expressed relatively early in stem development consistent with accumulation of C28/30 primary alcohols on developing apical internodes. High expression of two SbCER3 homologs in fully elongated internodes is consistent with a role in production of C28/30 aldehydes. Gene regulatory network analysis aided the identification of sorghum homologs of transcription factors that regulate wax biosynthesis (i.e., SbSHN1, SbWRI1/3, SbMYB94/96/30/60, MYS1) and other transcription factors that could regulate and specify expression of the wax pathway in epidermal cells during cuticle development.
Collapse
Affiliation(s)
- Robert Chemelewski
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, United States
| | - Brian A. McKinley
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, United States
| | - Scott Finlayson
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | - John E. Mullet
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, United States
| |
Collapse
|
2
|
Liu C, Yu L, Yang L, Tan C, Shi F, Ye X, Liu Z. Identification of a new allele of BraA09g066480.3C controlling the wax-less phenotype of Chinese cabbage. BMC PLANT BIOLOGY 2023; 23:408. [PMID: 37658308 PMCID: PMC10472645 DOI: 10.1186/s12870-023-04424-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 08/27/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND Epidermal wax covers the surfaces of terrestrial plants to resist biotic and abiotic stresses. Wax-less flowering Chinese cabbage (Brassica campestris L. ssp. chinesis var. utilis tsen et lee) has the charateristics of lustrous green leaves and flower stalks, which are of high commercial value. RESULTS To clarify the mechanism of the wax deficiency, the wax-less flowering Chinese cabbage doubled-haploid (DH) line 'CX001' and Chinese cabbage DH line 'FT', obtained from isolated microspore culture, were used in the experiments. Genetic analysis showed that the wax-less phenotype of 'CX001' was controlled by a recessive nuclear gene, named wlm1 (wax-less mutation 1), which was fine-mapped on chromosome A09 by bulked segregant analysis sequencing (BSA-seq) of B.rapa genome V3.0. There was only one gene (BraA09g066480.3C) present in the mapping region. The homologous gene in Arabidopsis thaliana is AT1G02205 (CER1) that encodes an aldehyde decarboxylase in the epidermal wax metabolism pathway. Semi-quantitative reverse transcription PCR and transcriptome analysis indicated that BraA09g066480.3C was expressed in 'FT' but not in 'CX001'. BraA09g066480.3C was lost in the CXA genome to which 'CX001' belonged. CONCLUSION The work presented herein demonstrated that BraA09g066480.3C was the causal gene for wax-less flowering Chinese cabbage 'CX001'. This study will lay a foundation for further research on the molecular mechanism of epidermal wax synthesis in flowering Chinese cabbage.
Collapse
Affiliation(s)
- Chuanhong Liu
- Laboratory of Vegetable Genetics Breeding and Biotechnology, Department of Horticulture, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Longfei Yu
- Laboratory of Vegetable Genetics Breeding and Biotechnology, Department of Horticulture, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Lu Yang
- Laboratory of Vegetable Genetics Breeding and Biotechnology, Department of Horticulture, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Chong Tan
- Laboratory of Vegetable Genetics Breeding and Biotechnology, Department of Horticulture, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Fengyan Shi
- Vegetable Research Institute of Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Xueling Ye
- Laboratory of Vegetable Genetics Breeding and Biotechnology, Department of Horticulture, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, 110866, China.
| | - Zhiyong Liu
- Laboratory of Vegetable Genetics Breeding and Biotechnology, Department of Horticulture, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, 110866, China.
| |
Collapse
|
3
|
Hao H, Li Z, Leng C, Lu C, Luo H, Liu Y, Wu X, Liu Z, Shang L, Jing HC. Sorghum breeding in the genomic era: opportunities and challenges. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1899-1924. [PMID: 33655424 PMCID: PMC7924314 DOI: 10.1007/s00122-021-03789-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 02/05/2021] [Indexed: 05/04/2023]
Abstract
The importance and potential of the multi-purpose crop sorghum in global food security have not yet been fully exploited, and the integration of the state-of-art genomics and high-throughput technologies into breeding practice is required. Sorghum, a historically vital staple food source and currently the fifth most important major cereal, is emerging as a crop with diverse end-uses as food, feed, fuel and forage and a model for functional genetics and genomics of tropical grasses. Rapid development in high-throughput experimental and data processing technologies has significantly speeded up sorghum genomic researches in the past few years. The genomes of three sorghum lines are available, thousands of genetic stocks accessible and various genetic populations, including NAM, MAGIC, and mutagenised populations released. Functional and comparative genomics have elucidated key genetic loci and genes controlling agronomical and adaptive traits. However, the knowledge gained has far away from being translated into real breeding practices. We argue that the way forward is to take a genome-based approach for tailored designing of sorghum as a multi-functional crop combining excellent agricultural traits for various end uses. In this review, we update the new concepts and innovation systems in crop breeding and summarise recent advances in sorghum genomic researches, especially the genome-wide dissection of variations in genes and alleles for agronomically important traits. Future directions and opportunities for sorghum breeding are highlighted to stimulate discussion amongst sorghum academic and industrial communities.
Collapse
Affiliation(s)
- Huaiqing Hao
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Zhigang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Chuanyuan Leng
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Cheng Lu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong Luo
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yuanming Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyuan Wu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Zhiquan Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Li Shang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hai-Chun Jing
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- Engineering Laboratory for Grass-based Livestock Husbandry, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Sanjari S, Shobbar ZS, Ghanati F, Afshari-Behbahanizadeh S, Farajpour M, Jokar M, Khazaei A, Shahbazi M. Molecular, chemical, and physiological analyses of sorghum leaf wax under post-flowering drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 159:383-391. [PMID: 33450508 DOI: 10.1016/j.plaphy.2021.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
Wax accumulation on the sorghum surface plays an important role in drought tolerance by preventing non-stomatal water loss. Thereby, the effect of post-flowering drought stress (PFDS) on the epicuticular wax (EW) amount, relative water content (RWC), chlorophyll, and grain yield in sorghum drought contrasting genotypes were investigated. The experiment was conducted as a split-plot based on randomized complete block design (RCBD) with two water treatments (normal watering and water holding after 50% flowering stage), and three genotypes (Kimia and KGS23 as drought-tolerant and Sepideh as drought-susceptible). Scanning electron microscopy and GC-MS analyses were used to determine the wax crystals density and its compositions, respectively. In addition, based on literature reviews and publicly available datasets, six wax biosynthesis drought stress-responsive genes were chosen for expression analysis. The results showed that the amounts of EW and wax crystals density were increased in Kimia and Sepideh genotypes and no changed in KGS23 genotype under drought stress. Chemical compositions of wax were classified into six major groups including alkanes, fatty acids, aldehydes, esters, alcohols, and cyclic compounds. Alkanes increment in drought-tolerant genotypes led to make an effective barrier against the drought stress to control water losses. In addition, the drought-tolerant genotypes had higher levels of RWC compared to the drought-susceptible ones, resulted in higher yield produced under drought condition. According to the results, SbWINL1, FATB, and CER1 genes play important roles in drought-induced wax biosynthesis. The results of the present study revealed a comprehensive view of the wax and its compositions and some involved genes in sorghum under drought stress.
Collapse
Affiliation(s)
- Sepideh Sanjari
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Zahra-Sadat Shobbar
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Faezeh Ghanati
- Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | | | - Mostafa Farajpour
- Crop and Horticultural Science Research Department, Mazandaran Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Sari, Iran.
| | - Mojtaba Jokar
- Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Azim Khazaei
- Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Maryam Shahbazi
- Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
5
|
Elango D, Xue W, Chopra S. Genome wide association mapping of epi-cuticular wax genes in Sorghum bicolor. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:1727-1737. [PMID: 32801499 PMCID: PMC7415066 DOI: 10.1007/s12298-020-00848-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/11/2020] [Accepted: 07/07/2020] [Indexed: 05/25/2023]
Abstract
Sorghum accumulates epi-cuticular wax (EW) in leaves, sheaths, and culms. EW reduces the transpirational and nontranspirational (nonstomatal) water loss and protects the plant from severe drought stress in addition to imparting resistance against insect pests. Results presented here are from the analysis of EW content of 387 diverse sorghum accessions and its genome-wide association study (GWAS). EW content in sorghum leaves ranged from 0.1 to 29.7 mg cm-2 with a mean value of 5.1 mg cm-2. GWAS using 265,487 single nucleotide polymorphisms identified thirty-seven putative genes associated (P < 9.89E-06) with EW biosynthesis and transport in sorghum. Major EW biosynthetic genes identified included 3-Oxoacyl-[acyl-carrier-protein (ACP)] synthase III, an Ankyrin repeat protein, a bHLH-MYC, and an R2R3-MYB transcription factor. Genes involved in EW regulation or transport included an ABC transporter, a Lipid exporter ABCA1, a Multidrug resistance protein, Inositol 1, 3, 4-trisphosphate 5/6-kinase, and a Cytochrome P450. This GWA study thus demonstrates the potential for genetic manipulation of EW content in sorghum for better adaptation to biotic and abiotic stress.
Collapse
Affiliation(s)
- Dinakaran Elango
- Department of Plant Science, Penn State University, University Park, PA USA
| | - Weiya Xue
- Department of Plant Science, Penn State University, University Park, PA USA
| | - Surinder Chopra
- Department of Plant Science, Penn State University, University Park, PA USA
| |
Collapse
|
6
|
Fine-mapping and transcriptome analysis of BoGL-3, a wax-less gene in cabbage (Brassica oleracea L. var. capitata). Mol Genet Genomics 2019; 294:1231-1239. [PMID: 31098741 DOI: 10.1007/s00438-019-01577-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 05/08/2019] [Indexed: 01/27/2023]
Abstract
The great majority of terrestrial plants produce epicuticular wax that is used to protect plants from a variety of biotic and abiotic stresses. Cabbage epicuticular wax is a white crystalline compound of various lipids. Wax-less cabbage has the characteristics of lustrous green leaves and beautiful exterior, which facilitates the brilliant green cabbage breeding. CGL-3 is a spontaneous wax-less mutant identified from cabbage. Genetic analysis indicated that the waxy deficiency of the mutant was controlled by a single dominant gene. To clarify the mechanism of the waxy deficiency, fine-mapping and transcriptome analysis of the wax-less gene, BoGL-3, were carried out in this study. The result of fine mapping showed that the wax-less gene, BoGL-3, was delimited in a 33.5-kb interval which is between the flanking marker C08-98 and the end of chromosome 8. Two cDNA libraries, constructed with wax-less cabbage CGL-3 and the wild-type cabbage WT, were sequenced for screening of the target gene BoGL-3. A total of 8340 genes were identified with significant differential expression between CGL-3 and WT. Among these genes, 3187 were up-regulated and 5153 were down-regulated in CGL-3. With homologous analysis, four differential expressed genes related to wax metabolism were obtained. Among these four genes, only Bol018504 is located within the region of fine-mapping. Bol08504 is homologous to CER1, which encodes fatty acid hydroxylase and plays an important role in wax synthesis in Arabidopsis. However, there was no difference of Bol08504 sequence between CGL-3 and WT. We suggested that Bol018504 was regulated by BoGL-3. The suppression of Bol018504 leads to the reduction of wax. These findings will be helpful to reveal the mechanism of the wax metabolism in cabbage and develop lustrous green cabbage germplasm material.
Collapse
|
7
|
Boyles RE, Brenton ZW, Kresovich S. Genetic and genomic resources of sorghum to connect genotype with phenotype in contrasting environments. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:19-39. [PMID: 30260043 DOI: 10.1111/tpj.14113] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/30/2018] [Accepted: 09/03/2018] [Indexed: 05/10/2023]
Abstract
With the recent development of genomic resources and high-throughput phenotyping platforms, the 21st century is primed for major breakthroughs in the discovery, understanding and utilization of plant genetic variation. Significant advances in agriculture remain at the forefront to increase crop production and quality to satisfy the global food demand in a changing climate all while reducing the environmental impacts of the world's food production. Sorghum, a resilient C4 grain and grass important for food and energy production, is being extensively dissected genetically and phenomically to help connect the relationship between genetic and phenotypic variation. Unlike genetically modified crops such as corn or soybean, sorghum improvement has relied heavily on public research; thus, many of the genetic resources serve a dual purpose for both academic and commercial pursuits. Genetic and genomic resources not only provide the foundation to identify and understand the genes underlying variation, but also serve as novel sources of genetic and phenotypic diversity in plant breeding programs. To better disseminate the collective information of this community, we discuss: (i) the genomic resources of sorghum that are at the disposal of the research community; (ii) the suite of sorghum traits as potential targets for increasing productivity in contrasting environments; and (iii) the prospective approaches and technologies that will help to dissect the genotype-phenotype relationship as well as those that will apply foundational knowledge for sorghum improvement.
Collapse
Affiliation(s)
- Richard E Boyles
- Pee Dee Research and Education Center, Clemson University, 2200 Pocket Rd, Florence, SC, 29506, USA
- Advanced Plant Technology Program, Clemson University, 105 Collings St, Clemson, SC, 29634, USA
| | - Zachary W Brenton
- Advanced Plant Technology Program, Clemson University, 105 Collings St, Clemson, SC, 29634, USA
- Department of Plant and Environment Sciences, Clemson University, 171 Poole Agricultural Center, Clemson, SC, 29634, USA
| | - Stephen Kresovich
- Advanced Plant Technology Program, Clemson University, 105 Collings St, Clemson, SC, 29634, USA
- Department of Plant and Environment Sciences, Clemson University, 171 Poole Agricultural Center, Clemson, SC, 29634, USA
| |
Collapse
|
8
|
Harris-Shultz KR, Hayes CM, Knoll JE. Mapping QTLs and Identification of Genes Associated with Drought Resistance in Sorghum. Methods Mol Biol 2019; 1931:11-40. [PMID: 30652280 DOI: 10.1007/978-1-4939-9039-9_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Water limits global agricultural production. Increases in global aridity, a growing human population, and the depletion of aquifers will only increase the scarcity of water for agriculture. Water is essential for plant growth and in areas that are prone to drought, the use of drought-resistant crops is a long-term solution for growing more food for more people with less water. Sorghum is well adapted to hot and dry environments and has been used as a dietary staple for millions of people. Increasing the drought resistance in sorghum hybrids with no impact on yield is a continual objective for sorghum breeders. In this review, we describe the loci, quantitative trait loci (QTLs), or genes that have been identified for traits involved in drought avoidance (water-use efficiency, cuticular wax synthesis, trichome development and morphology, root system architecture) and drought tolerance (compatible solutes, pre- and post-flowering drought tolerance). Many of these identified genes and QTL regions have not been tested in hybrids and the effect of these genes, or their interactions, on yield must be understood in normal and drought-stressed conditions to understand the strength and weaknesses of their utility.
Collapse
Affiliation(s)
| | - Chad M Hayes
- Plant Stress and Germplasm Development Research, USDA-ARS, Lubbock, TX, USA
| | - Joseph E Knoll
- Crop Genetics and Breeding Research Unit, USDA-ARS, Tifton, GA, USA
| |
Collapse
|
9
|
Uttam GA, Praveen M, Rao YV, Tonapi VA, Madhusudhana R. Molecular mapping and candidate gene analysis of a new epicuticular wax locus in sorghum (Sorghum bicolor L. Moench). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:2109-2125. [PMID: 28702690 DOI: 10.1007/s00122-017-2945-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/25/2017] [Indexed: 05/12/2023]
Abstract
A new epicuticular wax (bloom) locus has been identified and fine mapped to the 207.89 kb genomic region on chromosome 1. A putative candidate gene, Sobic.001G269200, annotated as GDSL-like lipase/acylhydrolase, is proposed as the most probable candidate gene involved in bloom synthesis/deposition. Deposition of epicuticular wax on plant aerial surface is one strategy that plants adapt to reduce non-transpiration water loss. Epicuticular wax (bloom)-less mutants in sorghum with their glossy phenotypes exhibit changes in the accumulation of epicuticular wax on leaf and culm surfaces. We report molecular mapping of a new sorghum locus, bloomless mutant (bm39), involved in epicuticular wax biosynthesis in sorghum. Inheritance studies involving a profusely bloom parent (BTx623) and a spontaneous bloomless mutant (RS647) indicated that the parents differed in a single gene for bloom synthesis. Bloomless was recessive to bloom deposition. Genetic mapping involving F2 and F7 mapping populations in diverse genetic backgrounds (BTx623 × RS647; 296A × RS647 and 27A × RS647) identified and validated the map location of bm39 to a region of 207.89 kb on chromosome 1. SSR markers, Sblm13 and Sblm16, flanked the bm39 locus to a map interval of 0.3 cM on either side. Nine candidate genes were identified, of which Sobic.001G269200 annotated for GDSL-like lipase/acylhydrolase is the most likely gene associated with epicuticular wax deposition. Gene expression analysis in parents, isogenic lines and sets of near isogenic lines also confirmed the reduced expression of the putative candidate gene. The study opens possibilities for a detailed molecular analysis of the gene, its role in epicuticular wax synthesis and deposition, and may help to understand its function in moisture stress tolerance and insect and pathogen resistance in sorghum.
Collapse
Affiliation(s)
- G Anurag Uttam
- Marker-Assisted Selection Laboratory, ICAR-Indian Institute of Millet Research (IIMR), Rajendranagar, Hyderabad, 500 030, India
| | - M Praveen
- Marker-Assisted Selection Laboratory, ICAR-Indian Institute of Millet Research (IIMR), Rajendranagar, Hyderabad, 500 030, India
| | - Y Venkateswara Rao
- Department of Botany, Andhra University, Visakhapatnam, Andhra Pradesh, India
| | - Vilas A Tonapi
- Marker-Assisted Selection Laboratory, ICAR-Indian Institute of Millet Research (IIMR), Rajendranagar, Hyderabad, 500 030, India
| | - R Madhusudhana
- Marker-Assisted Selection Laboratory, ICAR-Indian Institute of Millet Research (IIMR), Rajendranagar, Hyderabad, 500 030, India.
| |
Collapse
|
10
|
The Primary Root of Sorghum bicolor (L. Moench) as a Model System to Study Brassinosteroid Signaling in Crops. Methods Mol Biol 2017. [PMID: 28124255 DOI: 10.1007/978-1-4939-6813-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Roots anchor plants to the soil and are essential for a successful plant growth and adaptation to the environment. Research on the primary root in the plant model system Arabidopsis thaliana has yielded important advances in the molecular and cellular understanding of root growth and development. Several studies have uncovered how the hormones brassinosteroids (BRs) control cell cycle and differentiation programs through different cell-specific signaling pathways that are key for root growth and development. Currently, an important challenge resides in the translation of the current knowledge on Arabidopsis roots into agronomically valuable species to improve the agricultural production and to meet the food security goals of the millennium. In this chapter, we characterize the primary root apex of the cereal Sorghum bicolor (L. Moench) (sorghum), analyze the physiological response of sorghum roots to BRs, and examine the phylogeny of the BRASSINOSTEROID INSENSITIVE1-like receptor family in Arabidopsis and its orthologous genes in sorghum. Overall, we support the use of sorghum as a suitable crop model species for the study of BR signaling in root growth and development. The methods presented enable any laboratory worldwide to use sorghum primary roots as a favorite organ for the study of growth and development in crops.
Collapse
|
11
|
Jiao Y, Burow G, Gladman N, Acosta-Martinez V, Chen J, Burke J, Ware D, Xin Z. Efficient Identification of Causal Mutations through Sequencing of Bulked F 2 from Two Allelic Bloomless Mutants of Sorghum bicolor. FRONTIERS IN PLANT SCIENCE 2017; 8:2267. [PMID: 29379518 PMCID: PMC5771210 DOI: 10.3389/fpls.2017.02267] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/27/2017] [Indexed: 05/04/2023]
Abstract
Sorghum (Sorghum bicolor Moench, L.) plant accumulates copious layers of epi-cuticular wax (EW) on its aerial surfaces, to a greater extent than most other crops. EW provides a vapor barrier that reduces water loss, and is therefore considered to be a major determinant of sorghum's drought tolerance. However, little is known about the genes responsible for wax accumulation in sorghum. We isolated two allelic mutants, bloomless40-1 (bm40-1) and bm40-2, from a mutant library constructed from ethyl methane sulfonate (EMS) treated seeds of an inbred, BTx623. Both mutants were nearly devoid of the EW layer. Each bm mutant was crossed to the un-mutated BTx623 to generated F2 populations that segregated for the bm phenotype. Genomic DNA from 20 bm F2 plants from each population was bulked for whole genome sequencing. A single gene, Sobic.001G228100, encoding a GDSL-like lipase/acylhydrolase, had unique homozygous mutations in each bulked F2 population. Mutant bm40-1 harbored a missense mutation in the gene, whereas bm40-2 had a splice donor site mutation. Our findings thus provide strong evidence that mutation in this GDSL-like lipase gene causes the bm phenotype, and further demonstrate that this approach of sequencing two independent allelic mutant populations is an efficient method for identifying causal mutations. Combined with allelic mutants, MutMap provides powerful method to identify all causal genes for the large collection of bm mutants in sorghum, which will provide insight into how sorghum plants accumulate such abundant EW on their aerial surface. This knowledge may facilitate the development of tools for engineering drought-tolerant crops with reduced water loss.
Collapse
Affiliation(s)
- Yinping Jiao
- Cropping Systems Research Laboratory, Agricultural Research Service (USDA), Lubbock, TX, United States
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - Gloria Burow
- Cropping Systems Research Laboratory, Agricultural Research Service (USDA), Lubbock, TX, United States
| | - Nicholas Gladman
- Cropping Systems Research Laboratory, Agricultural Research Service (USDA), Lubbock, TX, United States
| | - Veronica Acosta-Martinez
- Cropping Systems Research Laboratory, Agricultural Research Service (USDA), Lubbock, TX, United States
| | - Junping Chen
- Cropping Systems Research Laboratory, Agricultural Research Service (USDA), Lubbock, TX, United States
| | - John Burke
- Cropping Systems Research Laboratory, Agricultural Research Service (USDA), Lubbock, TX, United States
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
- USDA-ARS NAA Plant, Soil and Nutrition Laboratory Research Unit, Cornell University, Ithaca, NY, United States
- *Correspondence: Doreen Ware
| | - Zhanguo Xin
- Cropping Systems Research Laboratory, Agricultural Research Service (USDA), Lubbock, TX, United States
- Zhanguo Xin
| |
Collapse
|
12
|
He Y, Gao J, Guo N, Guo Y. Variations of Leaf Cuticular Waxes Among C3 and C4 Gramineae Herbs. Chem Biodivers 2016; 13:1460-1468. [PMID: 27563829 DOI: 10.1002/cbdv.201600030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 08/25/2016] [Indexed: 11/10/2022]
Abstract
Modern C4 plants are commonly distributed in hot and dry environments whereas C3 plants predominate in cool and shade areas. At the outmost of plant surface, the deposition and chemical composition of cuticular waxes vary under different environmental conditions. However, whether such variation of cuticular wax is related to the distribution of C3 and C4 under different environmental conditions is still not clear. In this study, leaves of six C3 Gramineae herbs distributed in spring, Roegneria kamoji, Polypogon fugax, Poa annua, Avena fatua, Alopecurus aequalis, and Oplismenus undulatifolius, and four C4 and one C3 Gramineae herbs distributed in summer, Digitaria sanguinalis, Eleusine indica, Setaria viridis, S. plicata, and O. undulatifolius, were sampled and analyzed for cuticular wax. Plates were the main epicuticular wax morphology in both C3 and C4 plants except S. plicata. The plates melted in C4 plants but not in C3 plants. The total cuticular wax amounts in C4 plants were significantly lower than those in C3 plants, except for O. undulatifolius. Primary alcohols were the most abundant compounds in C3 plants, whereas n-alkanes were relatively the most abundant compounds in C4 plants. C29 was the most abundant n-alkane in C3 plants except for O. undulatifolius, whereas the most abundant n-alkane was C31 or C33 in C4 plants. The average chain length (ACL) of n-alkanes was higher in C4 than in C3 plants, whereas the ACL of n-alkanoic acids was higher in C3 than C4 plants. The cluster analysis based on the distribution of n-alkanes clearly distinguished C3 and C4 plants into two groups, except for O. undulatifolius which was grouped with C4 plants. These results suggest that the variations of cuticular waxes among C3 and C4 Gramineae herbs are related to the distribution of C3 and C4 plants under different environmental conditions.
Collapse
Affiliation(s)
- Yuji He
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, P. R. China
| | - Jianhua Gao
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, P. R. China
| | - Na Guo
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, P. R. China
| | - Yanjun Guo
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, P. R. China
| |
Collapse
|
13
|
Fakrudin B, Kavil SP, Girma Y, Arun SS, Dadakhalandar D, Gurusiddesh BH, Patil AM, Thudi M, Bhairappanavar SB, Narayana YD, Krishnaraj PU, Khadi BM, Kamatar MY. Molecular mapping of genomic regions harbouring QTLs for root and yield traits in sorghum (Sorghum bicolor L. Moench). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2013; 19:409-19. [PMID: 24431509 PMCID: PMC3715642 DOI: 10.1007/s12298-013-0188-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Root system is a vital part of plants for absorbing soil moisture and nutrients and it influences the drought tolerance. Identification of the genomic regions harbouring quantitative trait loci (QTLs) for root and yield traits, and the linked markers can facilitate sorghum improvement through marker-assisted selection (MAS) besides the deeper understanding of the plant response to drought stress. A population of 184 recombinant inbred lines (RILs), derived from E36-1 × SPV570, along with parents were phenotyped for component traits of yield in field and root traits in an above ground rhizotron. High estimates of heritability and genetic advance for all the root traits and for most of the yield traits, presents high scope for improvement of these traits by simple selection. A linkage map constructed with 104 marker loci comprising 50 EST-SSRs, 34 non-genic nuclear SSRs and 20 SNPs, and QTL analysis was performed using composite interval mapping (CIM) approach. A total of eight and 20 QTLs were mapped for root and yield related traits respectively. The QTLs for root volume, root fresh weight and root dry weight were found co-localized on SBI-04, supported by a positive correlation among these traits. Hence, these traits can be improved using the same linked markers. The lack of overlap between the QTLs of component traits of root and yield suggested that these two sets of parameters are independent in their influence and the possibility of combining these two traits might enhance productivity of sorghum under receding moisture condition.
Collapse
Affiliation(s)
- B. Fakrudin
- />Institute of Agri-Biotechnology, University of Agricultural Sciences, Dharwad, Dharwad, 580 005 Karnataka India
| | - S. P. Kavil
- />Institute of Agri-Biotechnology, University of Agricultural Sciences, Dharwad, Dharwad, 580 005 Karnataka India
| | - Y. Girma
- />School of Plant Sciences and NRMES, Haramaya University, Alemaya City, Ethiopia
| | - S. S. Arun
- />Bioinformatics Core, Purdue University, West Lafayette, IN 47907 USA
| | - D. Dadakhalandar
- />Institute of Agri-Biotechnology, University of Agricultural Sciences, Dharwad, Dharwad, 580 005 Karnataka India
| | - B. H. Gurusiddesh
- />Institute of Agri-Biotechnology, University of Agricultural Sciences, Dharwad, Dharwad, 580 005 Karnataka India
| | - A. M. Patil
- />Institute of Agri-Biotechnology, University of Agricultural Sciences, Dharwad, Dharwad, 580 005 Karnataka India
| | - M. Thudi
- />International Crop Research Institute for Semi-Arid Tropics, Patancheru, Hyderabad, India
| | - S. B. Bhairappanavar
- />Institute of Agri-Biotechnology, University of Agricultural Sciences, Dharwad, Dharwad, 580 005 Karnataka India
| | - Y. D. Narayana
- />All India Coordinated Sorghum Improvement Programme, Main Agricultural Research Station, Dharwad, India
| | - P. U. Krishnaraj
- />Institute of Agri-Biotechnology, University of Agricultural Sciences, Dharwad, Dharwad, 580 005 Karnataka India
| | - B. M. Khadi
- />University of Agricultural Sciences, Dharwad, Dharwad, India
| | - M. Y. Kamatar
- />All India Coordinated Sorghum Improvement Programme, Main Agricultural Research Station, Dharwad, India
| |
Collapse
|
14
|
Mizuno H, Kawahigashi H, Ogata J, Minami H, Kanamori H, Nakagawa H, Matsumoto T. Genomic inversion caused by gamma irradiation contributes to downregulation of a WBC11 homolog in bloomless sorghum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:1513-1520. [PMID: 23463491 DOI: 10.1007/s00122-013-2069-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Accepted: 02/12/2013] [Indexed: 06/01/2023]
Abstract
Epicuticular wax (bloom) plays important roles in protecting the tissues of sorghum (Sorghum bicolor (L.) Moench) plants from abiotic stresses. However, reducing wax content provides resistance to greenbug and sheath blight-a useful trait in agricultural crops. We generated a sorghum bloomless (bm) mutant by gamma irradiation. One bm population segregated for individuals with and without epicuticular wax at a frequency of 72:22, suggesting that the bm mutation was under the control of a single recessive nuclear gene. Genes differentially expressed in the wild-type and the bm mutant were identified by RNA-seq technology. Of the 31 downregulated genes, Sb06g023280 was the most differentially expressed and was similar to WBC11, which encodes an ABC transporter responsible for wax secretion in Arabidopsis. An inversion of about 1.4 Mb was present in the region upstream of the Sb06g023280 gene in the bm mutant; it is likely that this inversion changed the promoter sequence of the Sb06g023280 gene. Using genomic PCR, we confirmed that six independent F2 bm mutant-phenotype plants carried the same inversion. Therefore, we concluded that the inversion involving the Sb06g023280 gene inhibited wax secretion in the bloomless sorghum.
Collapse
Affiliation(s)
- Hiroshi Mizuno
- Division of Genome and Biodiversity Research, National Institute of Agrobiological Sciences (NIAS), 1-2 Kannondai 2-chome, Tsukuba, Ibaraki 305-8602, Japan.
| | | | | | | | | | | | | |
Collapse
|
15
|
Billot C, Ramu P, Bouchet S, Chantereau J, Deu M, Gardes L, Noyer JL, Rami JF, Rivallan R, Li Y, Lu P, Wang T, Folkertsma RT, Arnaud E, Upadhyaya HD, Glaszmann JC, Hash CT. Massive sorghum collection genotyped with SSR markers to enhance use of global genetic resources. PLoS One 2013; 8:e59714. [PMID: 23565161 PMCID: PMC3614975 DOI: 10.1371/journal.pone.0059714] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 02/17/2013] [Indexed: 11/19/2022] Open
Abstract
Large ex situ collections require approaches for sampling manageable amounts of germplasm for in-depth characterization and use. We present here a large diversity survey in sorghum with 3367 accessions and 41 reference nuclear SSR markers. Of 19 alleles on average per locus, the largest numbers of alleles were concentrated in central and eastern Africa. Cultivated sorghum appeared structured according to geographic regions and race within region. A total of 13 groups of variable size were distinguished. The peripheral groups in western Africa, southern Africa and eastern Asia were the most homogeneous and clearly differentiated. Except for Kafir, there was little correspondence between races and marker-based groups. Bicolor, Caudatum, Durra and Guinea types were each dispersed in three groups or more. Races should therefore better be referred to as morphotypes. Wild and weedy accessions were very diverse and scattered among cultivated samples, reinforcing the idea that large gene-flow exists between the different compartments. Our study provides an entry to global sorghum germplasm collections. Our reference marker kit can serve to aggregate additional studies and enhance international collaboration. We propose a core reference set in order to facilitate integrated phenotyping experiments towards refined functional understanding of sorghum diversity.
Collapse
|
16
|
Mace ES, Jordan DR. Location of major effect genes in sorghum (Sorghum bicolor (L.) Moench). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 121:1339-56. [PMID: 20585750 DOI: 10.1007/s00122-010-1392-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 06/14/2010] [Indexed: 05/22/2023]
Abstract
Major effect genes are often used for germplasm identification, for diversity analyses and as selection targets in breeding. To date, only a few morphological characters have been mapped as major effect genes across a range of genetic linkage maps based on different types of molecular markers in sorghum (Sorghum bicolor (L.) Moench). This study aims to integrate all available previously mapped major effect genes onto a complete genome map, linked to the whole genome sequence, allowing sorghum breeders and researchers to link this information to QTL studies and to be aware of the consequences of selection for major genes. This provides new opportunities for breeders to take advantage of readily scorable morphological traits and to develop more effective breeding strategies. We also provide examples of the impact of selection for major effect genes on quantitative traits in sorghum. The concepts described in this paper have particular application to breeding programmes in developing countries where molecular markers are expensive or impossible to access.
Collapse
Affiliation(s)
- E S Mace
- Department of Employment, Economic Development and Innovation, Hermitage Research Station, Warwick, QLD, Australia.
| | | |
Collapse
|