1
|
Vo Van-Zivkovic N, Dinglasan E, Tong J, Watt C, Goody J, Mullan D, Hickey L, Robinson H. A large-scale multi-environment study dissecting adult-plant resistance haplotypes for stripe rust resistance in Australian wheat breeding populations. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:72. [PMID: 40080143 PMCID: PMC11906565 DOI: 10.1007/s00122-025-04859-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 02/18/2025] [Indexed: 03/15/2025]
Abstract
KEY MESSAGE Genetic variation in stripe rust resistance exists in Australian wheat breeding populations and is environmentally influenced. Stacking multiple resistance haplotypes or using whole-genome approaches will improve resistance stability and environmental specificity. Wheat stripe rust (Puccinia striiformis) is a fungal disease responsible for substantial yield losses globally. To maintain crop productivity in future climates, the identification of genetics offering durable resistance across diverse growing conditions is crucial. To stay one-step ahead of the pathogen, Australian wheat breeders are actively selecting for adult-plant resistance (APR), which is considered more durable than seedling resistance. However, deploying resistance that is stable or effective across environments and years is challenging as expression of underling APR loci often interacts with environmental conditions. To explore the underlying genetics and interactions with the environment for stripe rust resistance, we employ haplotype-based mapping using the local GEBV approach in elite wheat breeding populations. Our multi-environment trial analyses comprising 35,986 inbred lines evaluated across 10 environments revealed significant genotype-by-environment interactions for stripe rust. A total of 32 haploblocks associated with stripe rust resistance were identified, where 23 were unique to a specific environment and nine were associated with stable resistance across environments. Population structure analysis revealed commercial or advanced breeding lines carried desirable resistance haplotypes, highlighting the opportunity to continue to harness and optimise resistance haplotypes already present within elite backgrounds. Further, we demonstrate that in silico stacking of multiple resistance haplotypes through a whole-genome approach has the potential to substantially improve resistance levels. This represents the largest study to date exploring commercial wheat breeding populations for stripe rust resistance and highlights the breeding opportunities to improve stability of resistance across and within target environments.
Collapse
Affiliation(s)
- Natalya Vo Van-Zivkovic
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Eric Dinglasan
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Jingyang Tong
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Calum Watt
- InterGrain Pty Ltd, Perth, WA, 6163, Australia
| | | | | | - Lee Hickey
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Hannah Robinson
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia.
- InterGrain Pty Ltd, Perth, WA, 6163, Australia.
| |
Collapse
|
2
|
Yao F, Wang M, See DR, Yang E, Chen G, Chen X. Identification of 39 stripe rust resistance loci in a panel of 465 winter wheat entries presumed to have high-temperature adult-plant resistance through genome-wide association mapping and marker-assisted detection. FRONTIERS IN PLANT SCIENCE 2025; 15:1514926. [PMID: 39840358 PMCID: PMC11747713 DOI: 10.3389/fpls.2024.1514926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/27/2024] [Indexed: 01/23/2025]
Abstract
Stripe rust of wheat is a serious disease caused by Puccinia striiformis f. sp. tritici (Pst). Growing resistant cultivars is the most preferred approach to control the disease. To identify wheat genotypes with quantitative trait loci (QTL) for durable resistance to stripe rust, 465 winter wheat entries that were presumed to have high-temperature adult-plant (HTAP) resistance were used in this study. In the greenhouse seedling tests with seven Pst races, 16 entries were resistant to all the tested races. The 465 entries were also phenotyped for stripe rust responses at the adult-plant stage under natural infection of Pst in multiple field locations from 2018 to 2021 in the Washington state, and 345 entries were found to have stable resistance. The contrast of the susceptibility in the greenhouse seedling tests and the resistance in the field adult-plant stage for most of the entries indicated predominantly HTAP resistance in this panel. The durability of the resistance was demonstrated by a subset of 175 entries that were tested in multiple locations from 2007 to 2021. The 465 entries were genotyped through genotyping by multiplexed sequencing of single-nucleotide polymorphism (SNP) markers. Combining the stripe rust response and SNP marker data, a genome-wide association study (GWAS) was conducted, resulting in 143 marker-trait associations, from which 28 QTL that were detected at least with two races or in two field environments were identified, including seven for all-stage resistance and 21 for HTAP resistance. These QTL each explained 6.0% to 40.0% of the phenotypic variation. Compared with previously reported Yr genes and QTL based on their genomic positions, five QTL including two for HTAP resistance were identified as new. A total of 10 user-friendly Kompetitive allele specific PCR (KASP) markers were developed for eight of the HTAP resistance loci. In addition, molecular markers were used to detect 13 previously reported HTAP resistance genes/QTL, including two also identified in the GWAS analyses, and their frequencies ranged from 0.86% to 88.17% in the panel. The durable resistant genotypes, the genes/QTL identified, and the KASP markers developed in this study should be useful to develop wheat cultivars with long-lasting resistance to stripe rust.
Collapse
Affiliation(s)
- Fangjie Yao
- Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement in Southwestern China, Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Meinan Wang
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Deven R. See
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
- US Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA, United States
| | - Ennian Yang
- Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement in Southwestern China, Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| | - Guoyue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xianming Chen
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
- US Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA, United States
| |
Collapse
|
3
|
Gao P, Zhou Y, Gebrewahid TW, Zhang P, Wang S, Liu D, Li Z. QTL Mapping for Adult-Plant Resistance to Leaf Rust in Italian Wheat Cultivar Libellula. PLANT DISEASE 2024; 108:13-19. [PMID: 37526485 DOI: 10.1094/pdis-01-23-0105-sr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Wheat leaf rust (Lr), which is caused by Puccinia triticina Eriks. (Pt), is one of the most important wheat diseases affecting wheat production globally. Using resistant wheat cultivars is the most economical and environmentally friendly way to control leaf rust. The Italian wheat cultivar Libellula has demonstrated good resistance to Lr in field studies. To identify the genetic basis of Lr resistance in 'Libellula', 248 F6 recombinant inbred lines from the cross 'Libellula'/'Huixianhong' was phenotyped for Lr severity in seven environments: the 2014/2015, 2016/2017, 2017/2018, and 2018/2019 cropping seasons at Baoding, Hebei Province, and the 2016/2017, 2017/2018, and 2018/2019 crop seasons at Zhoukou, Henan Province. Bulked segregant analysis and simple sequence repeat markers were then used to identify the quantitative trait loci (QTLs) for Lr adult-plant resistance in the population. Six QTLs were consequently detected and designated as QLr.hebau-1AL and QLr.hebau-1AS that were presumed to be new and QLr.hebau-1BL, QLr.hebau-3AL, QLr.hebau-4BL, and QLr.hebau-7DS that were identified at similar physical positions as previously reported QTLs. Based on chromosome positions and molecular marker tests, QLr.hebau-1BL and QLr.hebau-7DS share similar flanking markers with Lr46 and Lr34, respectively. Lr46 and Lr34 are race nonspecific adult plant resistance (APR) genes for leaf rust and stripe rust and powdery mildew. QLr.hebau-4BL showed multiple disease resistance to leaf rust, stripe rust, Fusarium head blight, and powdery mildew. The QTL identified in this study, as well as their closely linked markers, may potentially be used in marker-assisted selection in wheat breeding.
Collapse
Affiliation(s)
- Pu Gao
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Yue Zhou
- Baoding University, Baoding 071001, Hebei, China
| | | | - Peipei Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Siman Wang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Daqun Liu
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Zaifeng Li
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, Hebei, China
| |
Collapse
|
4
|
Yin Y, Yuan C, Zhang Y, Li S, Bai B, Wu L, Ren Y, Singh RP, Lan C. Genetic analysis of stripe rust resistance in the common wheat line Kfa/2*Kachu under a Chinese rust environment. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:185. [PMID: 37566234 DOI: 10.1007/s00122-023-04432-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023]
Abstract
KEY MESSAGE We mapped a new race-specific seedling stripe rust resistance gene on wheat chromosome 5BL and a new APR locus QYr.hazu-2BS from CIMMYT wheat line Kfa/2*Kachu. Breeding resistant wheat (Triticum aestivum) varieties is the most economical and efficient way to manage wheat stripe rust, but requires the prior identification of new resistance genes and development of associated molecular markers for marker-assisted selection. To map stripe rust resistance loci in wheat, we used a recombinant inbred line population generated by crossing the stripe rust-resistant parent 'Kfa/2*Kachu' and the susceptible parent 'Apav#1'. We employed genotyping-by-sequencing and bulked segregant RNA sequencing to map a new race-specific seedling stripe rust resistance gene, which we designated YrK, to wheat chromosome arm 5BL. TraesCS5B02G330700 encodes a receptor-like kinase and is a high-confidence candidate gene for YrK based on virus-induced gene silencing results and the significant induction of its expression 24 h after inoculation with wheat stripe rust. To assist breeding, we developed functional molecular markers based on the polymorphic single nucleotide polymorphisms in the coding sequence region of YrK. We also mapped four adult plant resistance (APR) loci to wheat chromosome arms 1BL, 2AS, 2BS and 4AL. Among these APR loci, we determined that QYr.hazu-1BL and QYr.hazu-2AS are allelic to the known pleiotropic resistance gene Lr46/Yr29/Pm39 and the race-specific gene Yr17, respectively. However, QYr.hazu-2BS is likely a new APR locus, for which we converted closely linked SNP polymorphisms into breeder-friendly Kompetitive allele-specific PCR (KASP) markers. In the present study, we provided new stripe rust resistance locus/gene and molecular markers for wheat breeder to develop rust-resistant wheat variety.
Collapse
Affiliation(s)
- Yuruo Yin
- Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, 430070, Hubei Province, China
| | - Chan Yuan
- Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, 430070, Hubei Province, China
| | - Yichen Zhang
- Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, 430070, Hubei Province, China
| | - Shunda Li
- Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, 430070, Hubei Province, China
| | - Bin Bai
- Wheat Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, People's Republic of China
| | - Ling Wu
- Crop Research Institute Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory, Chengdu, 610066, Sichuan Province, China
| | - Yong Ren
- Mianyang Institute of Agricultural Science/Crop Characteristic Resources Creation and Utilization Key Laboratory of Sichuan Province, Mianyang, 621023, Sichuan, China
| | - Ravi P Singh
- International Maize and Wheat Improvement Center (CIMMYT), Km. 45, Carretera, México-Veracruz, CP 56237, El Batán, Texcoco, E do. de México, Mexico
| | - Caixia Lan
- Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, 430070, Hubei Province, China.
| |
Collapse
|
5
|
Shahinnia F, Mohler V, Hartl L. Genetic Basis of Resistance to Warrior (-) Yellow Rust Race at the Seedling Stage in Current Central and Northern European Winter Wheat Germplasm. PLANTS (BASEL, SWITZERLAND) 2023; 12:420. [PMID: 36771509 PMCID: PMC9920722 DOI: 10.3390/plants12030420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
To evaluate genetic variability and seedling plant response to a dominating Warrior (-) race of yellow rust in Northern and Central European germplasm, we used a population of 229 winter wheat cultivars and breeding lines for a genome-wide association study (GWAS). A wide variation in yellow rust disease severity (based on infection types 1-9) was observed in this panel. Four breeding lines, TS049 (from Austria), TS111, TS185, and TS229 (from Germany), and one cultivar, TS158 (KWS Talent), from Germany were found to be resistant to Warrior (-) FS 53/20 and Warrior (-) G 23/19. The GWAS identified five significant SNPs associated with yellow rust on chromosomes 1B, 2A, 5B, and 7A for Warrior (-) FS 53/20, while one SNP on chromosome 5B was associated with disease for Warrior (-) G 23/19. For Warrior (-) FS 53/20, we discovered a new QTL for yellow rust resistance associated with the marker Kukri_c5357_323 on chromosome 1B. The resistant alleles G and T at the marker loci Kukri_c5357_323 on chromosome 1B and Excalibur_c17489_804 on chromosome 5B showed the largest effects (1.21 and 0.81, respectively) on the severity of Warrior (-) FS 53/20 and Warrior (-) G 23/19. Our results provide the basis for knowledge-based resistance breeding in the face of the enormous impact of the Warrior (-) race on wheat production in Europe.
Collapse
|
6
|
Pang Y, Liu C, Lin M, Ni F, Li W, Cai J, Zhang Z, Zhu H, Liu J, Wu J, Bai G, Liu S. Mapping QTL for Adult-Plant Resistance to Stripe Rust in a Chinese Wheat Landrace. Int J Mol Sci 2022; 23:ijms23179662. [PMID: 36077059 PMCID: PMC9456275 DOI: 10.3390/ijms23179662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022] Open
Abstract
Wheat stripe (yellow) rust is a worldwide disease that seriously reduces wheat grain yield and quality. Adult-plant resistance (APR) to stripe rust is generally more durable but usually controlled by multiple genes with partial resistance. In this study, a recombinant inbred line population was developed from a cross between a Chinese wheat landrace, Tutoumai, with APR to stripe rust, and a highly susceptible wheat cultivar, Siyang 936. The population was genotyped by genotyping-by-sequencing and phenotyped for APR to stripe rust in four consecutive field experiments. Three QTLs, QYr.sdau-1BL, QYr.sdau-5BL, and QYr.sdau-6BL, were identified for APR to stripe rust, and explained 8.0–21.2%, 10.1–22.7%, and 11.6–18.0% of the phenotypic variation, respectively. QYr.sdau-1BL was further mapped to a 21.6 Mb region using KASP markers derived from SNPs identified by RNA-seq of the two parents. In the QYr.sdau-1BL region, 13 disease-resistance-related genes were differently expressed between the two parents, and therefore were considered as the putative candidates of QYr.sdau-1BL. This study provides favorable gene/QTL and high-throughput markers to breeding programs for marker-assisted selection of the wheat stripe rust APR genes.
Collapse
Affiliation(s)
- Yunlong Pang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
| | - Chunxia Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
| | - Meng Lin
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA
| | - Fei Ni
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
| | - Wenhui Li
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
| | - Jin Cai
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Ziliang Zhang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
| | - Huaqiang Zhu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
| | - Jingxian Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
| | - Jiajie Wu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
| | - Guihua Bai
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA
- Hard Winter Wheat Genetics Research Unit, Manhattan, KS 66506, USA
| | - Shubing Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
- Correspondence:
| |
Collapse
|
7
|
Jambuthenne DT, Riaz A, Athiyannan N, Alahmad S, Ng WL, Ziems L, Afanasenko O, Periyannan SK, Aitken E, Platz G, Godwin I, Voss-Fels KP, Dinglasan E, Hickey LT. Mining the Vavilov wheat diversity panel for new sources of adult plant resistance to stripe rust. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1355-1373. [PMID: 35113190 PMCID: PMC9033734 DOI: 10.1007/s00122-022-04037-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Multi-year evaluation of the Vavilov wheat diversity panel identified new sources of adult plant resistance to stripe rust. Genome-wide association studies revealed the key genomic regions influencing resistance, including seven novel loci. Wheat stripe rust (YR) caused by Puccinia striiformis f. sp. tritici (Pst) poses a significant threat to global food security. Resistance genes commonly found in many wheat varieties have been rendered ineffective due to the rapid evolution of the pathogen. To identify novel sources of adult plant resistance (APR), 292 accessions from the N.I. Vavilov Institute of Plant Genetic Resources, Saint Petersburg, Russia, were screened for known APR genes (i.e. Yr18, Yr29, Yr46, Yr33, Yr39 and Yr59) using linked polymerase chain reaction (PCR) molecular markers. Accessions were evaluated against Pst (pathotype 134 E16 A + Yr17 + Yr27) at seedling and adult plant stages across multiple years (2014, 2015 and 2016) in Australia. Phenotypic analyses identified 132 lines that potentially carry novel sources of APR to YR. Genome-wide association studies (GWAS) identified 68 significant marker-trait associations (P < 0.001) for YR resistance, representing 47 independent quantitative trait loci (QTL) regions. Fourteen genomic regions overlapped with previously reported Yr genes, including Yr29, Yr56, Yr5, Yr43, Yr57, Yr30, Yr46, Yr47, Yr35, Yr36, Yrxy1, Yr59, Yr52 and YrYL. In total, seven QTL (positioned on chromosomes 1D, 2A, 3A, 3D, 5D, 7B and 7D) did not collocate with previously reported genes or QTL, indicating the presence of promising novel resistance factors. Overall, the Vavilov diversity panel provides a rich source of new alleles which could be used to broaden the genetic bases of YR resistance in modern wheat varieties.
Collapse
Affiliation(s)
- Dilani T Jambuthenne
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Adnan Riaz
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Naveenkumar Athiyannan
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture and Food,, Canberra, ACT, Australia
| | - Samir Alahmad
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Wei Ling Ng
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Laura Ziems
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Olga Afanasenko
- Department of Plant Resistance To Diseases, All Russian Research Institute for Plant Protection, St Petersburg, Russia, 196608
| | - Sambasivam K Periyannan
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture and Food,, Canberra, ACT, Australia
| | - Elizabeth Aitken
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Greg Platz
- Department of Agriculture and Fisheries, Hermitage Research Facility, Warwick, QLD, Australia
| | - Ian Godwin
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Kai P Voss-Fels
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Eric Dinglasan
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia.
| | - Lee T Hickey
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
8
|
Dong Y, Xu D, Xu X, Ren Y, Gao F, Song J, Jia A, Hao Y, He Z, Xia X. Fine mapping of QPm.caas-3BS, a stable QTL for adult-plant resistance to powdery mildew in wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1083-1099. [PMID: 35006334 DOI: 10.1007/s00122-021-04019-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
A stable QTL QPm.caas-3BS for adult-plant resistance to powdery mildew was mapped in an interval of 431 kb, and candidate genes were predicted based on gene sequences and expression profiles. Powdery mildew is a devastating foliar disease occurring in most wheat-growing areas. Characterization and fine mapping of genes for powdery mildew resistance can benefit marker-assisted breeding. We previously identified a stable quantitative trait locus (QTL) QPm.caas-3BS for adult-plant resistance to powdery mildew in a recombinant inbred line population of Zhou8425B/Chinese Spring by phenotyping across four environments. Using 11 heterozygous recombinants and high-density molecular markers, QPm.caas-3BS was delimited in a physical interval of approximately 3.91 Mb. Based on re-sequenced data and expression profiles, three genes TraesCS3B02G014800, TraesCS3B02G016800 and TraesCS3B02G019900 were associated with the powdery mildew resistance locus. Three gene-specific kompetitive allele-specific PCR (KASP) markers were developed from these genes and validated in the Zhou8425B derivatives and Zhou8425B/Chinese Spring population in which the resistance gene was mapped to a 0.3 cM interval flanked by KASP14800 and snp_50465, corresponding to a 431 kb region at the distal end of chromosome 3BS. Within the interval, TraesCS3B02G014800 was the most likely candidate gene for QPm.caas-3BS, but TraesCS3B02G016300 and TraesCS3B02G016400 were less likely candidates based on gene annotations and sequence variation between the parents. These results not only offer high-throughput KASP markers for improvement of powdery mildew resistance but also pave the way to map-based cloning of the resistance gene.
Collapse
Affiliation(s)
- Yan Dong
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Dengan Xu
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Xiaowan Xu
- College of Agronomy, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Yan Ren
- College of Agronomy, Henan Agricultural University, 63 Agricultural Road, Zhengzhou, 450002, Henan, China
| | - Fengmei Gao
- Institute of Crop Germplasm Resources, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, Heilongjiang, China
| | - Jie Song
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Aolin Jia
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Yuanfeng Hao
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Zhonghu He
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Xianchun Xia
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China.
| |
Collapse
|
9
|
Liu S, Wang X, Zhang Y, Jin Y, Xia Z, Xiang M, Huang S, Qiao L, Zheng W, Zeng Q, Wang Q, Yu R, Singh RP, Bhavani S, Kang Z, Han D, Wang C, Wu J. Enhanced stripe rust resistance obtained by combining Yr30 with a widely dispersed, consistent QTL on chromosome arm 4BL. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:351-365. [PMID: 34665265 DOI: 10.1007/s00122-021-03970-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
YrFDC12 and PbcFDC, co-segregated in chromosome 4BL, and significantly interacted with Yr30/Pbc1 to enhance stripe rust resistance and to promote pseudo-black chaff development. Cultivars with durable resistance are the most popular means to control wheat stripe rust. Durable resistance can be achieved by stacking multiple adult plant resistance (APR) genes that individually have relatively small effect. Chinese wheat cultivars Ruihua 520 (RH520) and Fengdecun 12 (FDC12) confer partial APR to stripe rust across environments. One hundred and seventy recombinant inbred lines from the cross RH520 × FDC12 were used to determine the genetic basis of resistance and identify genomic regions associated with stripe rust resistance. Genotyping was carried out using 55 K SNP array, and eight quantitative trait loci (QTL) were detected on chromosome arms 2AL, 2DS, 3BS, 4BL, 5BL (2), and 7BL (2) by inclusive composite interval mapping. Only QYr.nwafu-3BS from RH520 and QYr.nwafu-4BL.2 (named YrFDC12 for convenience) from FDC12 were consistent across the four testing environments. QYr.nwafu-3BS is likely the pleiotropic resistance gene Sr2/Yr30. YrFDC12 was mapped in a 2.1-cM interval corresponding to 12 Mb and flanked by SNP markers AX-111121224 and AX-89518393. Lines harboring both Yr30 and YrFDC12 displayed higher resistance than the parents and expressed pseudo-black chaff (PBC) controlled by loci Pbc1 and PbcFDC12, which co-segregated with Yr30 and YrFDC12, respectively. Both marker-based and pedigree-based kinship analyses revealed that YrFDC12 was inherited from founder parent Zhou 8425B. Fifty-four other wheat cultivars shared the YrFDC12 haplotype. These results suggest an effective pyramiding strategy to acquire highly effective, durable stripe rust resistance in breeding.
Collapse
Affiliation(s)
- Shengjie Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Xiaoting Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Yayun Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Yangang Jin
- Jiangsu Ruihua Agricultural Science and Technology Co. Ltd, Suqian, 223800, Jiangsu, People's Republic of China
| | - Zhonghua Xia
- Jiangsu Ruihua Agricultural Science and Technology Co. Ltd, Suqian, 223800, Jiangsu, People's Republic of China
| | - Mingjie Xiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Shuo Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Linyi Qiao
- Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, College of Agriculture, Shanxi Agricultural University, Taiyuan, 030031, Shanxi, China
| | - Weijun Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Qilin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Rui Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Ravi P Singh
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, 56237, Texcoco, Estado de Mexico, Mexico
| | - Sridhar Bhavani
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, 56237, Texcoco, Estado de Mexico, Mexico
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| | - Changfa Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| | - Jianhui Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
10
|
Yao F, Guan F, Duan L, Long L, Tang H, Jiang Y, Li H, Jiang Q, Wang J, Qi P, Kang H, Li W, Ma J, Pu Z, Deng M, Wei Y, Zheng Y, Chen X, Chen G. Genome-Wide Association Analysis of Stable Stripe Rust Resistance Loci in a Chinese Wheat Landrace Panel Using the 660K SNP Array. FRONTIERS IN PLANT SCIENCE 2021; 12:783830. [PMID: 35003168 PMCID: PMC8728361 DOI: 10.3389/fpls.2021.783830] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Stripe rust (caused by Puccinia striiformis f. sp. tritici) is one of the most severe diseases affecting wheat production. The disease is best controlled by developing and growing resistant cultivars. Chinese wheat (Triticum aestivum) landraces have excellent resistance to stripe rust. The objectives of this study were to identify wheat landraces with stable resistance and map quantitative trait loci (QTL) for resistance to stripe rust from 271 Chinese wheat landraces using a genome-wide association study (GWAS) approach. The landraces were phenotyped for stripe rust responses at the seedling stage with two predominant Chinese races of P. striiformis f. sp. tritici in a greenhouse and the adult-plant stage in four field environments and genotyped using the 660K wheat single-nucleotide polymorphism (SNP) array. Thirteen landraces with stable resistance were identified, and 17 QTL, including eight associated to all-stage resistance and nine to adult-plant resistance, were mapped on chromosomes 1A, 1B, 2A, 2D, 3A, 3B, 5A, 5B, 6D, and 7A. These QTL explained 6.06-16.46% of the phenotypic variation. Five of the QTL, QYrCL.sicau-3AL, QYrCL.sicau-3B.4, QYrCL.sicau-3B.5, QYrCL.sicau-5AL.1 and QYrCL.sicau-7AL, were likely new. Five Kompetitive allele specific PCR (KASP) markers for four of the QTL were converted from the significant SNP markers. The identified wheat landraces with stable resistance to stripe rust, significant QTL, and KASP markers should be useful for breeding wheat cultivars with durable resistance to stripe rust.
Collapse
Affiliation(s)
- Fangjie Yao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Fangnian Guan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Luyao Duan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Li Long
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hao Tang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yunfeng Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hao Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiantao Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Jirui Wang
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Pengfei Qi
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Wei Li
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Jian Ma
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhien Pu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Mei Deng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Xianming Chen
- Wheat Health, Genetics and Quality Research Unit, United States Department of Agriculture, Agricultural Research Service, Pullman, WA, United States
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Guoyue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
11
|
Phenotyping and validation of molecular markers associated with rust resistance genes in wheat cultivars in Egypt. Mol Biol Rep 2021; 49:1903-1915. [PMID: 34843039 DOI: 10.1007/s11033-021-07002-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/19/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Thirteen Egyptian wheat cultivars were evaluated and characterized for adult plant resistance to yellow, leaf, and stem rusts. SSR markers linked to yellow, leaf and stem rust resistance genes were validated and subsequently used to identify wheat cultivars containing more than one rust resistance gene. RESULTS Results of the molecular marker detection indicated that several genes, either alone or in different combinations, were present among the wheat cultivars, including Yr, Yr78 (stripe rust), Lr, Lr70 (leaf rust), Sr. Sr33, SrTA10187, Sr13, and Sr35 (stem rust), and Lr34/Yr18 and Lr49/Yr29 (leaf/stripe rust). The cultivar Sakha-95 was resistant to leaf and stem rusts, and partially resistant to stripe rust; however, this cultivar contained additional rust resistance genes (Lr, Sr and Lr/Yr). The area under the disease progress curve (AUDPC) type for the various wheat cultivars differed depending on the type of rust infection (yellow, leaf, or stem rust, indicated by Yr, Lr, and Sr). The cultivars Gem-12, Sids-14, Giza-171, and Giza-168 had AUDPC types of partial resistance and resistance. All six cultivars, however, contained additional rust resistance genes. CONCLUSIONS Marker-assisted selection can be applied to improve wheat cultivars with efficient gene combinations that would directly support the development of durable resistance in Egypt. Once the expression of the resistance genes targeted in this study have been confirmed by phenotypic screening, the preferable cultivars can be used as donors by Egyptian wheat breeders. The results of this study will help breeders determine the extent of resistance under field conditions when breeding for rust resistance in bread wheat.
Collapse
|
12
|
Zhou J, Singh RP, Ren Y, Bai B, Li Z, Yuan C, Li S, Huerta-Espino J, Liu D, Lan C. Identification of Two New Loci for Adult Plant Resistance to Leaf Rust and Stripe Rust in the Chinese Wheat Variety 'Neimai 836'. PLANT DISEASE 2021; 105:3705-3714. [PMID: 33779256 DOI: 10.1094/pdis-12-20-2654-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The characterization of leaf rust (caused by Puccinia triticina) and stripe rust (caused by Puccinia striiformis f. sp. tritici) resistance genes is the basis for breeding resistant wheat varieties and managing epidemics of these diseases in wheat. A cross between the susceptible wheat variety 'Apav#1' and resistant variety 'Neimai 836' was used to develop a mapping population containing 148 F5 recombinant inbred lines (RILs). Leaf rust phenotyping was done in field trials at Ciudad Obregón, Mexico, in 2017 and 2018, and stripe rust data were generated at Toluca, Mexico, in 2017 and in Mianyang, Ezhou, and Gansu, China, in 2019. Inclusive complete interval mapping (ICIM) was used to create a genetic map and identify significant resistance quantitative trait loci (QTL) with 2,350 polymorphic markers from a 15K wheat single-nucleotide polymorphism (SNP) array and simple-sequence repeats (SSRs). The pleiotropic multipathogen resistance gene Lr46/Yr29 and four QTL were identified, including two new loci, QLr.hzau-3BL and QYr.hzau-5AL, which explained 3 to 16% of the phenotypic variation in resistance to leaf rust and 7 to 14% of that to stripe rust. The flanking SNP markers for the two loci were converted to Kompetitive Allele-Specific PCR (KASP) markers and used to genotype a collection of 153 wheat lines, indicating the Chinese origin of the loci. Our results suggest that Neimai 836, which has been used as a parent for many wheat varieties in China, could be a useful source of high-level resistance to both leaf rust and stripe rust.
Collapse
Affiliation(s)
- Jingwei Zhou
- Huazhong Agricultural University, College of Plant Science & Technology, No. 1, Hongshan District, Wuhan 430070, Hubei Province, P.R. China
| | - Ravi P Singh
- International Maize and Wheat Improvement Center (CIMMYT), 06600 Mexico D.F., Mexico
| | - Yong Ren
- Mianyang Academy of Agricultural Science/Mianyang Branch of National Wheat Improvement Center, Mianyang 621023, Sichuan, P.R. China
| | - Bin Bai
- Wheat Research Institute, Gansu Academy of Agricultural Sciences, No. 1 Nongkeyuanxincun, Lanzhou 730070, Gansu Province, P.R. China
| | - Zhikang Li
- Huazhong Agricultural University, College of Plant Science & Technology, No. 1, Hongshan District, Wuhan 430070, Hubei Province, P.R. China
| | - Chan Yuan
- Huazhong Agricultural University, College of Plant Science & Technology, No. 1, Hongshan District, Wuhan 430070, Hubei Province, P.R. China
| | - Shunda Li
- Huazhong Agricultural University, College of Plant Science & Technology, No. 1, Hongshan District, Wuhan 430070, Hubei Province, P.R. China
| | - Julio Huerta-Espino
- Campo Experimental Valle de Mexico Instituto Nacional de Investigaciones Forestales Agricolas y Pecuarias (INIFAP), 56230 Chapingo, Edo. de Mexico, Mexico
| | - Demei Liu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences and Qinghai Provincial Key Laboratory of Crop Molecular Breeding and China and Qinghai Provincial Key Laboratory of Crop Molecular Breeding Northwest Institute of Plateau Biology, Innovation Academy for Seed Design, Xining 810008, P.R. China
| | - Caixia Lan
- Huazhong Agricultural University, College of Plant Science & Technology, No. 1, Hongshan District, Wuhan 430070, Hubei Province, P.R. China
| |
Collapse
|
13
|
Tomar V, Dhillon GS, Singh D, Singh RP, Poland J, Chaudhary AA, Bhati PK, Joshi AK, Kumar U. Evaluations of Genomic Prediction and Identification of New Loci for Resistance to Stripe Rust Disease in Wheat ( Triticum aestivum L.). Front Genet 2021; 12:710485. [PMID: 34650592 PMCID: PMC8505882 DOI: 10.3389/fgene.2021.710485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/24/2021] [Indexed: 01/08/2023] Open
Abstract
Stripe rust is one of the most destructive diseases of wheat (Triticum aestivum L.), caused by Puccinia striiformis f. sp. tritici (Pst), and responsible for significant yield losses worldwide. Single-nucleotide polymorphism (SNP) diagnostic markers were used to identify new sources of resistance at adult plant stage to wheat stripe rust (YR) in 141 CIMMYT advanced bread wheat lines over 3 years in replicated trials at Borlaug Institute for South Asia (BISA), Ludhiana. We performed a genome-wide association study and genomic prediction to aid the genetic gain by accumulating disease resistance alleles. The responses to YR in 141 advanced wheat breeding lines at adult plant stage were used to generate G × E (genotype × environment)-dependent rust scores for prediction and genome-wide association study (GWAS), eliminating variation due to climate and disease pressure changes. The lowest mean prediction accuracies were 0.59 for genomic best linear unbiased prediction (GBLUP) and ridge-regression BLUP (RRBLUP), while the highest mean was 0.63 for extended GBLUP (EGBLUP) and random forest (RF), using 14,563 SNPs and the G × E rust score results. RF and EGBLUP predicted higher accuracies (∼3%) than did GBLUP and RRBLUP. Promising genomic prediction demonstrates the viability and efficacy of improving quantitative rust tolerance. The resistance to YR in these lines was attributed to eight quantitative trait loci (QTLs) using the FarmCPU algorithm. Four (Q.Yr.bisa-2A.1, Q.Yr.bisa-2D, Q.Yr.bisa-5B.2, and Q.Yr.bisa-7A) of eight QTLs linked to the diagnostic markers were mapped at unique loci (previously unidentified for Pst resistance) and possibly new loci. The statistical evidence of effectiveness and distribution of the new diagnostic markers for the resistance loci would help to develop new stripe rust resistance sources. These diagnostic markers along with previously established markers would be used to create novel DNA biosensor-based microarrays for rapid detection of the resistance loci on large panels upon functional validation of the candidate genes identified in the present study to aid in rapid genetic gain in the future breeding programs.
Collapse
Affiliation(s)
- Vipin Tomar
- Borlaug Institute for South Asia, Ludhiana, India.,International Maize and Wheat Improvement Center, New Delhi, India.,Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Guriqbal Singh Dhillon
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| | - Daljit Singh
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States
| | - Ravi Prakash Singh
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Jesse Poland
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | | | - Arun Kumar Joshi
- Borlaug Institute for South Asia, Ludhiana, India.,International Maize and Wheat Improvement Center, New Delhi, India.,Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Uttam Kumar
- Borlaug Institute for South Asia, Ludhiana, India.,International Maize and Wheat Improvement Center, New Delhi, India.,Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| |
Collapse
|
14
|
Long L, Yao F, Guan F, Cheng Y, Duan L, Zhao X, Li H, Pu Z, Li W, Jiang Q, Wei Y, Ma J, Kang H, Dai S, Qi P, Xu Q, Deng M, Zheng Y, Jiang Y, Chen G. A Stable Quantitative Trait Locus on Chromosome 5BL Combined with Yr18 Conferring High-Level Adult Plant Resistance to Stripe Rust in Chinese Wheat Landrace Anyuehong. PHYTOPATHOLOGY 2021; 111:1594-1601. [PMID: 33599530 DOI: 10.1094/phyto-10-20-0465-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Chinese wheat landrace Anyuehong (AYH) has displayed high levels of stable adult plant resistance (APR) to stripe rust for >15 years. To identify quantitative trait loci (QTLs) for stripe rust resistance in AYH, a set of 110 recombinant inbred lines (RILs) was developed from a cross between AYH and susceptible cultivar Taichung 29. The parents and RILs were evaluated for final disease severity (FDS) in six field tests with a mixture of predominant Puccinia striiformis f. sp. tritici races at the adult plant stage and genotyped via the wheat 55K single-nucleotide polymorphism (SNP) array to construct a genetic map with 1,143 SNP markers. Three QTLs, designated as QYr.AYH-1AS, QYr.AYH-5BL, and QYr.AYH-7DS, were mapped on chromosome 1AS, 5BL, and 7DS, respectively. RILs combining three QTLs showed significantly lower FDS compared with the lines in other combinations. Of them, QYr.AYH-5BL and QYr.AYH-7DS were stably detected in all environments, explaining 13.6 to 21.4% and 17.6 to 33.6% of phenotypic variation, respectively. Compared with previous studies, QYr.AYH-5BL may be a new QTL, whereas QYr.AYH-7DS may be Yr18. Haplotype analysis revealed that QYr.AYH-5BL is probably present in 6.2% of the 323 surveyed Chinese wheat landraces. The kompetitive allele specific PCR (KASP) markers for QYr.AYH-5BL were developed by the linked SNP markers to successfully confirm the effects of the QTL in a validation population derived from a residual heterozygous line and were further assessed in 38 Chinese wheat landraces and 92 cultivars. Our results indicated that QYr.AYH-5BL with linked KASP markers has potential value for marker-assisted selection to improve stripe rust resistance in breeding programs.
Collapse
Affiliation(s)
- Li Long
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Fangjie Yao
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Fangnian Guan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Yukun Cheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Luyao Duan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Xuyang Zhao
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Hao Li
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Zhien Pu
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Wei Li
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Qiantao Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Jian Ma
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Shoufen Dai
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Pengfei Qi
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Qiang Xu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Mei Deng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Yunfeng Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Guoyue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| |
Collapse
|
15
|
Baranwal DK, Bariana H, Bansal U. Genetic dissection of stripe rust resistance in a Tunisian wheat landrace Aus26670. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:54. [PMID: 37309400 PMCID: PMC10236087 DOI: 10.1007/s11032-021-01248-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/29/2021] [Indexed: 06/14/2023]
Abstract
The deployment of combinations of resistance genes in future wheat cultivars can save yield losses caused by the stripe rust pathogen (Puccinia striiformis f. sp. tritici; Pst). This relies on the availability and identification of genetically diverse sources of resistance. A Tunisian landrace Aus26670 displayed high level of stripe rust resistance against Australian Pst pathotypes. This landrace was crossed with a susceptible line Avocet 'S' (AvS) to generate 123 F7 recombinant inbred lines (RILs). The Aus26670/AvS RIL population was evaluated against three Pst pathotypes individually in greenhouse and against mixture of Pst pathotypes under field conditions for three consecutive years. Genetic analysis of the seedling stripe rust response variation data indicated the presence of an all-stage resistance (ASR) gene, and it was named YrAW12. This gene is effective against Australian Pst pathotypes 110 E143A + and 134 E16A + Yr17 + Yr27 + and is ineffective against the pathotype 239 E237A-Yr17 + Yr33 + . The RIL population was genotyped using the targeted genotyping-by-sequencing (tGBS) assay. YrAW12 was mapped in the 754.9-763.9 Mb region of the physical map of Chinese Spring and was concluded to be previously identified stripe rust resistance gene Yr72. QTL analysis suggested the involvement of four genomic regions which were named: QYr.sun-1BL/Yr29, QYr.sun-5AL, QYr.sun-5BL and QYr.sun-6DS, in controlling stripe rust resistance in Aus26670. Comparison of genomic regions detected in this study with previously reported QTL indicated the uniqueness of QYr.sun-5AL (654.5 Mb) and QYr.sun-6DS (1.4 Mb). Detailed mapping of these genomic regions will lead to permanent designation of these loci. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01248-7.
Collapse
Affiliation(s)
- Deepak Kumar Baranwal
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney Plant Breeding Institute, 107 Cobbitty Road, Cobbitty, NSW 2570 Australia
- Department of Plant Breeding and Genetics, Bihar Agricultural University, Sabour, 813210 India
| | - Harbans Bariana
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney Plant Breeding Institute, 107 Cobbitty Road, Cobbitty, NSW 2570 Australia
| | - Urmil Bansal
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney Plant Breeding Institute, 107 Cobbitty Road, Cobbitty, NSW 2570 Australia
| |
Collapse
|
16
|
Tehseen MM, Tonk FA, Tosun M, Amri A, Sansaloni CP, Kurtulus E, Yazbek M, Al-Sham'aa K, Ozseven I, Safdar LB, Shehadeh A, Nazari K. Genome-wide association study of resistance to PstS2 and Warrior races of Puccinia striiformis f. sp. tritici (stripe rust) in bread wheat landraces. THE PLANT GENOME 2021; 14:e20066. [PMID: 33615748 DOI: 10.1002/tpg2.20066] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 05/20/2023]
Abstract
Stripe or yellow rust, caused by Puccinia striiformis Westend. f. sp. tritici is a major threat to bread wheat production worldwide. The breakdown in resistance of certain major genes and newly emerging aggressive races of stripe rusts pose serious concerns in all main wheat growing areas of the world. To identify new sources of resistance and associated QTL for effective utilization in future breeding programs an association mapping (AM) panel comprising of 600 bread wheat landraces collected from eight different countries conserved at ICARDA gene bank were evaluated for seedling and adult plant resistance against the PstS2 and Warrior races of stripe rust at the Regional Cereal Rust Research Center (RCRRC), Izmir, Turkey during 2016, 2018 and 2019. A set of 25,169 informative SNP markers covering the whole genome were used to examine the population structure, linkage disequilibrium and marker-trait associations in the AM panel. The genome-wide association study (GWAS) was carried out using a Mixed Linear Model (MLM). We identified 47 SNP markers across 19 chromosomes with significant SNP-trait associations for both seedling stage and adult plant resistance. The threshold of significance for all SNP-trait associations was determined by the false discovery rate (q) ≤ 0.05. Three genomic regions (QYr.1D_APR, QYr.3A_seedling and QYr.7D_seedling) identified in this study do not correspond to previously reported Yr genes or QTL, suggesting new genomic regions for stripe rust resistance.
Collapse
Affiliation(s)
| | | | - Muzaffer Tosun
- Department of Field Crops, Ege University, Izmir, Turkey
| | - Ahmed Amri
- ICARDA-PreBreeding & Genebank Operations, Biodiversity and Crop Improvement Program, Rabat, Morocco
| | | | - Ezgi Kurtulus
- Turkey-ICARDA Regional Cereal Rust Research Center (RCRRC), P.O. Box 35661, Menemen, Izmir, Turkey
| | - Mariana Yazbek
- ICARDA-Genetic Resources, PreBreeding & Genebank Operations, Biodiversity and Crop Improvement Program, Terbol, Lebanon
| | | | - Izzet Ozseven
- Agean Agricultural Research Institute, Regional Cereal Rust Research Center (RCRRC), P.O. Box 35661, Menemen, Izmir, Turkey
| | - Luqman Bin Safdar
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ali Shehadeh
- ICARDA-Genetic Resources, PreBreeding & Genebank Operations, Biodiversity and Crop Improvement Program, Terbol, Lebanon
| | - Kumarse Nazari
- Turkey-ICARDA Regional Cereal Rust Research Center (RCRRC), P.O. Box 35661, Menemen, Izmir, Turkey
| |
Collapse
|
17
|
Wang Y, Yu C, Cheng Y, Yao F, Long L, Wu Y, Li J, Li H, Wang J, Jiang Q, Li W, Pu Z, Qi P, Ma J, Deng M, Wei Y, Chen X, Chen G, Kang H, Jiang Y, Zheng Y. Genome-wide association mapping reveals potential novel loci controlling stripe rust resistance in a Chinese wheat landrace diversity panel from the southern autumn-sown spring wheat zone. BMC Genomics 2021; 22:34. [PMID: 33413106 PMCID: PMC7791647 DOI: 10.1186/s12864-020-07331-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 12/15/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Stripe rust, caused by the fungal pathogen Puccinia striiformis f. sp. tritici (Pst), is a serious foliar disease of wheat. Identification of novel stripe rust resistance genes and cultivation of resistant cultivars are considered to be the most effective approaches to control this disease. In this study, we evaluated the infection type (IT), disease severity (DS) and area under the disease progress curve (AUDPC) of 143 Chinese wheat landrace accessions for stripe rust resistance. Assessments were undertaken in five environments at the adult-plant stage with Pst mixture races under field conditions. In addition, IT was assessed at the seedling stage with two prevalent Pst races (CYR32 and CYR34) under a controlled greenhouse environment. RESULTS Seventeen accessions showed stable high-level resistance to stripe rust across all environments in the field tests. Four accessions showed resistance to the Pst races CYR32 and CYR34 at the seedling stage. Combining phenotypic data from the field and greenhouse trials with 6404 markers that covered the entire genome, we detected 17 quantitative trait loci (QTL) on 11 chromosomes for IT associated with seedling resistance and 15 QTL on seven chromosomes for IT, final disease severity (FDS) or AUDPC associated with adult-plant resistance. Four stable QTL detected on four chromosomes, which explained 9.99-23.30% of the phenotypic variation, were simultaneously associated with seedling and adult-plant resistance. Integrating a linkage map of stripe rust resistance in wheat, 27 QTL overlapped with previously reported genes or QTL, whereas four and one QTL conferring seedling and adult-plant resistance, respectively, were mapped distantly from previously reported stripe rust resistance genes or QTL and thus may be novel resistance loci. CONCLUSIONS Our results provided an integrated overview of stripe rust resistance resources in a wheat landrace diversity panel from the southern autumn-sown spring wheat zone of China. The identified resistant accessions and resistance loci will be useful in the ongoing effort to develop new wheat cultivars with strong resistance to stripe rust.
Collapse
Affiliation(s)
- Yuqi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Can Yu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Yukun Cheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Fangjie Yao
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Li Long
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Yu Wu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Jing Li
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Hao Li
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Jirui Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Qiantao Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Wei Li
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Zhien Pu
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Pengfei Qi
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Jian Ma
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Mei Deng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Xianming Chen
- US Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit; and Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA
| | - Guoyue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China.
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China.
| | - Yunfeng Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China.
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China.
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China.
| |
Collapse
|
18
|
Yao F, Long L, Wang Y, Duan L, Zhao X, Jiang Y, Li H, Pu Z, Li W, Jiang Q, Wang J, Wei Y, Ma J, Kang H, Dai S, Qi P, Zheng Y, Chen X, Chen G. Population structure and genetic basis of the stripe rust resistance of 140 Chinese wheat landraces revealed by a genome-wide association study. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 301:110688. [PMID: 33218646 DOI: 10.1016/j.plantsci.2020.110688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Stripe rust caused by Puccinia striiformis f. sp. tritici (Pst) is one of the most devastating foliar diseases in wheat. Host resistance is the most effective strategy for the management of the disease. To screen for accessions with stable resistance and identify effective stripe rust resistance loci, a genome-wide association study (GWAS) was conducted using a panel of 140 Chinese wheat landraces. The panel was evaluated for stripe rust response at the adult-plant stage at six field-year environments with mixed races and at the seedling stage with two separate predominant races of the pathogen, and genotyped with the genome-wide Diversity Arrays Technology markers. The panel displayed abundant phenotypic variation in stripe rust responses, with 9 landraces showing stable resistance to the mixture of Pst races at the adult-plant stage in the field and 10 landraces showing resistance to individual races at the seedling stage in the greenhouse. GWAS identified 12 quantitative trait loci (QTL) significantly (P ≤ 0.001) associated to stripe rust resistance using the field data of at least two environments and 18 QTL using the seedling data with two races. Among these QTL, 10 were presumably novel, including 4 for adult-plant resistance mapped to chromosomes 1B (QYrcl.sicau-1B.3), 4A (QYrcl.sicau-4A.3), 6A (QYrcl.sicau-6A.2) and 7B (QYrcl.sicau-7B.2) and 6 for all-stage resistance mapped to chromosomes 2D (QYrcl.sicau-2D.1), 3B (QYrcl.sicau-3B.3), 3D (QYrcl.sicau-3D), 4B (QYrcl.sicau-4B), 6A (QYrcl.sicau-6A.1) and 6D (QYrcl.sicau-6D). The landraces with stable resistance can be used for developing wheat cultivars with effective resistance to stripe rust.
Collapse
Affiliation(s)
- Fangjie Yao
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China; State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Li Long
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China; State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Yuqi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China; State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Luyao Duan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China; State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Xuyang Zhao
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China; State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Yunfeng Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Hao Li
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Zhien Pu
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Wei Li
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Qiantao Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China; State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Jirui Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China; State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China; State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Jian Ma
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China; State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Shoufen Dai
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Pengfei Qi
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China; State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Xianming Chen
- US Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA
| | - Guoyue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China; State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan 611130, PR China.
| |
Collapse
|
19
|
Jamil S, Shahzad R, Ahmad S, Fatima R, Zahid R, Anwar M, Iqbal MZ, Wang X. Role of Genetics, Genomics, and Breeding Approaches to Combat Stripe Rust of Wheat. Front Nutr 2020; 7:580715. [PMID: 33123549 PMCID: PMC7573350 DOI: 10.3389/fnut.2020.580715] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/19/2020] [Indexed: 02/01/2023] Open
Abstract
Puccinia striiformis (Pst) is a devastating biotrophic fungal pathogen that causes wheat stripe rust. It usually loves cool and moist places and can cause 100% crop yield losses in a single field when ideal conditions for disease incidence prevails. Billions of dollars are lost due to fungicide application to reduce stripe rust damage worldwide. Pst is a macrocyclic, heteroecious fungus that requires primary (wheat or grasses) as well as secondary host (Berberis or Mahonia spp.) for completion of life cycle. In this review, we have summarized the knowledge about pathogen life cycle, genes responsible for stripe rust resistance, and susceptibility in wheat. In the end, we discussed the importance of conventional and modern breeding tools for the development of Pst-resistant wheat varieties. According to our findings, genetic engineering and genome editing are less explored tools for the development of Pst-resistant wheat varieties; hence, we highlighted the putative use of advanced genome-modifying tools, i.e., base editing and prime editing, for the development of Pst-resistant wheat.
Collapse
Affiliation(s)
- Shakra Jamil
- Agricultural Biotechnology Research Institute, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Rahil Shahzad
- Agricultural Biotechnology Research Institute, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Shakeel Ahmad
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Rida Fatima
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Rameesha Zahid
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Madiha Anwar
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Zaffar Iqbal
- Agricultural Biotechnology Research Institute, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Xiukang Wang
- College of Life Sciences, Yan'an University, Yan'an, China
| |
Collapse
|
20
|
Liu L, Wang M, Zhang Z, See DR, Chen X. Identification of Stripe Rust Resistance Loci in U.S. Spring Wheat Cultivars and Breeding Lines Using Genome-Wide Association Mapping and Yr Gene Markers. PLANT DISEASE 2020; 104:2181-2192. [PMID: 32511046 DOI: 10.1094/pdis-11-19-2402-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), poses a major threat to wheat production worldwide, especially in the United States. To identify loci for effective stripe rust resistance in U.S. wheat, a genome-wide association study (GWAS) was conducted using a panel of 616 spring wheat cultivars and breeding lines. The accessions in this panel were phenotyped for stripe rust response in the greenhouse at seedling stage with five predominant and highly virulent races of Pst and in different field environments at adult-plant stage in 2017 and 2018. In total, 2,029 single-nucleotide polymorphism markers that cover the whole genome were generated with genotyping by multiplexed sequencing and used in GWAS. In addition, 23 markers of previously reported resistance genes or quantitative trait loci (QTLs) were used to genotype the population. This spring panel was grouped into three subpopulations based on principal component analysis. A total of 37 genes or QTLs including 10 potentially new QTLs for resistance to stripe rust were detected by GWAS and linked marker tests. The frequencies of the resistance genes or QTLs in various nurseries were determined, indicating different intensities of these genes or QTLs used in breeding programs of different regions. These resistance loci and the information on their markers, effectiveness, and distributions should be useful for improving stripe rust resistance in wheat cultivars.
Collapse
Affiliation(s)
- Lu Liu
- Department of Plant Pathology, Washington State University, Pullman, WA 99164
| | - Meinan Wang
- Department of Plant Pathology, Washington State University, Pullman, WA 99164
| | - Zhiwu Zhang
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164
| | - Deven R See
- Department of Plant Pathology, Washington State University, Pullman, WA 99164
- USDA-ARS Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164
| | - Xianming Chen
- Department of Plant Pathology, Washington State University, Pullman, WA 99164
- USDA-ARS Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164
| |
Collapse
|
21
|
Yuan C, Singh RP, Liu D, Randhawa MS, Huerta-Espino J, Lan C. Genome-Wide Mapping of Adult Plant Resistance to Leaf Rust and Stripe Rust in CIMMYT Wheat Line Arableu#1. PLANT DISEASE 2020; 104:1455-1464. [PMID: 32196419 DOI: 10.1094/pdis-10-19-2198-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Leaf (brown) rust (LR) and stripe (yellow) rust (YR), caused by Puccinia triticina and P. striiformis f. sp. tritici, respectively, significantly reduce wheat production worldwide. Disease-resistant wheat varieties offer farmers one of the most effective ways to manage these diseases. The common wheat (Triticum aestivum L.) Arableu#1, developed by the International Maize and Wheat Improvement Center and released as Deka in Ethiopia, shows susceptibility to both LR and YR at the seedling stage but a high level of adult plant resistance (APR) to the diseases in the field. We used 142 F5 recombinant inbred lines (RILs) derived from Apav#1 × Arableu#1 to identify quantitative trait loci (QTLs) for APR to LR and YR. A total of 4,298 genotyping-by-sequencing markers were used to construct a genetic linkage map. The study identified four LR resistance QTLs and six YR resistance QTLs in the population. Among these, QLr.cim-1BL.1/QYr.cim-1BL.1 was located in the same location as Lr46/Yr29, a known pleiotropic resistance gene. QLr.cim-1BL.2 and QYr.cim-1BL.2 were also located on wheat chromosome 1BL at 37 cM from Lr46/Yr29 and may represent a new segment for pleiotropic resistance to both rusts. QLr.cim-7BL is likely Lr68 given its association with the tightly linked molecular marker cs7BLNLRR. In addition, QLr.cim-3DS, QYr.cim-2AL, QYr.cim-4BL, QYr.cim-5AL, and QYr.cim-7DS are probably new resistance loci based on comparisons with published QTLs for resistance to LR and YR. Our results showed the diversity of minor resistance QTLs in Arableu#1 and their role in conferring near-immune levels of APR to both LR and YR, when combined with the pleiotropic APR gene Lr46/Yr29.
Collapse
Affiliation(s)
- Chan Yuan
- Huazhong Agricultural University, College of Plant Science & Technology, Hongshan District, Wuhan, Hubei Province 430070, People's Republic of China
| | - Ravi P Singh
- International Maize and Wheat Improvement Center (CIMMYT), 06600 Mexico D.F., Mexico
| | - Demei Liu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences and Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining 810008, People's Republic of China
| | - Mandeep S Randhawa
- International Maize and Wheat Improvement Center (CIMMYT), 06600 Mexico D.F., Mexico
| | - Julio Huerta-Espino
- Campo Experimental Valle de Mexico INIFAP, 56230 Chapingo, Edo. de Mexico, Mexico
| | - Caixia Lan
- Huazhong Agricultural University, College of Plant Science & Technology, Hongshan District, Wuhan, Hubei Province 430070, People's Republic of China
| |
Collapse
|
22
|
Gebrewahid TW, Zhou Y, Zhang P, Ren Y, Gao P, Xia X, He Z, Li Z, Liu D. Mapping of Stripe Rust and Leaf Rust Resistance Quantitative Trait Loci in the Chinese Spring Wheat Line Mianyang351-15. PHYTOPATHOLOGY 2020; 110:1074-1081. [PMID: 32106769 DOI: 10.1094/phyto-08-19-0316-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Stripe rust and leaf rust cause wheat yield losses of up to 70% worldwide. The employment of resistant cultivars is the major method to reduce losses from these diseases. The objective of this study was to detect quantitative trait loci (QTL) for stripe rust and leaf rust resistance in 150 F6 recombinant inbred lines (RIL) derived from a cross between Mianyang351-15 and Zhengzhou 5389. Both parents and the RIL population were genotyped with the Wheat55K single nucleotide polymorphism (SNP) array and simple sequence repeat markers, and phenotyped for stripe rust severity at Mianyang in Sichuan Province and Baoding in Hebei Province, and for leaf rust severity at Zhoukou in Henan Province and at Baoding in 2014 to 2017 cropping seasons. Seven and four QTL all contributed from Mianyang351-15 were identified for resistance to stripe rust and leaf rust, respectively. Four of these QTL on chromosomes 1BL, 2AS, 2DS, and 7BL conferred resistance to both stripe rust and leaf rust. The QTL on 1BL, 2AS, and 7BL were identified as Lr46/Yr29, Lr37/Yr17, and Lr68, respectively. QYr.hbau-2DS/QLr.hbau-2DS was detected at similar positions to previously reported loci. QYr.hbau-1DL, QYr.hbau-3AS, and QYr.hbau-3DL are likely to be new. Combined effects of QTL in the RIL population indicated RIL combining all QTL had the highest resistance level compared with those of lower numbers or no QTL. These QTL, with their closely linked SNP markers, are applicable for marker-assisted breeding and candidate gene discovery.
Collapse
Affiliation(s)
- Takele Weldu Gebrewahid
- College of Plant Protection, Hebei Agricultural University, 289 Lingyusi Street, Baoding, Hebei 071001, China
- College of Agriculture, Aksum University, Shire-Indaslassie, Tigray 314, Ethiopia
| | - Yue Zhou
- Baoding University, 3027 Qiyi Donglu Street, Baoding 071001, Hebei, China
| | - Peipei Zhang
- College of Plant Protection, Hebei Agricultural University, 289 Lingyusi Street, Baoding, Hebei 071001, China
| | - Yong Ren
- Mianyang Institute of Agricultural Science/Mianyang Branch of National Wheat Improvement Center, Mianyang 621023, Sichuan Province, China
| | - Pu Gao
- College of Plant Protection, Hebei Agricultural University, 289 Lingyusi Street, Baoding, Hebei 071001, China
| | - Xianchun Xia
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China
| | - Zhonghu He
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS) and International Maize and Wheat Improvement Center (CIMMYT) China Office, 12 Zhongguancun South Street, Beijing 100081, China
| | - Zaifeng Li
- College of Plant Protection, Hebei Agricultural University, 289 Lingyusi Street, Baoding, Hebei 071001, China
| | - Daqun Liu
- College of Plant Protection, Hebei Agricultural University, 289 Lingyusi Street, Baoding, Hebei 071001, China
| |
Collapse
|
23
|
Liu Y, Qie Y, Li X, Wang M, Chen X. Genome-Wide Mapping of Quantitative Trait Loci Conferring All-Stage and High-Temperature Adult-Plant Resistance to Stripe Rust in Spring Wheat Landrace PI 181410. Int J Mol Sci 2020; 21:ijms21020478. [PMID: 31940871 PMCID: PMC7014124 DOI: 10.3390/ijms21020478] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 11/16/2022] Open
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most destructive diseases of wheat in the world. Genetic resistance is the best strategy for control of the disease. Spring wheat landrace PI 181410 has shown high level resistance to stripe rust. The present study characterized the landrace to have both race-specific all-stage resistance and nonrace-specific high-temperature adult-plant (HTAP) resistance. To map quantitative trait loci (QTL) for the resistance in PI 181410, it was crossed with Avocet S (AvS), from which a recombinant inbred line population was developed. The F5–F8 populations were consecutively phenotyped for stripe rust response in multiple field environments under natural Pst infection, and the F7 population was phenotyped in seedlings at low temperature and in adult-plant stage with selected Pst races in the greenhouse. The F7 population was genotyped using the 90K wheat SNP chip. Three QTL, QYrPI181410.wgp-4AS, QYrPI181410.wgp-4BL, and QYrPI181410.wgp-5BL.1, from PI 181410 for all-stage resistance, were mapped on chromosome arms 4AS, 4BL, and 5BL, respectively. Four QTL, QYrPI181410.wgp-1BL, QYrPI181410.wgp-4BL, QYrPI181410.wgp-5AS, and QYrPI181410.wgp-5BL.2, were identified from PI 181410 for HTAP resistance and mapped to 1BL, 4BL, 5AS, and 5BL, respectively. Two QTL with minor effects on stripe rust response were identified from AvS and mapped to 2BS and 2BL. Four of the QTL from PI 181410 and one from AvS were potentially new. As the 4BL QTL was most effective and likely a new gene for stripe rust resistance, three kompetitive allele specific PCR (KASP) markers were developed for incorporating this gene into new wheat cultivars.
Collapse
Affiliation(s)
- Yan Liu
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA; (Y.L.); (Y.Q.); (X.L.); (M.W.)
| | - Yanmin Qie
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA; (Y.L.); (Y.Q.); (X.L.); (M.W.)
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, 162 Hengshan Street, Gaoxin District, Shijiazhuang, Hebei 050035, China
| | - Xing Li
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA; (Y.L.); (Y.Q.); (X.L.); (M.W.)
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Meinan Wang
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA; (Y.L.); (Y.Q.); (X.L.); (M.W.)
| | - Xianming Chen
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA; (Y.L.); (Y.Q.); (X.L.); (M.W.)
- US Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164-6430, USA
- Correspondence: ; Tel.: +1-509-335-8086
| |
Collapse
|
24
|
Mu J, Wu J, Liu S, Dai M, Sun D, Huang S, Wang Q, Zeng Q, Yu S, Chen L, Kang Z, Han D. Genome-Wide Linkage Mapping Reveals Stripe Rust Resistance in Common Wheat ( Triticum aestivum) Xinong1376. PLANT DISEASE 2019; 103:2742-2750. [PMID: 31509495 DOI: 10.1094/pdis-12-18-2264-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Stripe rust, also known as yellow rust, is a significant threat to wheat yield worldwide. Adult plant resistance (APR) is the preferred way to obtain durable protection. Chinese winter wheat cultivar Xinong1376 has maintained acceptable APR to stripe rust in field environments. To characterize APR in this cultivar, 190 F10 recombinant inbred lines (RILs) developed from Xiaoyan81 × Xinong1376 were evaluated for infection type and disease severity in fields either artificially or naturally inoculated. The population along with parents were genotyped using the Illumina 90K single-nucleotide polymorphism arrays. Six quantitative trait loci (QTL) were detected using the inclusive composite interval mapping method. QYr.nwafu-4AL and QYr.nwafu-6BL.3 conferred stable resistance in all environments, and likely corresponded to a gene-rich region on the long arm of chromosomes 4A and 6B. QYr.nwafu-5AL, QYr.nwafu-5BL, QYr.nwafu-3BL.1, and QYr.nwafu-3BL.2 were detected only in some environments but enhanced the level of resistance conferred by QYr.nwafu-4AL and QYr.nwafu-6BL.3. Kompetitive allele-specific PCR (KASP) markers developed for QYr.nwafu-4AL and QYr.nwafu-6BL.3 were confirmed in a subset of RILs and 133 wheat genotypes. The QTL on 4AL and 6BL with their linked KASP markers would be useful for marker-assisted selection to improve stripe rust resistance in breeding programs.
Collapse
Affiliation(s)
- Jingmei Mu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jianhui Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shengjie Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Miaofei Dai
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Daojie Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shuo Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qilin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shizhou Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Li Chen
- Extension Center for Agriculture Technology, Agriculture Department of Tibetan Autonomous Region, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
25
|
Ledesma-Ramírez L, Solís-Moya E, Iturriaga G, Sehgal D, Reyes-Valdes MH, Montero-Tavera V, Sansaloni CP, Burgueño J, Ortiz C, Aguirre-Mancilla CL, Ramírez-Pimentel JG, Vikram P, Singh S. GWAS to Identify Genetic Loci for Resistance to Yellow Rust in Wheat Pre-Breeding Lines Derived From Diverse Exotic Crosses. FRONTIERS IN PLANT SCIENCE 2019; 10:1390. [PMID: 31781137 PMCID: PMC6831551 DOI: 10.3389/fpls.2019.01390] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/08/2019] [Indexed: 05/05/2023]
Abstract
Yellow rust (YR) or stripe rust, caused by Puccinia striformis f. sp tritici Eriks (Pst), is a major challenge to resistance breeding in wheat. A genome wide association study (GWAS) was performed using 22,415 single nucleotide polymorphism (SNP) markers and 591 haplotypes to identify genomic regions associated with resistance to YR in a subset panel of 419 pre-breeding lines (PBLs) developed at International Center for Maize and Wheat Improvement (CIMMYT). The 419 PBLs were derived from an initial set of 984 PBLs generated by a three-way crossing scheme (exotic/elite1//elite2) among 25 best elites and 244 exotics (synthetics, landraces) from CIMMYT's germplasm bank. For the study, 419 PBLs were characterized with 22,415 high-quality DArTseq-SNPs and phenotyped for severity of YR disease at five locations in Mexico. A population structure was evident in the panel with three distinct subpopulations, and a genome-wide linkage disequilibrium (LD) decay of 2.5 cM was obtained. Across all five locations, 14 SNPs and 7 haplotype blocks were significantly (P < 0.001) associated with the disease severity explaining 6.0 to 14.1% and 7.9 to 19.9% of variation, respectively. Based on average LD decay of 2.5 cM, identified 14 SNP-trait associations were delimited to seven quantitative trait loci in total. Seven SNPs were part of the two haplotype blocks on chromosome 2A identified in haplotypes-based GWAS. In silico analysis of the identified SNPs showed hits with interesting candidate genes, which are related to pathogenic process or known to regulate induction of genes related to pathogenesis such as those coding for glunolactone oxidase, quinate O-hydroxycinnamoyl transferase, or two-component histidine kinase. The two-component histidine kinase, for example, acts as a sensor in the perception of phytohormones ethylene and cytokinin. Ethylene plays a very important role in regulation of multiple metabolic processes of plants, including induction of defense mechanisms mediated by jasmonate. The SNPs linked to the promising genes identified in the study can be used for marker-assisted selection.
Collapse
Affiliation(s)
- Lourdes Ledesma-Ramírez
- Departamento de estudios e investigación de Posgrado, Tecnológico Nacional de México/Instituto Tecnológico de Roque, Celaya, Mexico
| | - Ernesto Solís-Moya
- Programa de mejoramiento genetico de trigo, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, Campo Experimental Bajío, Celaya, Mexico
| | - Gabriel Iturriaga
- Departamento de estudios e investigación de Posgrado, Tecnológico Nacional de México/Instituto Tecnológico de Roque, Celaya, Mexico
| | - Deepmala Sehgal
- Department of Bioscience, Centro Internacional de Mejoramiento de Maíz y Trigo, Texcoco, Mexico
| | | | - Víctor Montero-Tavera
- Programa de mejoramiento genetico de trigo, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, Campo Experimental Bajío, Celaya, Mexico
| | - Carolina P. Sansaloni
- Department of Bioscience, Centro Internacional de Mejoramiento de Maíz y Trigo, Texcoco, Mexico
| | - Juan Burgueño
- Department of Bioscience, Centro Internacional de Mejoramiento de Maíz y Trigo, Texcoco, Mexico
| | - Cynthia Ortiz
- Department of Bioscience, Centro Internacional de Mejoramiento de Maíz y Trigo, Texcoco, Mexico
| | - César L. Aguirre-Mancilla
- Departamento de estudios e investigación de Posgrado, Tecnológico Nacional de México/Instituto Tecnológico de Roque, Celaya, Mexico
| | - Juan G. Ramírez-Pimentel
- Departamento de estudios e investigación de Posgrado, Tecnológico Nacional de México/Instituto Tecnológico de Roque, Celaya, Mexico
| | - Prashant Vikram
- Department of Bioscience, Centro Internacional de Mejoramiento de Maíz y Trigo, Texcoco, Mexico
| | - Sukhwinder Singh
- Department of Bioscience, Centro Internacional de Mejoramiento de Maíz y Trigo, Texcoco, Mexico
- Department of Biotechnology, Geneshifters, Pullman, WA, United States
| |
Collapse
|
26
|
Zuo J, Lin CT, Cao H, Chen F, Liu Y, Liu J. Genome-wide association study and quantitative trait loci mapping of seed dormancy in common wheat (Triticum aestivum L.). PLANTA 2019; 250:187-198. [PMID: 30972483 DOI: 10.1007/s00425-019-03164-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 04/06/2019] [Indexed: 05/06/2023]
Abstract
Totally, 23 and 26 loci for the first count germination ratio and the final germination ratio were detected by quantitative trait loci (QTL) mapping and association mapping, respectively, which could be used to facilitate wheat pre-harvest sprouting breeding. Weak dormancy can cause pre-harvest sprouting in seeds of common wheat which significantly reduces grain yield. In this study, both quantitative trait loci (QTL) mapping and genome-wide association study (GWAS) were used to identify loci controlling seed dormancy. The analyses were based on a recombinant inbred line population derived from Zhou 8425B/Chinese Spring cross and 166 common wheat accessions. Inclusive composite interval mapping detected 8 QTL, while 45 loci were identified in the 166 wheat accessions by GWAS. Among these, four loci (Qbifcgr.cas-3AS/Qfcgr.cas-3AS, Qbifcgr.cas-6AL.1/Qfcgr.cas-6AL.1, Qbifcgr.cas-7BL.2/Qfcgr.cas-7BL.2, and Qbigr.cas-3DL/Qgr.cas-3DL) were detected in both QTL mapping and GWAS. In addition, 41 loci co-located with QTL reported previously, whereas 8 loci (Qfcgr.cas-5AL, Qfcgr.cas-6DS, Qfcgr.cas-7AS, Qgr.cas-3DS.1, Qgr.cas-3DS.2, Qbigr.cas-3DL/Qgr.cas-3DL, Qgr.cas-4B, and Qgr.cas-5A) were likely to be new. Linear regression showed the first count germination ratio or the final germination ratio reduced while multiple favorable alleles increased. It is suggested that QTL pyramiding was effective to reduce pre-harvest sprouting risk. This study could enrich the research on pre-harvest sprouting and provide valuable information of marker exploration for wheat breeding programs.
Collapse
Affiliation(s)
- Jinghong Zuo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Science, Beijing, China
| | - Chih-Ta Lin
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Hong Cao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Fengying Chen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yongxiu Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- College of Life Science, University of Chinese Academy of Science, Beijing, China.
| | - Jindong Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
27
|
Wu J, Huang S, Zeng Q, Liu S, Wang Q, Mu J, Yu S, Han D, Kang Z. Comparative genome-wide mapping versus extreme pool-genotyping and development of diagnostic SNP markers linked to QTL for adult plant resistance to stripe rust in common wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:1777-1792. [PMID: 29909527 DOI: 10.1007/s00122-018-3113-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/07/2018] [Indexed: 06/08/2023]
Abstract
A major stripe rust resistance QTL on chromosome 4BL was localized to a 4.5-Mb interval using comparative QTL mapping methods and validated in 276 wheat genotypes by haplotype analysis. CYMMIT-derived wheat line P10103 was previously identified to have adult plant resistance (APR) to stripe rust in the greenhouse and field. The conventional approach for QTL mapping in common wheat is laborious. Here, we performed QTL detection of APR using a combination of genome-wide scanning and extreme pool-genotyping. SNP-based genetic maps were constructed using the Wheat55 K SNP array to genotype a recombinant inbred line (RIL) population derived from the cross Mingxian 169 × P10103. Five stable QTL were detected across multiple environments. A fter comparing SNP profiles from contrasting, extreme DNA pools of RILs six putative QTL were located to approximate chromosome positions. A major QTL on chromosome 4B was identified in F2:4 contrasting pools from cross Zhengmai 9023 × P10103. A consensus QTL (LOD = 26-40, PVE = 42-55%), named QYr.nwafu-4BL, was defined and localized to a 4.5-Mb interval flanked by SNP markers AX-110963704 and AX-110519862 in chromosome arm 4BL. Based on stripe rust response, marker genotypes, pedigree analysis and mapping data, QYr.nwafu-4BL is likely to be a new APR QTL. The applicability of the SNP-based markers flanking QYr.nwafu-4BL was validated on a diversity panel of 276 wheat lines. The additional minor QTL on chromosomes 4A, 5A, 5B and 6A enhanced the level of resistance conferred by QYr.nwafu-4BL. Marker-assisted pyramiding of QYr.nwafu-4BL and other favorable minor QTL in new wheat cultivars should improve the level of APR to stripe rust.
Collapse
Affiliation(s)
- Jianhui Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Shuo Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Shengjie Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Qilin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Jingmei Mu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Shizhou Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
- College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
28
|
Jia A, Ren Y, Gao F, Yin G, Liu J, Guo L, Zheng J, He Z, Xia X. Mapping and validation of a new QTL for adult-plant resistance to powdery mildew in Chinese elite bread wheat line Zhou8425B. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:1063-1071. [PMID: 29392374 DOI: 10.1007/s00122-018-3058-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/12/2018] [Indexed: 06/07/2023]
Abstract
Four QTLs for adult-plant resistance to powdery mildew were mapped in the Zhou8425B/Chinese Spring population, and a new QTL on chromosome 3B was validated in 103 wheat cultivars derived from Zhou8425B. Zhou8425B is an elite wheat (Triticum aestivum L.) line widely used as a parent in Chinese wheat breeding programs. Identification of genes for adult-plant resistance (APR) to powdery mildew in Zhou8425B is of high importance for continued controlling the disease. In the current study, the high-density Illumina iSelect 90K single-nucleotide polymorphism (SNP) array was used to map quantitative trait loci (QTL) for APR to powdery mildew in 244 recombinant inbred lines derived from the cross Zhou8425B/Chinese Spring. Inclusive composite interval mapping identified QTL on chromosomes 1B, 3B, 4B, and 7D, designated as QPm.caas-1BL.1, QPm.caas-3BS, QPm.caas-4BL.2, and QPm.caas-7DS, respectively. Resistance alleles at the QPm.caas-1BL.1, QPm.caas-3BS, and QPm.caas-4BL.2 loci were contributed by Zhou8425B, whereas that at QPm.caas-7DS was from Chinese Spring. QPm.caas-3BS, likely to be a new APR gene for powdery mildew resistance, was detected in all four environments. One SNP marker closely linked to QPm.caas-3BS was transferred into a semi-thermal asymmetric reverse PCR (STARP) marker and tested on 103 commercial wheat cultivars derived from Zhou8425B. Cultivars with the resistance allele at the QPm.caas-3BS locus had averaged maximum disease severity reduced by 5.3%. This STARP marker can be used for marker-assisted selection in improvement of the level of powdery mildew resistance in wheat breeding.
Collapse
Affiliation(s)
- Aolin Jia
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Yan Ren
- College of Agronomy, Henan Agricultural University, 63 Agricultural Road, Zhengzhou, 450002, Henan, China
| | - Fengmei Gao
- Crop Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, Heilongjiang, China
| | - Guihong Yin
- Zhoukou Academy of Agricultural Sciences, Zhoukou, 466001, Henan, China
| | - Jindong Liu
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Lu Guo
- Focom Seed Co. Ltd, 11 Chang Chun Road, Zhengzhou, 450001, Henan, China
| | - Jizhou Zheng
- Focom Seed Co. Ltd, 11 Chang Chun Road, Zhengzhou, 450001, Henan, China
| | - Zhonghu He
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Xianchun Xia
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China.
| |
Collapse
|
29
|
Godoy JG, Rynearson S, Chen X, Pumphrey M. Genome-Wide Association Mapping of Loci for Resistance to Stripe Rust in North American Elite Spring Wheat Germplasm. PHYTOPATHOLOGY 2018; 108:234-245. [PMID: 28952421 DOI: 10.1094/phyto-06-17-0195-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is a major yield-limiting foliar disease of wheat (Triticum aestivum) worldwide. In this study, the genetic variability of elite spring wheat germplasm from North America was investigated to characterize the genetic basis of effective all-stage and adult plant resistance (APR) to stripe rust. A genome-wide association study was conducted using 237 elite spring wheat lines genotyped with an Illumina Infinium 90K single-nucleotide polymorphism array. All-stage resistance was evaluated at seedling stage in controlled conditions and field evaluations were conducted under natural disease pressure in eight environments across Washington State. High heritability estimates and correlations between infection type and severity were observed. Ten loci for race-specific all-stage resistance were confirmed from previous mapping studies. Three potentially new loci associated with race-specific all-stage resistance were identified on chromosomes 1D, 2A, and 5A. For APR, 11 highly significant quantitative trait loci (QTL) (false discovery rate < 0.01) were identified, of which 3 QTL on chromosomes 3A, 5D, and 7A are reported for the first time. The QTL identified in this study can be used to enrich the current gene pool and improve the diversity of resistance to stripe rust disease.
Collapse
Affiliation(s)
- Jayfred Gaham Godoy
- First, second, and fourth authors: Department of Crop and Soil Sciences, Washington State University, Pullman 99164-6420; and third author: United States Department of Agriculture-Agricultural Research Service and Department of Plant Pathology, Washington State University, Pullman 99164-6430
| | - Sheri Rynearson
- First, second, and fourth authors: Department of Crop and Soil Sciences, Washington State University, Pullman 99164-6420; and third author: United States Department of Agriculture-Agricultural Research Service and Department of Plant Pathology, Washington State University, Pullman 99164-6430
| | - Xianming Chen
- First, second, and fourth authors: Department of Crop and Soil Sciences, Washington State University, Pullman 99164-6420; and third author: United States Department of Agriculture-Agricultural Research Service and Department of Plant Pathology, Washington State University, Pullman 99164-6430
| | - Michael Pumphrey
- First, second, and fourth authors: Department of Crop and Soil Sciences, Washington State University, Pullman 99164-6420; and third author: United States Department of Agriculture-Agricultural Research Service and Department of Plant Pathology, Washington State University, Pullman 99164-6430
| |
Collapse
|
30
|
Zuo J, Liu J, Gao F, Yin G, Wang Z, Chen F, Li X, Xu J, Chen T, Li L, Li Y, Xia X, Cao H, Liu Y. Genome-Wide Linkage Mapping Reveals QTLs for Seed Vigor-Related Traits Under Artificial Aging in Common Wheat ( Triticum aestivum). FRONTIERS IN PLANT SCIENCE 2018; 9:1101. [PMID: 30100918 PMCID: PMC6073742 DOI: 10.3389/fpls.2018.01101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 07/09/2018] [Indexed: 05/07/2023]
Abstract
Long-term storage of seeds leads to lose seed vigor with slow and non-uniform germination. Time, rate, homogeneity, and synchrony are important aspects during the dynamic germination process to assess seed viability after storage. The aim of this study is to identify quantitative trait loci (QTLs) using a high-density genetic linkage map of common wheat (Triticum aestivum) for seed vigor-related traits under artificial aging. Two hundred and forty-six recombinant inbred lines derived from the cross between Zhou 8425B and Chinese Spring were evaluated for seed storability. Ninety-six QTLs were detected on all wheat chromosomes except 2B, 4D, 6D, and 7D, explaining 2.9-19.4% of the phenotypic variance. These QTLs were clustered into 17 QTL-rich regions on chromosomes 1AL, 2DS, 3AS (3), 3BS, 3BL (2), 3DL, 4AS, 4AL (3), 5AS, 5DS, 6BL, and 7AL, exhibiting pleiotropic effects. Moreover, 10 stable QTLs were identified on chromosomes 2D, 3D, 4A, and 6B (QaMGT.cas-2DS.2, QaMGR.cas-2DS.2, QaFCGR.cas-2DS.2, QaGI.cas-3DL, QaGR.cas-3DL, QaFCGR.cas-3DL, QaMGT.cas-4AS, QaMGR.cas-4AS, QaZ.cas-4AS, and QaGR.cas-6BL.2). Our results indicate that one of the stable QTL-rich regions on chromosome 2D flanked by IWB21991 and IWB11197 in the position from 46 to 51 cM, presenting as a pleiotropic locus strongly impacting seed vigor-related traits under artificial aging. These new QTLs and tightly linked SNP markers may provide new valuable information and could serve as targets for fine mapping or markers assisted breeding.
Collapse
Affiliation(s)
- Jinghong Zuo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jindong Liu
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fengmei Gao
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Crop Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Guihong Yin
- Zhoukou Academy of Agricultural Sciences, Zhoukou, China
| | - Zhi Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Fengying Chen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Xiaoying Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Jimei Xu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Tiantian Chen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Lei Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yu Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xianchun Xia
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hong Cao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
- *Correspondence: Hong Cao, Yongxiu Liu,
| | - Yongxiu Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
- *Correspondence: Hong Cao, Yongxiu Liu,
| |
Collapse
|
31
|
Ren Y, Hou W, Lan C, Basnet BR, Singh RP, Zhu W, Cheng X, Cui D, Chen F. QTL Analysis and Nested Association Mapping for Adult Plant Resistance to Powdery Mildew in Two Bread Wheat Populations. FRONTIERS IN PLANT SCIENCE 2017; 8:1212. [PMID: 28798752 PMCID: PMC5529384 DOI: 10.3389/fpls.2017.01212] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 06/27/2017] [Indexed: 05/20/2023]
Abstract
CIMMYT wheat (Triticum aestivum L.) lines Francolin#1 and Quaiu#3 displayed effective and stable adult plant resistance (APR) to Chinese Blumeria graminis f. sp. tritici isolates in the field. To elucidate their genetic basis of resistance, two recombinant inbred line (RIL) populations of their crosses with Avocet, the susceptible parent, were phenotyped in Zhengzhou and Shangqiu in the 2014-2015 and 2015-2016 cropping seasons. These populations were also genotyped with SSR (simple sequence repeat markers) and DArT (diversity arrays technology) markers. Two common significant quantitative trait loci (QTL) on wheat chromosomes 1BL and 4BL were detected in both populations by joint and individual inclusive composite interval mapping, explaining 20.3-28.7% and 9.6-15.9% of the phenotypic variance in Avocet × Francolin#1 and 4.8-11.5% and 10.8-18.9% in Avocet × Quaiu#3, respectively. Additional QTL were mapped on chromosomes 1DL and 5BL in Avocet × Francolin#1 and on 2DL and 6BS in Avocet × Quaiu#3. Among these, QPm.heau-1DL is probably a novel APR gene contributing 6.1-8.5% of total phenotypic variance. The QTL on 1BL corresponds to the pleiotropic multi-pathogen resistance gene Yr29/Lr46/Pm39, whereas the QTL on 2DL maps to a similar region where stripe rust resistance gene Yr54 is located. The QTL identified can potentially be used for the improvement of powdery mildew and rust resistance in wheat breeding.
Collapse
Affiliation(s)
- Yan Ren
- Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science/Agronomy College, Henan Agricultural UniversityZhengzhou, China
| | - Weixiu Hou
- Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science/Agronomy College, Henan Agricultural UniversityZhengzhou, China
| | - Caixia Lan
- International Maize and Wheat Improvement Center (CIMMYT)Mexico, Mexico
| | - Bhoja R. Basnet
- International Maize and Wheat Improvement Center (CIMMYT)Mexico, Mexico
| | - Ravi P. Singh
- International Maize and Wheat Improvement Center (CIMMYT)Mexico, Mexico
| | - Wei Zhu
- Shangqiu Academy of Agricultural and Forestry SciencesShangqiu, China
| | - Xiyong Cheng
- Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science/Agronomy College, Henan Agricultural UniversityZhengzhou, China
| | - Dangqun Cui
- Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science/Agronomy College, Henan Agricultural UniversityZhengzhou, China
| | - Feng Chen
- Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science/Agronomy College, Henan Agricultural UniversityZhengzhou, China
| |
Collapse
|
32
|
Background controlled QTL mapping in pure-line genetic populations derived from four-way crosses. Heredity (Edinb) 2017; 119:256-264. [PMID: 28722705 PMCID: PMC5597784 DOI: 10.1038/hdy.2017.42] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/16/2017] [Accepted: 06/19/2017] [Indexed: 11/24/2022] Open
Abstract
Pure lines derived from multiple parents are becoming more important because of the increased genetic diversity, the possibility to conduct replicated phenotyping trials in multiple environments and potentially high mapping resolution of quantitative trait loci (QTL). In this study, we proposed a new mapping method for QTL detection in pure-line populations derived from four-way crosses, which is able to control the background genetic variation through a two-stage mapping strategy. First, orthogonal variables were created for each marker and used in an inclusive linear model, so as to completely absorb the genetic variation in the mapping population. Second, inclusive composite interval mapping approach was implemented for one-dimensional scanning, during which the inclusive linear model was employed to control the background variation. Simulation studies using different genetic models demonstrated that the new method is efficient when considering high detection power, low false discovery rate and high accuracy in estimating quantitative trait loci locations and effects. For illustration, the proposed method was applied in a reported wheat four-way recombinant inbred line population.
Collapse
|
33
|
Liu C, Hua J, Liu C, Zhang D, Hao Z, Yong H, Xie C, Li M, Zhang S, Weng J, Li X. Fine mapping of a quantitative trait locus conferring resistance to maize rough dwarf disease. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:2333-2342. [PMID: 27544523 DOI: 10.1007/s00122-016-2770-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/12/2016] [Indexed: 06/06/2023]
Abstract
A QTL qMrdd8 that confers resistance to MRDD was fine mapped into an interval of 347 kb; one SNP and two InDels identified in the interval were significantly associated with resistance to MRDD. Maize rough dwarf disease (MRDD) is highly prevalent in the summer maize-growing areas in China, and leads to significant yield losses in maize (Zea mays L.). In this study, the quantitative trait locus (QTL) qMrdd8, which confers resistance to MRDD, was fine mapped. Initially, qMrdd8 was consistently identified in the interval between the simple sequence repeat markers umc1617 and phi121 in three F2 sub-populations derived from a cross between the resistant recombinant inbred line NL203 and the susceptible line B73. Subsequently, qMrdd8 was fine mapped into an interval of 347 kb defined by the markers IDRQ2 and IDRQ20 using a recombinant-derived progeny test strategy. Based on single nucleotide polymorphism (SNP) genotypes identified using the MaizeSNP50 BeadChip, a long haplotype including qMrdd8 was identified in four resistant inbred lines. One SNP, the 2549-bp insertion/deletion polymorphism (InDel) InDel25, and the 2761-bp InDel27, which all were significantly associated with resistance to MRDD in a set of 226 maize inbred lines (P < 0.05), were detected within qMrdd8. Furthermore, two candidate genes, CG1 and CG2, were detected in the interval using RNA sequencing (RNA-Seq), and InDel25 was localized within the candidate gene CG1. In conclusion, the fine mapping of qMrdd8 will be helpful in cloning the resistance gene, and the three polymorphic markers identified in this study could be used to improve MRDD resistance via a marker-assisted selection approach.
Collapse
Affiliation(s)
- Changlin Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Jinge Hua
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Chang Liu
- Northeast Agricultural University, Harbin, 150000, Heilongjiang, China
| | - Degui Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Zhuanfang Hao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Hongjun Yong
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Chuanxiao Xie
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Mingshun Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Shihuang Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Jianfeng Weng
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China.
| | - Xinhai Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China.
| |
Collapse
|
34
|
Sehgal D, Dreisigacker S, Belen S, Küçüközdemir Ü, Mert Z, Özer E, Morgounov A. Mining Centuries Old In situ Conserved Turkish Wheat Landraces for Grain Yield and Stripe Rust Resistance Genes. Front Genet 2016; 7:201. [PMID: 27917192 PMCID: PMC5114521 DOI: 10.3389/fgene.2016.00201] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 10/31/2016] [Indexed: 11/13/2022] Open
Abstract
Wheat landraces in Turkey are an important genetic resource for wheat improvement. An exhaustive 5-year (2009-2014) effort made by the International Winter Wheat Improvement Programme (IWWIP), a cooperative program between the Ministry of Food, Agriculture and Livestock of Turkey, the International Center for Maize and Wheat Improvement (CIMMYT) and the International Center for Agricultural Research in the Dry Areas (ICARDA), led to the collection and documentation of around 2000 landrace populations from 55 provinces throughout Turkey. This study reports the genetic characterization of a subset of bread wheat landraces collected in 2010 from 11 diverse provinces using genotyping-by-sequencing (GBS) technology. The potential of this collection to identify loci determining grain yield and stripe rust resistance via genome-wide association (GWA) analysis was explored. A high genetic diversity (diversity index = 0.260) and a moderate population structure based on highly inherited spike traits was revealed in the panel. The linkage disequilibrium decayed at 10 cM across the whole genome and was slower as compared to other landrace collections. In addition to previously reported QTL, GWA analysis also identified new candidate genomic regions for stripe rust resistance, grain yield, and spike productivity components. New candidate genomic regions reflect the potential of this landrace collection to further increase genetic diversity in elite germplasm.
Collapse
Affiliation(s)
- Deepmala Sehgal
- International Center for Maize and Wheat Improvement Texcoco, Mexico
| | | | - Savaş Belen
- Crop Breeding Department, Transitional Zone Agricultural Research Institute Eskisehir, Turkey
| | - Ümran Küçüközdemir
- Crop Breeding Department, Eastern Anatolia Agricultural Research Institute Erzurum, Turkey
| | - Zafer Mert
- Central Field Crops Research Institute Ankara, Turkey
| | - Emel Özer
- Crop Breeding Department, Bahri Dagdas International Agricultural Research Institute Konya, Turkey
| | - Alexey Morgounov
- Crop Pathology Department, International Center for Maize and Wheat Improvement Ankara, Turkey
| |
Collapse
|
35
|
Manickavelu A, Joukhadar R, Jighly A, Lan C, Huerta-Espino J, Stanikzai AS, Kilian A, Singh RP, Ban T. Genome wide association mapping of stripe rust resistance in Afghan wheat landraces. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 252:222-229. [PMID: 27717458 DOI: 10.1016/j.plantsci.2016.07.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/28/2016] [Accepted: 07/30/2016] [Indexed: 05/16/2023]
Abstract
Mining of new genetic resources is of paramount importance to combat the alarming spread of stripe rust disease and breakdown of major resistance genes in wheat. We conducted a genome wide association study on 352 un-utilized Afghan wheat landraces against stripe rust resistance in eight locations. High level of disease variation was observed among locations and a core-set of germplasm showed consistence performance. Linkage disequilibrium (LD) decayed rapidly (R2≈0.16 at 0cM) due to germplasm peerless diversity. The mixed linear model resulted in ten marker-trait associations (MTAs) across all environments representing five QTL. The extensively short LD blocks required us to repeat the analysis with less diverse subset of 220 landraces in which R2 decayed below 0.2 at 0.3cM. The subset GWAS resulted in 36 MTAs clustered in nine QTL. The subset analysis validated three QTL previously detected in the full list analysis. Overall, the study revealed that stripe rust epidemics in the geographical origin of this germplasm through time have permitted for selecting novel resistance loci.
Collapse
Affiliation(s)
- Alagu Manickavelu
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, 2440813, Japan; Present address: Department of Genome Science, School of Biological Science, Central University of Kerala, Kasaragod, 671314, Kerala, India.
| | - Reem Joukhadar
- AgriBio, Centre for Agribioscience, DEDJTR, 5 Ring Road, Bundoora, Vic. 3083, Australia; Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, Vic. 3083, Australia
| | - Abdulqader Jighly
- AgriBio, Centre for Agribioscience, DEDJTR, 5 Ring Road, Bundoora, Vic. 3083, Australia; School of Applied Systems Biology, La Trobe University, Bundoora, Vic. 3083, Australia; The International Center for Agricultural Research in the Dry Areas (ICARDA), Aleppo, Syria
| | - Caixia Lan
- CIMMYT, Apdo. Postal 6-641, 06600, Mexico
| | - Julio Huerta-Espino
- Campo Experimental Valle de México, INIFAP, Chapingo, Estado de México, Mexico
| | - Ahmad Shah Stanikzai
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, 2440813, Japan; Ministry of Agriculture, Irrigation and Livestock, Afghanistan
| | | | | | - Tomohiro Ban
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, 2440813, Japan
| |
Collapse
|
36
|
Pawar SK, Sharma D, Duhan JS, Saharan MS, Tiwari R, Sharma I. Mapping of stripe rust resistance QTL in Cappelle-Desprez × PBW343 RIL population effective in northern wheat belt of India. 3 Biotech 2016; 6:76. [PMID: 28330146 PMCID: PMC4755963 DOI: 10.1007/s13205-016-0380-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 10/08/2015] [Indexed: 11/29/2022] Open
Abstract
Stripe rust caused by Puccinia striiformis f. sp. tritici is most important and devastating disease of wheat worldwide, which affects the grain yields, quality and nutrition. To elucidate, the genetic basis of resistance, a mapping population of recombinant inbred lines was developed from a cross between resistant Cappelle-Desprez and susceptible cultivar PBW343 using single-seed descent. Variety PBW343 had been one of the most popular cultivars of North Western Plains Zone, for more than a decade, before succumbing to the stripe rust. Cappelle-Desprez, a source of durable adult plant resistance, has maintained its resistance against stripe rust for a long time in Europe. Map construction and QTL analysis were completed with 1012 polymorphic (DArT and SSR) markers. Screenings for stripe rust disease were carried out in field condition for two consecutive crop seasons (2012-2013 and 2013-2014). Susceptible parent (PBW343) achieved a significant level of disease i.e., 100 % in both the years. In present investigations, resistance in Cappelle-Desprez was found stable and response to the rust ranged from 0 to 1.5 % over the years. The estimated broad-sense heritability (h 2) of stripe rust rAUDPC in the mapping population was 0.82. The relative area under the disease progress curve data showed continuous distributions, indicating that trait was controlled multigenically. Genomic region identified on chromosome 2D, was located within the short arm, with flanking markers (Xgwm484-Xcfd73), explained phenotypic variation (PVE) ranged from 13.9 to 31.8 %. The genomic region identified on chromosome 5B was found with the effect of maximum contribution with flanking DArT markers (1376633|F|0-1207571|F|0), PVE ranged from 24 to 27.0 %. This can, therefore, be utilized for marker assisted selection in developing much needed stripe rust resistant lines for the northern wheat belt of India.
Collapse
Affiliation(s)
| | - Davinder Sharma
- Indian Institute of Wheat and Barley Research, Karnal, 132001, India
| | | | | | - Ratan Tiwari
- Indian Institute of Wheat and Barley Research, Karnal, 132001, India.
| | - Indu Sharma
- Indian Institute of Wheat and Barley Research, Karnal, 132001, India
| |
Collapse
|
37
|
Liu J, He Z, Wu L, Bai B, Wen W, Xie C, Xia X. Genome-Wide Linkage Mapping of QTL for Adult-Plant Resistance to Stripe Rust in a Chinese Wheat Population Linmai 2 × Zhong 892. PLoS One 2015; 10:e0145462. [PMID: 26714310 PMCID: PMC4694644 DOI: 10.1371/journal.pone.0145462] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/03/2015] [Indexed: 11/19/2022] Open
Abstract
Stripe rust is one of the most devastating diseases of wheat (Triticum aestivum) worldwide. Adult-plant resistance (APR) is an efficient approach to provide long-term protection of wheat from the disease. The Chinese winter wheat cultivar Zhong 892 has a moderate level of APR to stripe rust in the field. To determine the inheritance of the APR resistance in this cultivar, 273 F6 recombinant inbred lines (RILs) were developed from a cross between Linmai 2 and Zhong 892. The RILs were evaluated for maximum disease severity (MDS) in two sites during the 2011-2012, 2012-2013 and 2013-2014 cropping seasons, providing data for five environments. Illumina 90k SNP (single nucleotide polymorphism) chips were used to genotype the RILs and their parents. Composite interval mapping (CIM) detected eight QTL, namely QYr.caas-2AL, QYr.caas-2BL.3, QYr.caas-3AS, QYr.caas-3BS, QYr.caas-5DL, QYr.caas-6AL, QYr.caas-7AL and QYr.caas-7DS.1, respectively. All except QYr.caas-2BL.3 resistance alleles were contributed by Zhong 892. QYr.caas-3AS and QYr.caas-3BS conferred stable resistance to stripe rust in all environments, explaining 6.2-17.4% and 5.0-11.5% of the phenotypic variances, respectively. The genome scan of SNP sequences tightly linked to QTL for APR against annotated proteins in wheat and related cereals genomes identified two candidate genes (autophagy-related gene and disease resistance gene RGA1), significantly associated with stripe rust resistance. These QTL and their closely linked SNP markers, in combination with kompetitive allele specific PCR (KASP) technology, are potentially useful for improving stripe rust resistances in wheat breeding.
Collapse
Affiliation(s)
- Jindong Liu
- Institute of Crop Science/National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Plant Genetics & Breeding/State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, China
| | - Zhonghu He
- Institute of Crop Science/National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ling Wu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| | - Bin Bai
- Wheat Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Weie Wen
- College of Agronomy, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Chaojie Xie
- Department of Plant Genetics & Breeding/State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, China
| | - Xianchun Xia
- Institute of Crop Science/National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
38
|
Jighly A, Oyiga BC, Makdis F, Nazari K, Youssef O, Tadesse W, Abdalla O, Ogbonnaya FC. Genome-wide DArT and SNP scan for QTL associated with resistance to stripe rust (Puccinia striiformis f. sp. tritici) in elite ICARDA wheat (Triticum aestivum L.) germplasm. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:1277-95. [PMID: 25851000 DOI: 10.1007/s00122-015-2504-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 03/20/2015] [Indexed: 05/06/2023]
Abstract
Identified DArT and SNP markers including a first reported QTL on 3AS, validated large effect APR on 3BS. The different genes can be used to incorporate stripe resistance in cultivated varieties. Stripe rust [yellow rust, caused by Puccinia striiformis f. sp. tritici (Pst)] is a serious disease in wheat (Triticum aestivum). This study employed genome-wide association mapping (GWAM) to identify markers linked to stripe rust resistance genes using Diversity Arrays Technology (DArT(®)) and single-nucleotide polymorphism (SNP) Infinium 9K assays in 200 ICARDA wheat genotypes, phenotyped for seedling and adult plant resistance in two sites over two growing seasons in Syria. Only 25.8 % of the genotypes showed resistance at seedling stage while about 33 and 44 % showed moderate resistance and resistance response, respectively. Mixed-linear model adjusted for false discovery rate at p < 0.05 identified 12 DArT and 29 SNP markers on chromosome arms 3AS, 3AL, 1AL, 2AL, 2BS, 2BL, 3BS, 3BL, 5BL, 6AL, and 7DS significantly linked to Pst resistance genes. Of these, the locus on 3AS has not been previously reported to confer resistance to stripe rust in wheat. The QTL on 3AS, 3AL, 1AL, 2AL, and 2BS were effective at seedling and adult plant growth stages while those on 3BS, 3BL, 5BL, 6AL and 7DS were effective at adult plant stage. The 3BS QTL was validated in Cham-6 × Cham-8 recombinant inbred line population; composite interval analysis identified a stripe resistance QTL flanked by the DArT marker, wPt-798970, contributed by Cham-6 parent which accounted for 31.2 % of the phenotypic variation. The DArT marker "wPt-798970" lies 1.6 cM away from the 3BS QTL detected within GWAM. Epistatic interactions were also investigated; only the QTL on 1AL, 3AS and 6AL exhibited interactions with other loci. These results suggest that GWAM can be an effective approach for identifying and improving resistance to stripe rust in wheat.
Collapse
Affiliation(s)
- Abdulqader Jighly
- International Center for Agricultural Research in the Dry Areas (ICARDA), P.O. Box 5466, Aleppo, Syria
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Naruoka Y, Garland-Campbell KA, Carter AH. Genome-wide association mapping for stripe rust (Puccinia striiformis F. sp. tritici) in US Pacific Northwest winter wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:1083-101. [PMID: 25754424 DOI: 10.1007/s00122-015-2492-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 02/27/2015] [Indexed: 05/06/2023]
Abstract
Potential novel and known QTL for race-specific all-stage and adult plant resistance to stripe rust were identified by genome-wide association mapping in the US PNW winter wheat accessions. Stripe rust (Puccinia striiformis F. sp. tritici; also known as yellow rust) is a globally devastating disease of wheat (Triticum aestivum L.) and a major threat to wheat production in the US Pacific Northwest (PNW), therefore both adult plant and all-stage resistance have been introduced into the winter wheat breeding programs in the PNW. The goal of this study was to identify quantitative trait loci (QTL) and molecular markers for these resistances through genome-wide association (GWAS) mapping in winter wheat accessions adapted to the PNW. Stripe rust response for adult plants was evaluated in naturally occurring epidemics in a total of nine environments in Washington State, USA. Seedling response was evaluated with three races under artificial inoculation in the greenhouse. The panel was genotyped with the 9K Illumina Wheat single nucleotide polymorphism (SNP) array and additional markers linked to previously reported genes and QTL for stripe rust resistance. The population was grouped into three sub-populations. Markers linked to Yr17 and previously reported QTL for stripe rust resistance were identified on chromosomes 1B, 2A, and 2B. Potentially novel QTL associated with race-specific seedling response were identified on chromosomes 1B and 1D. Potentially novel QTL associated with adult plant response were located on chromosomes 2A, 2B, 3B, 4A, and 4B. Stripe rust was reduced when multiple alleles for resistance were present. The resistant allele frequencies were different among sub-populations in the panel. This information provides breeders with germplasm and closely linked markers for stripe rust resistance to facilitate the transfer of multiple loci for durable stripe rust resistance into wheat breeding lines and cultivars.
Collapse
Affiliation(s)
- Y Naruoka
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA,
| | | | | |
Collapse
|
40
|
Hou L, Chen X, Wang M, See DR, Chao S, Bulli P, Jing J. Mapping a Large Number of QTL for Durable Resistance to Stripe Rust in Winter Wheat Druchamp Using SSR and SNP Markers. PLoS One 2015; 10:e0126794. [PMID: 25970329 PMCID: PMC4430513 DOI: 10.1371/journal.pone.0126794] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 04/07/2015] [Indexed: 11/22/2022] Open
Abstract
Winter wheat Druchamp has both high-temperature adult-plant (HTAP) resistance and all-stage resistance to stripe rust caused by Puccinia striiformis f. sp. tritici (Pst). The HTAP resistance in Druchamp is durable as the variety has been resistant in adult-plant stage since it was introduced from France to the United States in late 1940s. To map the quantitative trait loci (QTL) for stripe rust resistance, an F8 recombinant inbred line (RIL) population from cross Druchamp × Michigan Amber was phenotyped for stripe rust response in multiple years in fields under natural infection and with selected Pst races under controlled greenhouse conditions, and genotyped with simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers. Composite interval mapping (CIM) identified eight HTAP resistance QTL and three all-stage resistance QTL. Among the eight HTAP resistance QTL, QYrdr.wgp-1BL.2 (explaining 2.36-31.04% variation), QYrdr.wgp-2BL (2.81-15.65%), QYrdr.wgp-5AL (2.27-17.22%) and QYrdr.wgp-5BL.2 (2.42-15.13%) were significant in all tests; and QYrdr.wgp-1BL.1 (1.94-10.19%), QYrdr.wgp-1DS (2.04-27.24%), QYrdr.wgp-3AL (1.78-13.85%) and QYrdr.wgp-6BL.2 (1.69-33.71%) were significant in some of the tests. The three all-stage resistance QTL, QYrdr.wgp-5BL.1 (5.47-36.04%), QYrdr.wgp-5DL (9.27-11.94%) and QYrdr.wgp-6BL.1 (13.07-20.36%), were detected based on reactions in the seedlings tested with certain Pst races. Among the eleven QTL detected in Druchamp, at least three (QYrdr.wgp-5DL for race-specific all-stage resistance and QYrdr.wgp-3AL and QYrdr.wgp-6BL.2 for race non-specific HTAP resistance) are new. All these QTL, especially those for durable HTAP resistance, and their closely linked molecular markers could be useful for developing wheat cultivars with durable resistance to stripe rust.
Collapse
Affiliation(s)
- Lu Hou
- Key Laboratory of Agricultural Integrated Pest Management, Institute of Plant Protection, Qinghai Academy of Agriculture and Forestry Sciences, Xining, Qinghai, China
- Department of Plant Pathology, Washington State University, Pullman, Washington, United States of America
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Xianming Chen
- Department of Plant Pathology, Washington State University, Pullman, Washington, United States of America
- US Department of Agriculture, Agricultural Research Service, Wheat Genetics, Quality, Physiology and Disease Research Unit, Pullman, Washington, United States of America
| | - Meinan Wang
- Department of Plant Pathology, Washington State University, Pullman, Washington, United States of America
| | - Deven R. See
- Department of Plant Pathology, Washington State University, Pullman, Washington, United States of America
- US Department of Agriculture, Agricultural Research Service, Wheat Genetics, Quality, Physiology and Disease Research Unit, Pullman, Washington, United States of America
| | - Shiaoman Chao
- US Department of Agriculture, Agricultural Research Service, Cereal Crops Research, Fargo, North Dakota, United States of America
| | - Peter Bulli
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, United States of America
| | - Jinxue Jing
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
41
|
Lan CX, Singh RP, Huerta-Espino J, Calvo-Salazar V, Herrera-Foessel SA. Genetic Analysis of Resistance to Leaf Rust and Stripe Rust in Wheat Cultivar Francolin#1. PLANT DISEASE 2014; 98:1227-1234. [PMID: 30699610 DOI: 10.1094/pdis-07-13-0707-re] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Leaf rust and stripe rust are important diseases of wheat and can be controlled by growing resistant varieties. We investigated the genetic basis of resistance to both rusts in 198 F5 recombinant inbred lines derived from a cross between 'Avocet' and 'Francolin#1'. The population was phenotyped in greenhouse and field, and genotyped with known gene-associated molecular markers. Seedling resistance of Francolin#1 to leaf and stripe rusts was attributed to the loosely linked genes Lr16 and YrF, respectively, with a recombination frequency of 0.36. Field segregation indicated that adult plant resistance (APR) to leaf and stripe rusts was conferred by three and five additive genes, respectively. Among them, Lr46/Yr29 was associated with resistance to both rusts in Francolin#1, Lr16 reduced field leaf rust severity by 8 to 9%, and YrF contributed to 10 to 25% reductions in stripe rust severity. The Lr16 region was also associated with a 5 to 16% reduction in stripe rust severity, which is likely due to its linkage with YrF or another unidentified stripe rust APR gene. Significant additive effects on stripe rust were detected between YrF and Yr29. We conclude that APR in Francolin#1 to leaf and stripe rusts involves a combination of seedling and APR genes.
Collapse
Affiliation(s)
- C X Lan
- International Maize and Wheat Improvement Center (CIMMYT), 06600, México D.F., Mexico
| | - R P Singh
- International Maize and Wheat Improvement Center (CIMMYT), 06600, México D.F., Mexico
| | - J Huerta-Espino
- Campo Experimental Valle de México INIFAP, 56230, Chapingo, Edo. de México, Mexico
| | - V Calvo-Salazar
- International Maize and Wheat Improvement Center (CIMMYT), 06600, México D.F., Mexico
| | - S A Herrera-Foessel
- International Maize and Wheat Improvement Center (CIMMYT), 06600, México D.F., Mexico
| |
Collapse
|
42
|
Bai B, Du JY, Lu QL, He CY, Zhang LJ, Zhou G, Xia XC, He ZH, Wang CS. Effective Resistance to Wheat Stripe Rust in a Region with High Disease Pressure. PLANT DISEASE 2014; 98:891-897. [PMID: 30708850 DOI: 10.1094/pdis-09-13-0909-re] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Stripe rust is a major fungal disease of wheat. It frequently becomes epidemic in southeastern Gansu province, a stripe rust hot spot in China. Evaluations of wheat germplasm response are crucial for developing cultivars to control the disease. In total, 57 wheat cultivars and lines from Europe and other countries, comprising 36 cultivars with documented stripe rust resistance genes and 21 with unknown genes, were tested annually with multiple races of Puccinia striiformis f. sp. tritici in the field at Tianshui in Gansu province from 1993 to 2013. Seven wheat lines were highly resistant, with infection type (IT) 0 during the entire period; 16 were moderately resistant (IT 0;-2); and 26 were moderately susceptible (IT 0;-4), with low maximum disease severity compared with the susceptible control Huixianhong. 'Strampelli' and 'Libellula', with three and five quantitative trait loci, respectively, for stripe rust resistance have displayed durable resistance in this region for four decades. Ten cultivars, including 'Lantian 15', 'Lantian 26', and 'Lantian 31', with stripe rust resistance derived from European lines, were developed in our breeding program and have made a significant impact on controlling stripe rust in southeastern Gansu. Breeding resistant cultivars with multiple adult-plant resistance genes seems to be a promising strategy in wheat breeding for managing stripe rust in this region and other hot spots.
Collapse
Affiliation(s)
- B Bai
- State Key Laboratory of Crop Stress Biology in Arid Areas/College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China, and Wheat Research Institute, Gansu Academy of Agricultural Sciences, 1 Nongkeyuanxincun, Lanzhou 730070, China
| | - J Y Du
- Wheat Research Institute, Gansu Academy of Agricultural Sciences
| | - Q L Lu
- Wheat Research Institute, Gansu Academy of Agricultural Sciences
| | - C Y He
- Wheat Research Institute, Gansu Academy of Agricultural Sciences
| | - L J Zhang
- Wheat Research Institute, Gansu Academy of Agricultural Sciences
| | - G Zhou
- Wheat Research Institute, Gansu Academy of Agricultural Sciences
| | - X C Xia
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081
| | - Z H He
- Institute of Crop Science, National Wheat Improvement Center, CAAS, Beijing, and International Maize and Wheat Improvement Center (CIMMYT), CIMMYT China Office, c/o CAAS, Beijing
| | - C S Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas/College of Agronomy, Shaanxi
| |
Collapse
|
43
|
Lu Y, Wang M, Chen X, See D, Chao S, Jing J. Mapping of Yr62 and a small-effect QTL for high-temperature adult-plant resistance to stripe rust in spring wheat PI 192252. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:1449-59. [PMID: 24781075 DOI: 10.1007/s00122-014-2312-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 04/10/2014] [Indexed: 05/20/2023]
Abstract
This manuscript reports a new gene (Yr62) and a small-effect QTL for potentially durable resistance to stripe rust and usefulness of Yr62 markers for marker-assisted selection. Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a devastating disease of wheat worldwide. Spring wheat germplasm PI 192252 showed a high level of high-temperature adult-plant (HTAP) resistance to stripe rust in germplasm evaluation over 8 years in the State of Washington. To elucidate the genetic basis of resistance, PI 192252 was crossed with 'Avocet susceptible'. A mapping population of 150 F5 recombinant inbred lines was developed using single-seed descent. Stripe rust tests were conducted with selected Pst races in a greenhouse and in field conditions under natural infections. The relative area under the disease progress curve (rAUDPC) data showed continuous distributions, indicating that HTAP resistance of PI 192252 was controlled by quantitative trait loci (QTL). Two QTL were identified in PI 192252, explaining 74.2 % of the total phenotypic variation for rAUDPC. These two QTL were mapped to chromosomes 4BL (QYrPI192252.wgp-4BL) and 5BS (QYrPI192252.wgp-5BS) with SSR and SNP markers and explained 40-60 and 22-27 %, respectively, of the phenotypic variation across the four environments. Because the major-effect QTL on 4BL is different from previously named Yr genes and inherited as a single gene, it is named Yr62. The SSR marker alleles Xgwm192 222 and Xgwm251 133 flanking Yr62 were different from the alleles in various wheat varieties, suggesting that these markers could be useful in marker-assisted selection for incorporating Yr62 into commercial cultivars.
Collapse
Affiliation(s)
- Yan Lu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | | | | | | | | | | |
Collapse
|
44
|
Chen W, Wellings C, Chen X, Kang Z, Liu T. Wheat stripe (yellow) rust caused by Puccinia striiformis f. sp. tritici. MOLECULAR PLANT PATHOLOGY 2014; 15:433-46. [PMID: 24373199 PMCID: PMC6638732 DOI: 10.1111/mpp.12116] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
UNLABELLED Stripe (yellow) rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a serious disease of wheat occurring in most wheat areas with cool and moist weather conditions during the growing season. The basidiomycete fungus is an obligate biotrophic parasite that is difficult to culture on artificial media. Pst is a macrocyclic, heteroecious fungus that requires both primary (wheat or grasses) and alternate (Berberis or Mahonia spp.) host plants to complete its life cycle. Urediniospores have the capacity for wind dispersal over long distances, which may, under high inoculum pressure, extend to thousands of kilometres from the initial infection sites. Stripe rust, which is considered to be the current major rust disease affecting winter cereal production across the world, has been studied intensively for over a century. This review summarizes the current knowledge of the Pst-wheat pathosystem, with emphasis on the life cycle, uredinial infection process, population biology of the pathogen, genes for stripe rust resistance in wheat and molecular perspectives of wheat-Pst interactions. TAXONOMY The stripe rust pathogen, Puccinia striiformis Westend. (Ps), is classified in kingdom Fungi, phylum Basidiomycota, class Urediniomycetes, order Uredinales, family Pucciniaceae, genus Puccinia. Ps is separated below the species level by host specialization on various grass genera, comprising up to nine formae speciales, of which P. striiformis f. sp. tritici Erikss. (Pst) causes stripe (or yellow) rust on wheat. HOST RANGE Uredinial/telial hosts: Pst mainly infects common wheat (Triticum aestivum L.), durum wheat (T. turgidum var. durum L.), cultivated emmer wheat (T. dicoccum Schrank), wild emmer wheat (T. dicoccoides Korn) and triticale (Triticosecale). Pst can infect certain cultivated barleys (Hordeum vulgare L.) and rye (Secale cereale L.), but generally does not cause severe epidemics. In addition, Pst may infect naturalized and improved pasture grass species, such as Elymus canadensis L., Leymus secalinus Hochst, Agropyron spp. Garetn, Hordeum spp. L., Phalaris spp. L and Bromus unioloides Kunth. Pycnial/aecial (alternative) hosts: Barberry (Berberis chinensis, B. koreana, B. holstii, B. vulgaris, B. shensiana, B. potaninii, B. dolichobotrys, B. heteropoda, etc.) and Oregon grape (Mahonia aquifolium). DISEASE SYMPTOMS Stripe rust appears as a mass of yellow to orange urediniospores erupting from pustules arranged in long, narrow stripes on leaves (usually between veins), leaf sheaths, glumes and awns on susceptible plants. Resistant wheat cultivars are characterized by various infection types from no visual symptoms to small hypersensitive flecks to uredinia surrounded by chlorosis or necrosis with restricted urediniospore production. On seedlings, uredinia produced by the infection of a single urediniospore are not confined by leaf veins, but progressively emerge from the infection site in all directions, potentially covering the entire leaf surface. Individual uredinial pustules are oblong, 0.4-0.7 mm in length and 0.1 mm in width. Urediniospores are broadly ellipsoidal to broadly obovoid, (16-)18-30(-32) × (15-)17-27(-28) μm, with a mean of 24.5 × 21.6 μm, yellow to orange in colour, echinulate, and with 6-18 scattered germ pores. Urediniospores can germinate rapidly when free moisture (rain or dew) occurs on leaf surfaces and when the temperatures range is between 7 and 12 °C. At higher temperatures or during the later growing stages of the host, black telia are often produced, which are pulvinate to oblong, 0.2-0.7 mm in length and 0.1 mm in width. The teliospores are predominantly two-celled, dark brown with thick walls, mostly oblong-clavate, (24-)31-56(-65) × (11-)14-25(-29) μm in length and width, and rounded or flattened at the apex.
Collapse
Affiliation(s)
- Wanquan Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, West Yuan Ming Yuan Road, Beijing, 100193, China
| | | | | | | | | |
Collapse
|
45
|
Rosewarne GM, Herrera-Foessel SA, Singh RP, Huerta-Espino J, Lan CX, He ZH. Quantitative trait loci of stripe rust resistance in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:2427-49. [PMID: 23955314 PMCID: PMC3782644 DOI: 10.1007/s00122-013-2159-9] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 07/12/2013] [Indexed: 05/18/2023]
Abstract
Over thirty publications during the last 10 years have identified more than 140 QTLs for stripe rust resistance in wheat. It is likely that many of these QTLs are identical genes that have been spread through plant breeding into diverse backgrounds through phenotypic selection under stripe rust epidemics. Allelism testing can be used to differentiate genes in similar locations but in different genetic backgrounds; however, this is problematic for QTL studies where multiple loci segregate from any one parent. This review utilizes consensus maps to illustrate important genomic regions that have had effects against stripe rust in wheat, and although this methodology cannot distinguish alleles from closely linked genes, it does highlight the extent of genetic diversity for this trait and identifies the most valuable loci and the parents possessing them for utilization in breeding programs. With the advent of cheaper, high throughput genotyping technologies, it is envisioned that there will be many more publications in the near future describing ever more QTLs. This review sets the scene for the coming influx of data and will quickly enable researchers to identify new loci in their given populations.
Collapse
Affiliation(s)
- G M Rosewarne
- Crop Research Institute, Key Laboratory of Biology and Genetic Breeding in Wheat (Southwest), Sichuan Academy of Agricultural Science, #4 Shizishan Rd, Jinjiang, 610066, Chengdu, Sichuan Province, People's Republic of China,
| | | | | | | | | | | |
Collapse
|
46
|
Yang EN, Rosewarne GM, Herrera-Foessel SA, Huerta-Espino J, Tang ZX, Sun CF, Ren ZL, Singh RP. QTL analysis of the spring wheat "Chapio" identifies stable stripe rust resistance despite inter-continental genotype × environment interactions. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:1721-32. [PMID: 23558982 DOI: 10.1007/s00122-013-2087-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 03/19/2013] [Indexed: 05/13/2023]
Abstract
Chapio is a spring wheat developed by CIMMYT in Mexico by a breeding program that focused on multigenic resistances to leaf rust and stripe rust. A population consisting of 277 recombinant inbred lines (RILs) was developed by crossing Chapio with Avocet. The RILs were genotyped with DArT markers (137 randomly selected RILs) and bulked segregant analysis conducted to supplement the map with informative SSR markers. The final map consisted of 264 markers. Phenotyping against stripe rust was conducted for three seasons in Toluca, Mexico and at three sites over two seasons (total of four environments) in Sichuan Province, China. Significant loci across the two inter-continental regions included Lr34/Yr18 on 7DS, Sr2/Yr30 on 3BS, and a QTL on 3D. There were significant genotype × environment interactions with resistance gene Yr31 on 2BS being effective in most of the Toluca environments; however, a late incursion of a virulent pathotype in 2009 rendered this gene ineffective. This locus also had no effect in China. Conversely, a 5BL locus was only effective in the Chinese environments. There were also complex additive interactions. In the Mexican environments, Yr31 suppressed the additive effect of Yr30 and the 3D locus, but not of Lr34/Yr18, while in China, the 3D and 5BL loci were generally not additive with each other, but were additive when combined with other loci. These results indicate the importance of maintaining diverse, multi-genic resistances as Chapio had stable inter-continental resistance despite the fact that there were QTLs that were not effective in either one or the other region.
Collapse
Affiliation(s)
- E-N Yang
- Key Laboratory of Biology and Genetic Breeding in Wheat (Southwest), Crop Research Institute, Sichuan Academy of Agricultural Science, #4 Shizishan Rd, Jinjiang, Chengdu, Sichuan 610066, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Ren Y, Li Z, He Z, Wu L, Bai B, Lan C, Wang C, Zhou G, Zhu H, Xia X. QTL mapping of adult-plant resistances to stripe rust and leaf rust in Chinese wheat cultivar Bainong 64. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 125:1253-1262. [PMID: 22806327 DOI: 10.1007/s00122-012-1910-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 05/25/2012] [Indexed: 06/01/2023]
Abstract
Stripe rust and leaf rust, caused by Puccinia striiformis Westend. f. sp. tritici Erikss. and P. triticina, respectively, are devastating fungal diseases of common wheat (Triticum aestivum L.). Chinese wheat cultivar Bainong 64 has maintained acceptable adult-plant resistance (APR) to stripe rust, leaf rust and powdery mildew for more than 10 years. The aim of this study was to identify quantitative trait loci/locus (QTL) for resistance to the two rusts in a population of 179 doubled haploid (DH) lines derived from Bainong 64 × Jingshuang 16. The DH lines were planted in randomized complete blocks with three replicates at four locations. Stripe rust tests were conducted using a mixture of currently prevalent P. striiformis races, and leaf rust tests were performed with P. triticina race THTT. Leaf rust severities were scored two or three times, whereas maximum disease severities (MDS) were recorded for stripe rust. Using bulked segregant analysis (BSA) and simple sequence repeat (SSR) markers, five independent loci for APR to two rusts were detected. The QTL on chromosomes 1BL and 6BS contributed by Bainong 64 conferred resistance to both diseases. The loci identified on chromosomes 7AS and 4DL had minor effects on stripe rust response, whereas another locus, close to the centromere on chromosome 6BS, had a significant effect only on leaf rust response. The loci located on chromosomes 1BL and 4DL also had significant effects on powdery mildew response. These were located at the same positions as the Yr29/Lr46 and Yr46/Lr67 genes, respectively. The multiple disease resistance locus for APR on chromosome 6BS appears to be new. All three genes and their closely linked molecular markers could be used in breeding wheat cultivars with durable resistance to multiple diseases.
Collapse
Affiliation(s)
- Yan Ren
- Institute of Crop Science, National Wheat Improvement Center/The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Li Q, Huang J, Hou L, Liu P, Jing J, Wang B, Kang Z. Genetic and Molecular Mapping of Stripe Rust Resistance Gene in Wheat-Psathyrostachys huashanica Translocation Line H9020-1-6-8-3. PLANT DISEASE 2012; 96:1482-1487. [PMID: 30727301 DOI: 10.1094/pdis-03-11-0204-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most important diseases of wheat worldwide. The best strategy to control stripe rust is to grow resistant cultivars, but only a few effective genes are available. The wheat accession H9020-1-6-8-3 is a translocation line previously developed from interspecific hybridization between wheat genotype 7182 and Psathyrostachys huashanica, and is resistant to most Chinese Puccinia striiformis f. sp. tritici races. To identify the resistance genes in the translocation line, H9020-1-6-8-3 was crossed with susceptible genotype Mingxian 169, and seedlings of parents and F1, F2, and F3 progenies were tested with prevalent Chinese P. striiformis f. sp. tritici races CYR32 and CYR33 under controlled greenhouse conditions. The genetic results indicated that two single dominant genes in H9020-1-6-8-3 confer resistance to CYR32 and CYR33, respectively. The gene for resistance to CYR33 was temporarily designated as YrH9020. Six simple-sequence repeat markers were used to map the resistance gene to the short arm of wheat chromosome 2D, using 329 F2 plants tested with CYR33 in the greenhouse. The genetic distances of the two closest flanking markers, Xgwm261 and Xgwm455, were 4.4 and 5.8 centimorgans, respectively. Disease assessments and polymorphic tests of the flanking markers among the Psathyrostachys huashanica line and wheat lines 7182, H9020-1-6-8-3, and Mingxian169 suggested that the resistance gene YrH9020 in H9020-1-6-8-3 was originally from P. huashanica. The exotic stripe rust resistance gene and linked molecular markers should be useful for pyramiding with other genes to develop wheat cultivars with high-level and durable resistance to stripe rust.
Collapse
Affiliation(s)
- Qiang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Jing Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Lu Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Pei Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Jinxue Jing
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Baotong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Plant Protection, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
49
|
Ren Y, He Z, Li J, Lillemo M, Wu L, Bai B, Lu Q, Zhu H, Zhou G, Du J, Lu Q, Xia X. QTL mapping of adult-plant resistance to stripe rust in a population derived from common wheat cultivars Naxos and Shanghai 3/Catbird. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 125:1211-21. [PMID: 22798057 DOI: 10.1007/s00122-012-1907-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Accepted: 05/25/2012] [Indexed: 05/20/2023]
Abstract
Stripe rust, caused by Puccinia striiformis Westend. f. sp. tritici Erikss., is a severe foliar disease of common wheat (Triticum aestivum L.) worldwide. Use of adult-plant resistance (APR) is an efficient approach to provide long-term protection of crops from the disease. The German spring wheat cultivar Naxos showed a high level of APR to stripe rust in the field. To identify the APR genes in this cultivar, a mapping population of 166 recombinant inbred lines (RILs) was developed from a cross between Naxos and Shanghai 3/Catbird (SHA3/CBRD), a moderately susceptible line developed by CIMMYT. The RILs were evaluated for maximum disease severity (MDS) in Sichuan and Gansu in the 2009-2010 and 2010-2011 cropping seasons. Composite interval mapping (CIM) identified four QTL, QYr.caas-1BL.1RS, QYr.caas-1DS, QYr.caas-5BL.3 and QYr.caas-7BL.1, conferring stable resistance to stripe rust across all environments, each explaining 1.9-27.6, 2.1-5.8, 2.5-7.8 and 3.7-9.1 % of the phenotypic variance, respectively. QYr.caas-1DS flanked by molecular markers XUgwm353-Xgdm33b was likely a new QTL for APR to stripe rust. Because the interval between flanking markers for each QTL was less than 6.5 cM, these QTL and their closely linked markers are potentially useful for improving resistance to stripe rust in wheat breeding.
Collapse
Affiliation(s)
- Yan Ren
- Institute of Crop Science, National Wheat Improvement Center/The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Agenbag GM, Pretorius ZA, Boyd LA, Bender CM, Prins R. Identification of adult plant resistance to stripe rust in the wheat cultivar Cappelle-Desprez. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 125:109-20. [PMID: 22350093 DOI: 10.1007/s00122-012-1819-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 02/03/2012] [Indexed: 05/20/2023]
Abstract
Following the appearance of stripe rust in South Africa in 1996, efforts have been made to identify new sources of durable resistance. The French cultivar Cappelle-Desprez has long been considered a source of durable, adult plant resistance (APR) to stripe rust. As Cappelle-Desprez contains the seedling resistance genes Yr3a and Yr4a, wheat lines were developed from which Yr3a and Yr4a had been removed, while selecting for Cappelle-Desprez derived APR effective against South African pathotypes of the stripe rust fungus, Puccinia striiformis f. sp. tritici. Line Yr16DH70, adapted to South African wheat growing conditions, was selected and crossed to the stripe rust susceptible cultivar Palmiet to develop a segregating recombinant inbred line mapping population. A major effect QTL, QYr.ufs-2A was identified on the short arm of chromosome 2A derived from Cappelle-Desprez, along with three QTL of smaller effect, QYr.ufs-2D, QYr.ufs-5B and QYr.ufs-6D. QYr.ufs-2D was located within a region on the short arm of chromosome 2D believed to be the location of the stripe rust resistance gene Yr16. An additional minor effect QTL, QYr.ufs-4B, was identified in the cv. Palmiet. An examination of individual RILs carrying single or combinations of each QTL indicated significant resistance effects when QYr.ufs-2A was combined with the three minor QTL from Cappelle-Desprez, and between QYr.ufs-2D and QYr.ufs-5B.
Collapse
Affiliation(s)
- G M Agenbag
- Department of Plant Sciences, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa
| | | | | | | | | |
Collapse
|